
Temperature Aware Thread Block Scheduling in GPGPUs

Rajib Nath
University of California, San

Diego
rknath@ucsd.edu

Raid Ayoub
Strategic CAD Labs, Intel

Corporation
raid.ayoub@intel.com

Tajana Simunic Rosing
University of California, San

Diego
tajana@ucsd.edu

ABSTRACT
In this paper, we present a first general purpose GPU ther-
mal management design that consists of both hardware ar-
chitecture and OS scheduler changes. Our techniques sched-
ule thread blocks from multiple computational kernels in
spatial, temporal, and spatio-temporal ways depending on
the thermal state of the system. We can reduce the com-
putation slowdown by 60% on average relative to the state
of the art techniques while meeting the thermal constraints.
We also extend our work to multi GPGPU cards and show
improvements of 44% on average relative to existing tech-
nique.

1. INTRODUCTION
General purpose graphics processor unit (GPGPU) pro-

vides an energy efficient computing platform for a wide range
of parallel applications. The rising trend in the number
of cores per GPGPU chip, in addition to technology scal-
ing, results in high power densities. High power dissipation
causes thermal hot spots that may have a significant effect on
reliability, performance, and leakage power [2]. Meanwhile
the duty cycle time of GPGPUs is getting shorter because of
the advancements in the PCIe bus design, GPGPU ′s abil-
ity to hide the data transfer with overlapping computation,
and GPGPU multiuser mode. As a result, it is becoming
more challenging to dissipate the heat using existing cooling
mechanisms without sacrificing performance.

In NV IDIA GPGPUs, the submitted jobs, usually re-
ferred to as kernels, wait in a queue called KQueue. Each
kernel has a massive number of threads, which are divided
into disjoint groups called thread blocks (TB). A kernel has
hundreds to thousands of TBs, which have a very short
lifetime (µs to ms). Threads inside each TB may syn-
chronize, though TBs are completely independent of each
other. TBs are scheduled to the available streaming mul-
tiprocessors (SM) by a hardware TB scheduler. Kernels
from KQueue are processed one at a time unless there are
unused SMs to launch more TB from the next kernel. Since

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC ’13, May 29 - June 07 2013, Austin, TX, USA
Copyright 2013 ACM 978-1-4503-2071-9/13/05 ...$15.00.

all concurrently running TBs in modern GPGPUs are usu-
ally from a single kernel, their temperature is dominated by
that kernel. A highly compute intensive kernel occupying all
the cores can increase the temperature very quickly, causing
performance degradation due to dynamic thermal manage-
ment (DTM) techniques like throttling or dynamic voltage
frequency scaling (DV FS).

In this work, we propose temperature aware TB schedul-
ing (TABS), the first ever GPGPU specific thermal man-
agement technique. TABS exploits the data parallel com-
putation pattern of GPGPUs, the short life time of TBs,
the abundance of TBs, and the thermal heterogeneity in
GPGPU workloads to reduce the thermal hotspots. TABS
intelligently intermixes kernels without doing any thread
migration to eliminate the overhead of context switching
whereas most of the thermal aware workload scheduling in
CPU require thread migrations. We present three classes of
intermixing algorithms for TABS: (a) temporal (alternate),
(b) spatial (mixed), (c) spatio-temporal (mixed-alternate).
TABS has great opportunities in new GPGPUs like Ke-
pler where kernels from multiple applications submitted by
more than one user can run concurrently in a virtualized
GPGPU environment. We provide the necessary architec-
tural and software changes which make it possible to imple-
ment TABS in GPGPUs. We also explore the use of TABS
in multi-GPGPU graphics cards. We present a thorough
evaluation of TABS which reduces performance cost due to
thermal hotspots by 60% on average, while meeting thermal
constraints.

