
Ambient variation-tolerant and inter components aware

thermal management for mobile system on chips
Francesco Paterna†, Joe Zanotelli‡ and Tajana Simunic Rosing†

†
Dept. of Computer Science and Engineering University of California, San Diego email:{fpaterna|tajana}@eng.ucsd.edu

‡
Qualcomm Technologies, Inc. email:josephz@qti.qualcomm.com

Abstract— In this work we measure and study two key

aspects of the thermal behavior of smartphones: 1) thermal

interaction between the components on the printed circuit

board and 2) the influence of phone's ambient temperature

which is subject to large variations. The measurements on the

smartphone running typical workloads show that the heat

generated by the communication subsystem and the high

temperatures on the back cover of the phone can increase the

SoC temperature by as much as 17oC. None of the run-time

thermal management studies presented to date considered this

interaction, as there was no model available. We design a

thermal model that captures this thermal dependency and a

policy able to avoid thermal emergencies while minimizing the

impact on performance.

I. INTRODUCTION AND RELATED WORK

Smartphones are composed by several ICs components

(e.g. SoC, DRAM, RX/TX) and devices (e.g. camera,

display) which work simultaneously and generate heat. The

absence of active cooling devices along large ambient

condition variations creates a complex thermal behavior.

More specifically, significant thermal interactions occur

between SoC, communication module, audio codec, DC-DC

converter, battery and display as a function of the changing

ambient conditions which are consistent on the back cover

of the phone.
Recent publications model the thermal behavior of the

multiprocessor systems on chips (MPSoCs) while assuming
a stable ambient temperature next to it and disregarding the
rest of the system [1][2][4][5][6][7][8]. A few studies to date
attempted to go beyond just SoC thermal modeling. In [5] a
smartphone and a tablet are disassembled and the thermal
properties, such as thermal conductivity and heat capacity of
the package including cover, display and battery are
measured. The thermal study of the entire working phone
has not been conducted. In [6], power and energy analysis of
the different components of a smartphone such as CPU,
memory and display under different usage conditions such as
voice call and message texting, is performed. Similar
analysis is done in [3]. Here the authors also take into
account the power dissipated by the voltage regulator and
DC-DC converter. Their main goal is to provide an
infrastructure to evaluate the battery lifetime.

In this paper we first analyze the effect of the ambient
condition variations and inter-component dependency on the
temperature of the SoC and then we build an efficient and
accurate thermal model. We finally use our model to devise a
policy aware of the undesired effects on the SoC to adjust the
clock frequency with the aim of meeting thermal constraints
while minimizing the impact on performance. In our
experiments, we adopt one of the recent commercial

smartphones and use an industrial profiler to collect
performance and thermal statistics. We also used thermistors
connected to a digital analyzer to measure the temperature on
the back cover of the phone under different conditions such
as phone lying on a desk and phone held in a hand. We use a
set of benchmarks characterized by 2D/3D rendering and
arithmetic computations to exercise the SoC. As inter-
component dependency, we focus on the RX/TX since it
results a significant heat source along with the SoC. The
contribution of this paper is threefold and can be summarized
as follows.

As first contribution, we show through experiments on

our target phone that the combined effect of ambient

condition variations and thermal interaction between SoC

and RX/TX can increase the SoC temperature by as much as

+17
o
C. If thermal increase is avoided by slowing down

computing, the resulting performance loss is as much as

27%.

As second contribution, we propose a thermal model of

the smartphone systems. Our model is composed by two sets

of functions. The first one is able to estimate the thermal

increment on the back cover of the phone over time in two

different conditions: phone lying on a desk and phone held

in hand. We suppose to be able to catch the changing of the

condition by exploiting the face detector sensor mounted on

the front cover of the phone: if the user is looking at the

screen, it is more likely he is holding the phone in his hand.

The other set of functions is able to predict the SoC

temperature after a period as long as 10 sec by exploiting

the estimated back cover temperature and the knowledge

about the RX/TX activity, the clock frequency and the

current SoC temperature read by the sensor. We validate our

model against real measurements obtained from our target

phone over different contexts in terms of ambient conditions

and RX/TX activity. Our results show that the average error

of the model is below 1
o
C.