2. RELATED WORK
Thermal management for general purpose processors has

been an active research area in recent years. There are two
classes of core level thermal management techniques: reac-
tive and proactive. Popular reactive dynamic thermal man-
agement (DTM) [5] techniques remove the excess heat ag-
gressively by slowing down the cores by using pipeline throt-
tling or DV FS at associated performance cost, which our
proposed technique reduces dramatically. Activity migra-
tion has also been proposed to manage the excess tempera-
ture by rescheduling computation across redundant units [6,
9, 8]. This technique does not fit well in the context of
GPGPU programming model due to the thread structure,
the computation pattern, and the migration cost in short
life time of the threads. Moreover, migrations of a kernel
across GPGPUs may involve lots of data transfer thereby
increasing the performance and energy overhead. In order
to address the performance overhead and non uniform ther-

mal distribution in reactive techniques, a set of proactive
thermal management techniques [7, 16] have been intro-
duced that leverage temperature predictors. TABS can be
complemented farther by such temperature predictors if fu-
ture GPGPU kernels show heterogeneous thermal phases
in a single run. Sheaffer, et al. [13] has explored multiple
thermal management techniques such as global clock gat-
ing, fetch gating, dynamic voltage scaling (DV S), and DV S
in multiple clock domains for graphics workloads in GPUs.
However, all these techniques have performance slowdown
due to the induced throttling. Despite all the existing work
in CPUs and recent comparison of DTM techniques for
graphics workloads in GPUs, the thermal management of
GPGPUs has not been explored. Our work exploits the
thermal heterogeneity in GPGPU kernels and intermixes
thread blocks from multiple kernels to have a better thermal
distribution over time and space. Although spatial schedul-
ing has been recently proposed for GPGPUs to maximize
the resource usage that ultimately leads to increased perfor-
mance [1], it does not take temperature into account; as a
result it may co-schedule two hot kernels, thus experiencing
performance overhead due to thermal hotspot.

3. TABS DESIGN
We motivate our work by running GPGPU workloads on

NV IDIA’s GTX280 [12] graphics card which has a maxi-
mum total power consumption of 236W (more in Section 4.1).
We measure temperature difference as high as 27◦C when
running different kernels, with the hottest kernel running at
the maximum allowed temperature with the GPGPU fan
running at the maximum operating speed. Interleaving the
execution of the hottest and coldest kernels lowers the mea-
sured temperature by 15◦C below maximum. To investigate
the performance overhead caused by thermal hotspots, we
develop a thermal simulator for GTX280 (details in Sec-
tion 4) and run a micro kernel that consumes 120W power
in the SMs. In the execution period of 800s, we have found
that all the SMs occasionally reach the critical tempera-
ture and thus experiences 22% performance overhead as a
result of the GPGPU ’s default throttling mechanism. We
observe no throttling when running a low power kernel that
consumes a total of 60W SM power. Interleaving these
two kernels with 100ms time interval leads to 6% overhead,
a large reduction. Since throttling rate relates to the SM
temperature, the kernel alternation pattern eventually low-
ers the temperature. Time multiplexing is beneficial from
the thermal and performance points of view when there is
no context switching overhead. While such overhead can be
very large in general purpose processor, we show that this
is negligible and avoidable in GPGPUs. We observe sim-
ilar thermal benefits by distributing available SMs among
hot and cold kernels (SM multiplexing). These results have
motivated us to intermix TBs from thermally heterogeneous
kernels and to modify the existing HW TB and OS sched-
ulers.

3.1 TABS System Architecture
Our proposed system architecture for temperature aware

thread block scheduler (TABS), shown in Figure 1, has two
components: HW TB scheduler and OS scheduler. They co-
ordinate with each other to execute temperature aware TB
scheduling algorithms in order to reduce thermal hotspots in
GPGPUs. HW TB scheduler maintains power and lifetime

Time Share Counters

SM to Kernel Bitmap

TB Slot to Kernel Bitmap

SM SM SM SM SM

Volunteer

KQueue

pdi lt v

OS Scheduler in CPU

Selected Kernels

H/W TB Scheduler in GPGPU

Scheduling Parameters

Kernel Stat Table

A

name

BC

A
B

Figure 1: TABS Architecture

(7)$
Profiling$$
Done$?$

(8)$
Run$More$$
Kernels?$

(12)Intermix$
Kernels$$

€

TSM ≥TCritical

€

pdicur ≥ pdimin

€

pdicur ≤ pdimax

(13)$Update$$
Intermix$Policy$

(5)$Pick$avSM
and$Profile$

NO$

NO$

NO$

NO$

NO$

YES$

YES$

YES$

YES$

(1)$Kernel$$
Arrives?$

(2)$
GPGPU$$
Idle?$

(3)RunKernel$
onSMs$

(4)$Insert$$
In$KQueue$

(14)$Update$Scheduling$
Parameters$

NOYES

HW#TB#Scheduler# OS#Scheduler#

(6)UpdateOS
Scheduler$

(9)$

(10)$ (11)$

(15)TBScheduling$

Figure 2: Interactions in TABS

statistics of TBs of each kernel in a kernel stat table. The
key to determining which kernel should run next is compar-
ing the currently running kernel with kernels in KQueue
in terms of power density, and therefore the chance to re-
duce the temperature. OS scheduler uses the kernel stat
table along with the instantaneous temperatures of SMs to
set the TB scheduling policy for the next OS scheduling
tick. OS scheduler periodically updates HW TB scheduler
about the set of intermixed kernels and their relative share
of GPGPU resources (e.g., time, SMs), which define and
parametrize various intermixing policies for TABS.

Figure 2 shows the interaction between HW TB scheduler
and OS scheduler. When a GPGPU job arrives in our sys-
tem (step 1), the OS scheduler sends it to GPGPU . In step
2 when the GPGPU is idle, the arriving kernel starts execu-
tion immediately. Otherwise the kernel waits in theKQueue
(step 4), which is usually served in the first come first served
(FCFS) manner. As soon as a kernel arrives in KQueue,
the TB scheduler selects a volunteer SM (vSM) to profile
the new kernel (step 5). The coldest SM in the GPGPU
is selected as vSM . There can be multiple vSMs simulta-
neously profiling multiple kernels if several kernels arrive in
KQueue in a short duration of time. The number of vSMs
cannot be more than the number of SMs in the GPGPU .
The TB scheduler waits for the running TBs in a vSM to
finish before scheduling a batch of TBs from that kernel.

The profile of each kernel, provided by vSM , is stored in
a kernel stat table. Each entry in the kernel stat table has
four fields: (a) name, (b) power density index, (c) average
TB lifetime, (d) valid bit. Power density index (pdi) is an
estimate of the average dynamic power consumption of one
SM while running TBs from that kernel. We use the model
in Equation 1, derived from [10], to estimate the pdi based
on activity rates in integer unit (INT), floating point unit
(FP), special function unit (SFU), cache (CACHE), reg-
ister file (REG), shared memory (SHM), arithmetic logic
unit (ALU), and fetch decode unit (FDS)

PSM =
∑

i∈Units

Pi = PINT + PFP + PSFU + PALU

+PFDS + PREG + PCACHE + PSHM

(1)

where Pi = MaxPoweri×AccessRatei for each unit i. This
model has the sufficient accuracy to compare thermal be-
havior of two kernels based on power consumption [10]. The
performance monitoring unit (PMU) in the vSM monitors
the performance counters in Equation 1 until one of the TB
from the batch retires. This way the monitoring is per-
formed with a constant thread level parallelism (TLP) in
the vSM which is necessary for an accurate estimate of the
pdi inGPGPUs. Once the activity data and average lifetime
(lt) of TBs are available from the vSM , the TB scheduler
computes the pdi, updates the corresponding kernel entry in
the kernel stat table and marks it as profiled by setting the
valid bit(v). One time sampling of pdi is adequate to classify
the power profile of the kernels because the dynamic power
consumption of GPGPU applications is mostly constant as
shown in many publications [10]. OS scheduler uses pdi to
assess whether a particular kernel will run hotter or colder
on average than a competitor kernel. Since pdi is unbiased
with respect to the thermal history, the current temperature
of the SMs, and the activity in the neighboring SMs, it is a
more reliable metric than direct temperature sensor reading.

Once the TB scheduler informs the OS scheduler that the
kernels in the KQueue are profiled (steps 6 & 7), the OS
scheduler looks for intermixing opportunities in every OS
scheduling tick (50ms) (steps 8 through 12). When the
GPGPU has space for running more parallel kernels (step
8), the OS scheduler explores KQueue for the best option
while checking the thermal state of the GPGPU (step 9).
During a thermal emergency situation when the SM temper-
ature reaches emergency threshold (step 10), the OS sched-
uler intermixes the pending kernels with the lowest pdi with
the running kernel if possible (step 10) and assigns an ini-
tial small percentage (e.g., 5%) of total GPGPU resources
(e.g., time, SMs) to it (step 13). The OS scheduler takes
proactive action in the absence of temperature problem by
intermixing the maximum pdi pending kernel with the run-
ning kernel whenever possible (step 11). Such decision is
beneficial because it is ideal to spread the heat uniformly
over time. When more than one kernel is running in a ther-
mal emergency, the OS scheduler updates the policy with a
new distribution of resources if needed (step 13).