As third contribution we devise an ambient variation-

tolerant and inter components aware thermal management

technique able to meet thermal constraints set up for the

SoC while minimizing the impact on performance. We

prove through experiments on our target phone that our

approach has adaptive properties with respect to the ambient

condition variations and the inter-component dependency.

The rest of this paper is organized as follows. In Section

II we detail our experimental setup. In Section III we

evaluate the impact of the ambient condition variations and

the inter-component dependency on the SoC temperature. In

Section IV we present our thermal model and our policy. In

Section V we provide experimental results about the model

978-3-9815370-2-4/DATE14/©2014 EDAA

validation and the policy effectiveness. Section VI

concludes this paper.

II. EXPERIMENTAL SETUP

This paper’s key contributions hinge on experiments
performed on a smartphone to show and quantify the effects
of the ambient conditions and the activity of the RX/TX
module on the SoC performance. Thus, we start by
describing the phone we used and the experimental setup.

A. Target phone characteristics

Our target phone is Snapdragon
TM

 smartphone by
Qualcomm® [11]. Its printed circuit board (PCB) has
components on both sides. On the top of the PCB there are
the MSM8660 SoC and the Qualcomm® QTR8615 RX/TX
communication module. The key components on the SoC are
two ARM15[13] CPUs and Adreno

TM
 GPU[12].

We collect detailed power, performance and thermal data
using the Trepn profiler [10]. Profiler’s sampling resolution
is 100ms. We collected power measurements of the SoC’s
two ARM15 application CPUs, a GPU and DRAM as well as
the clock frequency of the CPUs and the GPU. We set the
phone in the airplane mode and activate the WiFi which has
always been connected to our network. The phone is first
placed on a desk during the first phase of experiments and
then is handheld. We also performed another set of
experiments by placing the back of the phone 10 cm above a
400W lamp to increase the temperature surrounding the
phone and hence mimic what happens if the phone is
handheld over long periods. We measure the temperature on
the back of the phone by using two thermistors [14] and the
analyzer USB-6216 by National Instruments [15]. We
capture the traces by adopting LabView [16]. The locations
on the back cover of the two thermistors were in
correspondence of the SoC and the RX/TX respectively as
these components are mounted on the PCB inside the phone.
We average the values provided by the two thermistors.

B. Benchmarks

As benchmark for the experiments, we use the 2D and
3D rendering samples and the Math samples found within
the 0xBenchmark [17] suite. The 2D set is composed by 7
benchmarks detailed as follows.
1. Canvas Redraw. It uses random color to redraw canvas

repeatedly.

2. Draw Circle. A simple 2D animation program.

3. DrawRect. It repeatedly adds random colored, size

rectangles on canvas.

4. DrawCircle2. It repeatedly renders random colored, size

circles on canvas.

5. DrawArc. A Simple 2D animation.

6. DrawText. It calculates text rendering speed.

7. DrawImage. It calculates picture rendering speed.

The 3D set is composed by 4 benchmarks detailed as

follows.

1. GL Cube. A sample program from the Android API

Demo that uses OpenGL ES to render a rotating Rubik's

Cube.

2. GL Teapot. It uses OpenGL ES to render a rotating Utah

Teapot.

3. NeHe Lesson08. A rotating 3D cube with textured applied

and alpha blending enabled.

4. NeHe Lesson16. A rotating 3D cube with textured applied

and GLFog enabled.

The Math set is composed by 7 benchmarks detailed as

follows.

1. Linpack. It makes use of a general numerical linear

algebra operation to test the device's ability to perform

floating point operations (MFLOPS).

2. Scimark2. It includes six scientific calculations

(Composite, FTT, SOR, MonteCarlo, SparseMatMult and

LU) for testing the device's abilitity to perform floating

point operations (MFLOPS).

We ran these three sets of benchmarks in different

conditions with respect to the temperature on the back of the

phone and the WiFi activity. To exercises the WiFi, we

launched a downloading from Gmail of a 400Mbyte file via

the ONE Browser app [18]. We used this size to make sure

that the downloading lasts as long as the benchmark

executions. We were not able to activate the 3g in our phone.

III. THERMAL EFFECTS ON THE SMARTPHONE SYSTEM

In this section, we analyze through real measurements the

impact of the ambient condition variations and the WiFi

activity on the SoC temperature and the consequent

performance loss.