Each time the SM temperature reaches a critical value,
the OS scheduler progressively takes away resources from the
kernel with higher pdi and assigns those to the kernel with
a lower pdi. Although taking away resources from kernels
may affect the order at which kernels finish, this helps to
increase the overall GPGPU throughput in the presence of

thermal emergencies. As the thermal problem disappears,
the OS scheduler does the reverse to ensure that the vic-
tim kernel with a high pdi is not falling behind in execution.
The minimum resource assigned to the victim kernel that
arrived first in the KQueue among two concurrently run-
ning kernels does not go below 50% of the total GPGPU
resources. This way, the OS scheduler prevent starvation of
the kernels with high pdi. In order to ensure fairness, the
OS scheduler maintains a non-overlapping window of N ker-
nels that can be intermixed. The window size represents a
trade-off between fairness and intermixing opportunity. For
example, TABS will act as a first come first serve (FCFS)
scheduler that performs no intermixing when N = 1. While
we pick N = 32 to match KQueue size, any smart fairness
algorithm can be implemented with this framework.

The OS scheduler updates the HW TB scheduler with
new scheduling parameters (step 14). The scheduling pa-
rameters, describing the distribution of resources (time and
SM) among intermixed kernels, defines different classes of
intermixing policies: (a) alternate, (b) mixed, and (c) mixed
alternate. Alternate (A) intermixing policy time shares the
GPGPU between multiple heterogeneous kernels in an inter-
leaved fashion. The TB scheduler executes the alternation of
kernels inside each GPGPU while the time sharing interval
of each kernel is dynamically determined by the OS sched-
uler at each OS scheduling tick. The time sharing interval
of each kernel should be an integer multiple of the lifetime
of its TB. In this way, the TABS does not interrupt execu-
tion to maximize performance while keeping the same time
share ratio. With mixed intermixing policy, the TB sched-
uler schedules multiple heterogeneous kernels with different
power densities on a single GPGPU simultaneously. Mixed
intermixing is further divided into two subtypes depending
on the heterogeneity of TBs in a single SM . In mixed uni-
form (MU), each SM is allowed to host TBs from a single
kernel. The number and the topological location of SMs
that run TBs from each kernel is an optimization parameter
and is dynamically determined by the OS scheduler depend-
ing on the pdi of individual kernels and the thermal state of
the system. TABS usually schedules TBs with higher pdi
in the corner SMs. The OS scheduler updates the HW TB
scheduler with a SM to kernel bitmap which describes the
SM distribution. Mixed nonuniform (MNU) allows TBs
from multiple kernels to coincide together in a single SM .
The OS scheduler distributes available TB slots in each SM
among the concurrently running heterogeneous kernels and
updates the TB slot to kernel bitmap. Since SMs will have
heterogeneous threads, MNU is analogous to alternate at
finer granularity. Mixed alternate (MA) is a hybrid tech-
nique that uses mixed and alternate approaches at the same
time. Initially MA allocates x SMs to a hot kernel and
(M − x) SMs to a cold kernel where M is the total number
of SMs in a GPGPU. In the subsequent alternating inter-
vals, each SM alternates between hot and cold kernels.

For each intermixing policy, TB scheduler allows the run-
ning TBs to finish before adopting to new scheduling pa-
rameters provided by the OS scheduler (step 15). Since TBs
have very short lifetime (µs to few ms) and the thermal time
constraint of GPGPU is usually in the range of seconds [14],
delaying the update is not an issue. The short lifetime of
TBs, the abundance of TBs, and TB scheduler’s ability
to schedule new TBs with near zero context switch over-
head have allowed us to use TABS as an efficient thermal

management technique for modern GPGPUs. This unique
property of GPGPU has given us the freedom to manage
the thermal problems of GPGPU without doing any con-
text switching or migration of threads which are normally
the key techniques of temperature management in CPUs.
The same techniques cannot be applied to CPUs because
CPU threads have a much longer lifetime that often exceeds
the thermal time constant. A scheduler in the cluster level
or supercomputer level can reuse the power profiles of each
kernel to maintain a heterogeneous mixture of kernels in the
intermixing window of each compute node. In the absence of
heterogeneous kernels in the KQueue, TABS applies DV FS
to handle thermal emergency situations if required.