In the first experiment, we use the rendering

benchmarks. We have a 2D and a 3D set of execution

samples. The 2D set takes roughly 2 min while the 3D 2.5

min. Each experiment is characterized by the execution of

the 2D or the 3D set multiple times in sequence. Each

experiment is repeated four times in according to four

different contexts specified as follows. 1) Back cover

temperature 30
o
C; 2) Back cover temperature 30

o
C while

WiFi is downloading; 3) Back cover temperature 45
o
C; 4)

Back cover temperature 45
o
C while WiFi is downloading.

Please note 45
o
C is usually the thermal constraint on the

back cover of the phone since it is the maximum temperature

the human skin can tolerate [21]. We report the SoC

temperature and the performance evaluated in frame-per-

second in Tables I,II in which each row refers to the

execution of one 2D/3D set over the sequence. For both the

2D and the 3D analysis, the WiFi makes the SoC

temperature increase up to 8
o
C and the performance drop by

as much as 22%. When the back cover temperature reaches

45
o
C, the SoC temperature increases by as much as 17

o
C.

For the second experiment, we use the Math suite. We

repeatedly execute the set of computational samples for 13

times. Each experiment has been done for three frequencies

{1180MHz, 864, 540} for the four different contexts

described in the first experiment.

We adjust the clock frequency of the CPUs by using the

Android Tuner app [20]. We capture the SoC temperature at

0.1sec granularity. Figure 1 shows the temperature over

time. First row: back cover is 30
o
C. Second row: cover is

45
o
C. First column: no downloading. Second column:

downloading. When downloading the maximum SoC

temperature increases up to 9
o
C. We analyzed these data to

build a thermal model of the SoC temperature with respect to

the back cover temperature, the CPU frequency and the WiFi

activity. This study is reported in the next section.

For the third experiment, we analyze the back cover

temperature increase over time. Figure 2 shows the back

temperature increase over 36 minute executions. When the

phone is held in a hand, the temperature quickly reaches the

human skin temperature 36
o
C, after then the increase is

linear. We report the trendline which shows that the

increment is as much as 0.001
o
C/sec. The usage of the WiFi

introduces an overall increase by +1
o
C. A similar behavior

happens when the phone is lying on a desk. The increment is

as much as 0.002
o
C/sec.

Temp.

(oC)

OpenGL

Cube

OpenGL

Blending

OpenGL

Fog

Flying

Teapot

38 Back temperature 30OC

43 60.04 64.24 64.28 60.60

43 60.08 64.18 64.09 60.59

44 60.11 64.12 63.87 60.60

45 60.11 64.22 64.23 60.60

38 Back Temperature 30OC + WiFi downloading

47 60.14 64.04 63.80 49.44

52 60.08 64.28 63.67 47.61

53 60.05 63.79 63.85 49.44

54 60.12 64.12 64.00 51.58

38 Back temperature 45OC

51 59.97 60.13 60.15 60.12

55 64.29 64.09 64.12 64.16

59 63.92 64.15 64.25 64.11

59 53.41 55.55 55.54 55.55

38 Back temperature 45OC + WiFi downloading

57 60.11 60.12 60.1 60.14

61 64.1 63.94 64.28 63.95

55 63.96 64.11 63.99 64.13

58 51.27 51.28 49.45 49.45

Table II SoC temperature while running a sequence of the 3D suite.

Performance is reported for each benchmark by frame-per-second (fps).

T

(oC)