3.2 TABS Across Multiple GPGPUs
In a multi-GPGPU graphics card (e.g., NV IDIA GTX

690), a single fan is shared by two GPGPUs, so the fan
speed rises with the temperature of the hottest GPGPU
chip. Instead of executing two heterogeneous kernels (hot
and cold) in two separate GPGPUs, TBs from each kernel
can be distributed intelligently among them. This also saves
cooling energy since the cooling cost is cubically related to
the fan speed. OS schedulers contacts TB scheduler in all
the GPGPUs to find a heterogeneous mix of kernels. Sim-
ilar to a single GPGPU case, the percentage of TBs from
concurrently running kernels in each GPGPU is an opti-
mization parameter that the OS scheduler sets dynamically.

3.3 TABS Overhead
In this section, we discuss both area and performance over-

head of our techniques. Area overhead is dominated by the
kernel stat table whose size is bound by the size of KQueue
(e.g., 32). The overhead of maintaining kernel statistics is
832 bits where each entry needs 26 bits: 5 bits for kernel
name, 4 bits for pdi, 16 bits for lt and 1 bit for v. To record
the resource sharing info for different intermixing policies,
TB scheduler also needs two counters to keep track of the
time quantum progress of intermixed kernels, one bit map
(bounded by number of SM in the chip) to map SM to
kernels, and one common bit map for all SMs (bounded by
8) to map TB slot per SM to kernels. These additional
hardware requirements (2 counters + 30 bits + 8 bits) also
represent a very low overhead.

Since the lifetime of each TB is typically in the range of
µs to few ms and each kernel is profiled once, the kernel
profiling overhead is very small. TB scheduler launches a
system kernel (one TB with 8 threads) which computes pdi
from the PMU activity data using using Equation 1. TB
scheduler also uses two other system kernels (one TB with 32
threads) to find the kernels with minimum and maximum pdi
from the kernel stat table. OS scheduler reads these values
instead of reading the whole kernel stat table. We use system
kernel to save additional HW requirement. Even though
the run time of these system kernels is 500ns while running
alone, the overhead is negligible if executed with other TBs
because these are GPGPU reduction (e.g., sum, max, min)
kernels with less than 100 instructions. Moreover, they run
once in each OS scheduling tick.
TABS in multi-GPGPU graphics card has to pay the

penalty of accessing memory from the other GPGPU chip
on the board. Such overhead is amortized when two kernels
with very diverse pdi are intermixed.

4. RESULTS
4.1 Methodology

While our solution is applicable to GPGPUs from differ-
ent vendors, we have selected NV IDIA’s GTX280 for this
study since it is a representative of modern GPGPUs and
its power data, power model and floor plan are available
from published work [10]. GTX280 has 30 streaming mul-
tiprocessors (SM), which share a L2 cache and an off chip
memory. Three SMs share a common L1 cache. Each SM is
equipped with 8 CUDA cores, big register bank, and shared
local memory. Device memory is interleaved into 8 memory
modules providing bandwidth of 140GB/s. The theoretical
peak performance of GTX280 is 933GFlops/s in single pre-
cision at 1.3GHz clock speed. The maximum total power of
this graphics card is 236W while the idle power is 80W [10].

Since our contribution requires both architecture and hard-
ware scheduler changes, it is not possible to implement this
in today’s GPGPU cards. We extend Hotspot [14] simulator
with GPGPU thermal simulation based on the floor plan
and package characteristics of GTX280. The heatsink di-
mension and the case to ambient thermal resistance (K/W)
are used as 0.06m and 0.25 respectively based on the data
in [15]. Each simulation starts from an initial temperature of
45◦C with a warm-up period of 200s. We keep the GPGPU
fan running at a fixed speed throughout the simulation to
maintain a constant case temperature. There is one temper-
ature sensor per SM . The local ambient temperature within
PC and the critical temperature threshold on chip are set at
45◦C and 90◦C respectively. Since we are interested in un-
derstanding the effectiveness of TB scheduling for thermal
management, we focus on SMs only and do not do ther-
mal management of memory or handle cooling. We leverage
the power model from [10] to generate the dynamic power
traces for our benchmarks. We also account for thermally
dependent leakage power based on the model from [3]. Like
in [4], we include a baseline power of the GPGPU chip in
the simulator.