Draw

Canvas

Draw

Circle

Draw

Circle2

Draw

Rect

Draw

Arc

Draw

Image

Draw

Text

38 Back temperature 30OC

41 60.29 fps 67.11 57.60 49.21 57.79 59.86 57.57

42 60.38 fps 67.94 58.18 51.35 58.08 60.16 59.62

43 60.34 fps 67.00 58.29 50.14 57.77 59.84 59.48

44 60.43 fps 65.50 58.81 49.27 57.90 59.42 58.81

44 60.40 fps 67.05 58.67 50.04 57.51 59.85 59.87

38 Back Temperature 30OC + WiFi downloading

47 60.86 fps 53.68 58.22 42.21 51.26 54.10 56.93

48 60.71 fps 57.52 58.72 39.91 51.20 51.22 55.91

51 60.67 fps 57.19 57.57 42.39 52.64 50.53 52.33

51 60.52 fps 52.93 59.23 44.80 48.43 54.51 52.91

48 60.45 fps 65.74 58.55 51.16 57.38 59.48 59.26

47 60.86 fps 53.68 58.22 42.21 51.26 54.10 56.93

38 Back temperature 45OC

45 60.37 fps 67.7 58.27 50.36 58.92 59.73 59.26

50 59.90 fps 68.16 57.69 52.27 58.31 59.72 59.61

51 60.62 fps 66.98 58.9 51.33 58.17 59.89 59.69

54 60.41 fps 67.12 58.72 51.77 58.65 59.69 59.47

53 60.54 fps 68.31 58.72 51.45 58.55 60.18 59.52

38 Back temperature 45OC + WiFi downloading

54 60.93 fps 56.23 60.31 41.35 48.19 44.49 48.7

59 60.84 fps 58.21 60.29 42.66 48.94 48.51 49.95

57 60.76 fps 60.20 60.27 43.98 49.69 52.54 51.21

59 60.84 fps 58.99 58.15 42.20 50.11 49.19 48.88

59 60.97 fps 58.48 59.55 47.50 47.78 49.26 50.67

Table I SoC temperature while running a sequence of the 2D suite.

Performance is reported for each benchmark by frame-per-second (fps).

Figure 1 Execution of the Math suite for 13 times in a row. Plots show the

SoC temperature over time. First row: back cover is 30oC. Second row: cover

is 45oC. First column: no downloading. Second column: downloading.

Figure 2 Analysis of the back cover temperature variation over time for
different contexts. Linear trendlines reported: y(oC) = m∙t(sec) + q.

IV. THERMAL MODEL AND MANAGEMENT

A. Model

We define our thermal model as a function able to

estimate the SoC temperature after a fixed time by the

knowledge about the current SoC temperature supposed

read by a sensor, the CPU frequency, the temperature on the

back cover and the WiFi activity (i.e. whether it is

downloading). In particular the model is able to estimate

how the thermal increment per second changes with respect

to the factors we mentioned above. The model we propose is

based on the observations related to the analysis in the

previous section. We also validate its accuracy in the results

of the next section.

Since in the practical usage, we are not able to measure

the temperature on the back cover, we need a model also for

it. We based on the third experiment presented above. The

back temperature changes very slowly with respect to the

SoC temperature and we can take into account this behavior

by assuming a linear trend as this well shapes the curves for

the all four cases of Figure 2. We can discriminate between

phone handheld in which the increment is as much as

0.001
o
C/sec and phone lying on desk in which the increment

is as much as 0.002
o
C/sec. To know whether the user is

holding the phone in his hand, we can base of what the face

detector on the front cover captures; in particular if the user

is looking at the phone, probably the phone is handheld.

Also, when the ambient condition changes we can add a

±5
o
C in according to whether the phone passes from the

desk in a hand or vice versa. Hence, we define the model for

the increment of the back cover temperature ΔTa in (1) in

which t is the time in sec elapsed from the previous

observation.

switch) when 5(desk 002.0

switch) when 5(hand 001.0

t

t
aT (1)

We can now proceed with the model of the SoC

temperature with respect to the CPU frequency. We do not

model the GPU since we are not able to change the GPU

frequency in our phone. As in the second experiment of the

previous section, we collected thermal traces for the SoC at

two different back cover temperatures and two different

types of WiFi activities for three different CPU frequencies.

We report in Figure 3 the four different trends over the CPU

frequencies. For the all four cases which differ in terms of

WiFi activity and back cover temperature, the trend over the

clock frequency can well approximated by exponential

curves. The idea could be to understand how the parameters

of the exponential function depend from the back cover

temperature and the WiFi activity in terms of data

transferring type (i.e. download/upload) and signal. We are

not able to act on the data transferring rate and signal, hence

we only discriminate whether the WiFi is downloading or

not. Also we did not consider the upload as we assume that

effect is comparable to the download. For each of the four

cases, we associate a different function to model the SoC

temperature expressed by

y[oC/sec] = l∙exp(h∙f[MHz]). We assume that the

coefficient l changes linearly with respect to thermal

gradient on the back cover. Instead, we assume that the h

coefficient is constant when the WiFi is not working; we

average the values obtained at the two back cover

temperatures. When the WiFi is downloading we also

assume a linear variation of the coefficient h with respect to

the thermal gradient on the back cover. The resulting

functions are reported in Equation (2). The final SoC

temperature is calculated through Equation (3), in which the

SoC thermal increment calculated through (2) is multiplied

by the slot time Δt and then added to the temperature read

by the sensor.

g.downloadin

4

108.020exp
4

101115

gdownloadin no

4

1013exp
4

10519

f
a

T
a

T

f
a

T

t
SoC

T

 (2)

 tcTttSoCTttpT (3)

Figure 4 Proposed algorithm diagram.

Figure 3 Analysis of the SoC thermal gradient per second for different
contexts in terms of back cover temperature and WiFi usage.

Exponential trendlines reported: y[oC/sec] = l∙exp(h∙f[MHz]).

B. Policy

We leverage the models we developed to design a policy

that improves performance of the CPU as a function of

ambient conditions and RX/TX activity without causing

violations of SoC thermal constraints. Our policy is

designed for the Math benchmark suite illustrated above.

This set of benchmark results no memory bound which

means that the execution time of each singular samples

linearly increases with respect to the frequency. For instance

for Linpack the Mflops are {14.28, 30. 61, 48.24} at {540,

846, 1180 MHz} respectively. We do not report the same

information for the all suite for space limitation. In addition

the power linearly scales with respect to the frequency too;

for the same frequency group the average power results

{0.10, 0.17, 0.23 W} respectively. We conclude that 1) from

the energy point of view there is no preferred frequency 2)

from the performance point of view the higher the better 3)

from the thermal point of view a maximum allowed

frequency may exist and may vary over time. We then

devise a technique which increases as much as possible the

CPU frequency over time by avoiding thermal constraint

violations. Before giving details about the policy we define

the adopted variables as follows.

 f: CPU frequency (fmax: max freq. - fmin min freq.);

 Tp: predicted SoC temperature;

 WiFi: a Boolean value to specify whether the WiFi is

downloading;

 Ta: back cover temperature;

 Tc: actual SoC temperature read by the sensor;

 gr: time granularity of the time slot Δt;

 T*: SoC temperature constraint;

 model() : function implementing the thermal model.

Figure 4 illustrates the proposed algorithm. Each period

of time gr, the current back cover temperature is estimated

through (1), the WiFi activity is sampled, the SoC

temperature is read from the sensor. The frequency which is

the output of the algorithm is set to its maximum value. All

this information composes the variable x which is used to

estimate the SoC temperature after the time gr through (2)

and (3). The predicted temperature is compared with the

thermal constraint and as long as that value results larger,

the frequency is decreased by one step in according to the

possible settings. If the predicted temperature is smaller than

the threshold or the frequency has reached the minimum

possible value, the algorithm exits and the frequency is set

to the CPU.

V. RESULTS

A. Model validation

In this first part of results we validate our thermal model

presented above. To prove that our model well captures

ambient variations and inter component interactions we

execute the Math suite continuously for 7500sec. During

this time we changed ambient condition by holding the

phone in a hand or letting it lying on a desk. We also

download a file for some periods and change the CPU

frequency. How we divided the time slots is specified in

Figure 5. We collect our thermal traces related to the SoC

and the back temperature with a granularity by 0.1sec. Our

model estimates the SoC temperature at the next instant by

the knowledge of the current temperature, the back

temperature and the WiFi activity (i.e. whether it is

downloading). When calculating the thermal gradient on

the back cover, both the values are estimated by using

Equation (1), except for the first value. We validate our

model by projecting the temperature at three different

granularities: 1sec, 5sec, 10sec. Figure 5 shows that the

model results accurate and sensitive to the all variations in

terms of CPU frequency, ambient conditions and WiFi

activity. The average error is less than 1
o
C and the

maximum is below 4
o
C; a summary is reported in Table III.

B. Policy Effectiveness

In this experiment we prove the effectiveness of our

strategy in managing the CPU performance in different

contexts of ambient conditions and RX/TX activity. We run

in our phone the Math benchmark suite and execute in a row

all the samples whose details are reported above. We check

the SoC temperature each 100 sec through the adb shell [19]

on our desktop computer. Indeed our phone is connected to

our computer via usb. We implemented the policy

algorithm and the models we illustrated above in Matlab.