Bench SM Power(W) Bench SM Power(W)
SVM 87 Bino 67
Sepia 44 Conv 74

Bs 50 Cmem 48
Dotp 60 Madd 61

Dmadd 69 Mmul 64

Table 1: Benchmarks on a GTX 280

We use ten benchmarks [10]. A subset (SVM, Bino, Sepia,
Conv, Bs) is from merge benchmark suite [11] which rep-
resents financial and image processing sectors. Others are
memory bound (Dotp, Madd, Dmadd, Mmul) and compute
bound (Cmem) benchmarks, which we find in many scientific
computing and graphics applications. The dynamic power
consumption of SMs while running each benchmark is re-
ported in Table 1. The dynamic range of the SM power
consumption is 43W . We form 10 workloads using these 10
benchmarks to keep a representative mix of hot and cold
kernels shown in Table 2. Each benchmark in the workload
has computation load of 400s.

In our simulations, the baseline (BL) DTM policy throt-
tles the GPGPU when the SM temperature reaches the
critical threshold and clock gates the GPGPU until the
temperature falls below 85◦C. We have also implemented
DV FS at five different settings: (1.18V , 1.33GHz), (1.14V ,

1.28GHz), (1.13V , 1.26GHz) , (1.12V , 1.20GHz), and (1.12V ,
1.15GHz). We compare TABS, the first ever thermal man-
agement techniques for GPGPUs, against throttling (BL)
and DV FS, two well known DTM techniques. We show the
performance of TABS for four different intermixing policies
discussed in Section 3.1. TABS adopts DV FS if the OS
scheduler fails to find heterogeneous kernels during a ther-
mal emergency.

Workload Mix Workload Mix
WL1 SVM + Cmem WL6 Conv+ Bs
WL2 SVM + Bs WL7 SVM + SVM
WL3 SVM + Dotp WL8 SVM + Conv
WL4 Conv+ Dmadd WL9 Conv + Conv
WL5 Conv+ Mmul WL10 Sepia + Bs

Table 2: Workload Description

4.2 Measured Overhead Due to Intermixing
Running two concurrent kernels using different intermix-

ing policies may cause performance overhead due to shar-
ing of resources, e.g., bandwidth, L1 cache, L2 cache, and
SMs. Due to the alternation of context, the contents of
the caches might get flushed. While the impact of cache
thrashing can be severe in general purpose CPUs, this ef-
fect is small in GPGPUs because of the underlying com-
putation patterns. GPGPU kernels perform data parallel
computation where multiple threads execute identical code
on separate data sets. Instead of depending on high cache
hit rates and efficient branch prediction, most of the highly
optimized GPGPU kernels depend on the large bandwidth
and the high TLP to hide the memory latency.

Intermixing
Performance Improvements (%)
Mean Stdev Minimum

Alternate 1.26 3.45 -1
Mixed Uniform 5.43 7.35 -1

Mixed Non Uniform 2.83 7.76 -1
Mixed Alternate 2.87 7.01 -1

Table 3: Performance Improvements by Intermixing

Even though new GPGPUs have limited support for par-
allel kernel execution, they do not intermix TBs. The only
way to evaluate the performance overhead due to intermix-
ing TBs from multiple kernels is by manually editing the
source code to merge them. In a merged kernel, we keep
the functionality of the original kernels unchanged. Inside
each merged kernel, threads execute different function based
on the TB ID and host SM IDs. For example, in case of
mixed uniform intermixing, TB executes function of kernel
1 when SM ID is less than 8 and vice versa. The alter-
nate intermixing is simulated by switching between differ-
ent kernel functions every 100 TBs. Since TB in GPGPUs
are scheduled in monotonically increasing order of their TB
IDs, we could emulate our intermixing policies by imple-
menting these tricks. We form 23 different intermixed kernel
combinations using benchmarks from Table 1 and run them
on actual GPGPU . Table 3 shows the mean and standard
deviation of performance improvements of all the 23 merged
kernels for different intermixing policies. The results show
that on average performance improved by 3%, and the worst
case overhead is only 1%. Clearly intermixing is beneficial to
both performance and on-chip temperature in a large frac-
tion of the cases.

WL1 WL2 WL3 WL4 WL5 WL6 WL7 WL8 WL9 WL10 AVG0

20

40

60

80

100

Im
p
ro

v
em

en
ts

 (%
)

TABSA TABSMU TABSMNU TABSMA DVFS

Figure 3: Improvements over BL in Single GPGPU

WL1 WL2 WL3 WL4 WL5 WL6 WL7 WL8 WL9 WL10 AVG0
2
4
6
8

10
12
14
16

E
n
er

gy
 S

av
in

gs
 (%

)

TABSA TABSMU TABSMNU TABSMA DVFS

Figure 4: Energy Savings in Single GPGPU

4.3 Simulation Results
Single GPGPU: Our baseline policy (BL), which clock

gates the GPGPU until the temperature falls below 85◦C,
experiences computation slowdown ranging between 2.06%
and 17.79% with an average of 6.75% for the workloads in
Table 2. As expected, the performance cost due to throt-
tling is higher for workload with hot benchmarks, e.g., WL7.
Meanwhile, workloads with only cold benchmarks (e.g., WL10)
do not experience any thermal hotspot. Figure 3 shows im-
provements of TABS and DV FS over BL. The improve-
ment is the reduction in computation slowdown due to ther-
mal throttling over the baseline policy. DV FS works bet-
ter than BL by 27% on average. Our proposed technique
TABS periodically checks the KQueue and intermix TBs
from heterogeneous kernel proactively that results in reduc-
tion in number of thermal hotspots and improvement in per-
formance. For different TB intermixing policies: alternate
(A), mixed uniform (MU), mixed non uniform (MNU), and
mixed alternate (MA) described in Section 3.1, the aver-
age reduction in computation slowdown by TABS compared
to BL (DV FS) is from 57%(40%) to 60%(45%). How-
ever, for the subset of workloads representing our target
cases, TABS improves over BL (DV FS) by 82%(74%) to
89%(86%). Among the four proposed intermixing policies,
alternate works best since it does a good job spreading heat
over time. Mixed non-uniform and mixed alternate work
better than mixed uniform since mixed uniform runs hot
TBs on the same subset of SM while the other two do some
kind of alternation of hot and cold kernels.

Figure 4 shows the percentage of energy savings of TABS
and DV FS relative to BL. Interestingly, all of the inter-
mixing policies of TABS save 6.75% on average compared
to 1.8% with DV FS. The savings of energy come from
two different sources. The reduction in computation throt-
tling helps the jobs finish faster. In addition, TABS saves
leakage power by reducing the average temperature of the
SMs. For the heterogeneous workloads representing our
target cases (WL1, WL2, WL3, WL4, WL5, and WL6),
TABS saves 9.48% and 8.12% energy on average relative to
BL and DV FS respectively. Energy savings are maximized
when we mix the hottest and coldest kernels. For exam-
ple, the SM power consumption of Cmem, Bs, Dotp, and
Conv are 48W , 50W , 60W and 74W respectively. When we

WL1 WL2 WL3 WL4 WL5 WL6 WL7 WL8 WL9 WL10 AVG0
10
20
30
40
50
60
70
80

Im
p
ro

v
em

en
ts

 (%
)

MG−TABSMU DVFS

Figure 5: Improvements over BL in Multi GPGPUs

T1 T2 T3 T4 T5
Memory and Interconnect Technology

25
30
35
40
45
50
55
60

Im
p
ro

v
em

en
ts

 (%
)

MG−TABSMU DVFS

Figure 6: Effects of Memory and Interconnect Tech-
nology in Multi GPGPU TB Scheduling Policy

intermix them with SVM, the energy savings are 15.75%,
14.88%, 9.39%, and 1.55% for workload WL1, WL2, WL3,
and WL8 respectively. In the absence of heterogeneous ker-
nels, the energy savings of our technique is the same as the
DV FS (WL7 and WL9).

Multi GPGPUs: We extend our simulator for graph-
ics card with multiple GPGPUs. We use the benchmark
data from [10] to estimate memory overhead in our sim-
ulator. Figure 5 shows the improvements of DV FS, and
multi-GPGPU TABS (MG−TABS) with MU intermixing
policy over default technique BL. BL and DV FS schedule
each kernel to a separate GPGPU and experiences the same
amount of throttling that we have seen in single GPGPU
case. TABS improves over BL by 44% for mixed uniform
intermixing policy. Even though the performance of TABS
is worse than their respective single GPGPU case due to
memory overhead, the benefit is still substantial in our tar-
get cases, e.g., for WL1 TABSA improves over BL and
DV FS by 80% and 75% respectively.

Results in Figure 5 suggests that scheduling TBs across
GPGPUs is beneficial only when the performance gained
through TABS is greater than the memory overhead. When
the thermal profiles of two kernels are very diverse, we get
the maximum gain, e.g., WL1. For workloads WL4, WL5
and WL6, TABS performs worse than DV FS because the
benefit gained through reduction in thermal hotspots could
not amortize the memory overhead. This observation also
implies that as the memory & interconnect technologies in
multi-GPGPU cards improve, the gain through TABS grows.
Figure 6 shows the reduction in computation slowdown for
TABS and DV FS comparing to BL for different memory
& interconnect technologies (from T1 to T5 memory & in-
terconnect technology gets better). The result suggests that
while TABS will benefit with memory and interconnect im-
provements, DV FS will not perform any better than today.

5. ACKNOWLEDGEMENT
This work has been funded by NSF SHF grant 0916127,

NSF CCF 1218666, NSF grant 1029783, NSF ERC CIAN
EEC-0812072 NSF Variability, CNS, Oracle, Google, Mi-
crosoft, MuSyC, and SRC grant P11816.

6. CONCLUSION
The nature of data parallel computation in GPGPUs

provides us a unique opportunity to manage the thermal
problems by intermixing thread blocks from multiple ther-
mally heterogeneous kernels. In this work, we have pro-
posed TABS, the first ever thermal management technique
for modern GPGPUs, which exploit the opportunity to
spread the heat in time and/or space. We have provided
the required architectural and software changes to incorpo-
rate TABS in modern GPGPUs. Our results show that
TABS performs 60% better than state of the art thermal
management techniques with energy savings of 6.75% on
average. TABS’s prospect in multi-GPGPU graphics card
is also very promising, 44% improvements over well known
techniques.

7. REFERENCES
[1] J. T. Adriaens, K. Compton, N. S. Kim, and M. J.

Schulte. The case for gpgpu spatial multitasking.
HPCA, 2012.

[2] A. Ajami, K. Banerjee, and M. Pedram. Modeling and
analysis of nonuniform substrate temperature effects
on global interconnects. IEEE Trans. on CAD, 2005.

[3] R. Ayoub, K. Indukuri, and T. Rosing. Temperature
aware dynamic workload scheduling in multisocket cpu
servers. TCAD, 2011.

[4] R. Ayoub, R. Nath, and T. Rosing. Jetc: Joint energy
thermal and cooling management for memory and cpu
subsystems in servers. HPCA, 2012.

[5] D. Brooks and M. Martonosi. Dynamic thermal
management for high-performance microprocessors.
HPCA, 2001.

[6] J. Choi, C. Cher, H. Franke, H. Hamann, A. Weger,
and P. Bose. Thermal-aware task scheduling at the
system software level. ISLPED, 2007.

[7] A. Coskun, T. Rosing, and K. Gross. Proactive
temperature management in mpsocs. ISLPED, 2008.

[8] J. Donald and M. Martonosi. Techniques for multicore
thermal management: Classification and new
exploration. ISCA, 2006.

[9] S. Heo, K. Barr, and K. Asanovic. Reducing power
density through activity migration. ISLPED, 2003.

[10] S. Hong and H. Kim. An integrated gpu power and
performance model. ISCA, 2010.

[11] M. D. Linderman, J. D. Collins, H. Wang, and T. H.
Meng. Merge: a programming model for
heterogeneous multi-core systems. ASPLOS, 2008.

[12] NVIDIA. Gtx280 http://www.geforce.com.

[13] J. W. Sheaffer, K. Skadron, and D. P. Luebke.
Studying thermal management for graphics-processor
architectures. ISPASS, 2005.

[14] K. Skadron, M. Stan, K. Sankaranarayanan,
W. Huang, S. Velusamy, and D. Tarjan.
Temperature-aware microarchitecture: Modeling and
implementation. TACO, 2004.

[15] J. Wang and W. Chen. Vapor chamber in high-end
vga card. IMPACT, 2010.

[16] I. Yeo, C. Liu, and E. Kim. Predictive dynamic
thermal management for multicore systems. DAC,
2008.