The Matlab routines we implemented calculate the new

frequency of the CPU which will try to avoid the thermal

violation while impacting as less as possible the

performance. The routines, as explained in the policy

section, also need the information about the temperature on

Figure 5 Measured vs. estimated SoC temperature over time.

 1 sec gr. 5 sec gr. 10 sec gr.

Av. 0.22 0.55 0.82

Max 2.01 3.07 3.91

Table III Average and maximum estimated temperature error (oC).

 Back 36 oC Back 36 oC + down. Back 30 oC

time

(sec)

f

(MHz)

T

(oC)

f

(MHz)

T

 (oC)

f

(MHz)

T

 (oC)

t0 756 45 540 45 756 45

t0+100 1180 48 1180 52 1180 47

t0+200 1180 49 540 47 1180 48

t0+300 918 45 1180 52 1180 50

t0+400 1180 49 540 48 540 44

t0+500 918 47 1180 52 1180 49

t0+600 1180 50 540 48 918 47

Table IV Runtime policy acts to increase the CPU frequency as much as

possible while holding the CPU temperature below 50oC. Three different

contexts related to the back cover temperature and the WiFi activity.

the back cover of the phone and the activity status of the

WiFi; i.e. whether it is downloading. We adjust the clock

frequency of the CPUs by using the Android Tuner app. The

possible clock frequencies are: {1180MHz, 1130,

1080, 1020, 972, 918, 864, 810, 756,

702, 648, 594, 540}.
We use three different contexts to prove the two

properties of our management technique: 1) ambient-

variation tolerance and 2) inter component awareness. In the

first one the back phone starting temperature is 36
o
C; our

phone was in particular held in a hand. The second is as the

first but we also activate a file downloading from Gmail by

using ONE Benchmark. The file size is 400 Mbyte and we

repeatedly launched the downloading to cover the all length

of the experiment. In the third context, the phone was lying

on a desk and the back phone starting temperature is 30
o
C.

The SoC thermal constraint is 50
o
C.

We start to activate our observations when the SoC

temperature is stable to 45
o
C. Table IV shows, for the

different contexts, the frequency set by the policy and the

consequent SoC temperature after 100 sec running; the

policy then decides the new frequency reported at the row

below. We only report the first seven traces since the

behavior is actually recurring. For the first context we can

see that the frequency is set to the maximum value and

when the temperature is 49
o
C to avoid the thermal violation

the frequency is decreased to 918MHz. One time slot later,

the high performance can be resumed. When downloading

the file the behavior is more critical, any time the policy

decides to raise up the frequency to the maximum value the

temperature will slightly violate the constraint but then the

policy is able to reestablish the thermal safety by decreasing

the frequency accurately. In third context, in which the

phone is lying on desk and then the back temperature is

cooler, our policy is able to capture the possibility to hold

the maximum frequency for a longer period without

violating the thermal constraint.

VI. CONCLUSION

In this paper we face the problem of the thermal modeling

and management of mobile system on chips. Using an

experimental setup composed by a commercial smartphone

running typical graphic and computational benchmarks we

show that the temperature variation on the back of the phone

and the WiFi activity can increase the SoC temperature up

to 17
o
C. If thermal increase is avoided by slowing down

computing, the resulting performance loss is as much as

27%. To face this problem we first elaborate a thermal

model and then a policy which is able to contrast the

ambient variations and the inter-component dependency by

acting on the computational speed of the SoC in an efficient

way. We validate our model and prove the proposed

technique through experiments on our target phone.

VII. ACKNOWLEDGEMENTS

This work was supported by Qualcomm, SRC (Task ID

2169.001) and NSF variability (g.a. 1029783).

REFERERENCE

[1] E. Ardestani, A. Ziabari, A. Shakouri, and J. Renau. Enabling power

density and thermal-aware floorplanning. In Proceedings of
SemiconductorThermal Measurement and Management Symposium,

pages 302–307.IEEE, 2012.

[2] A. Bartolini, M. Cacciari, A. Tilli, and L. Benini. A distributed

and self-calibrating model-predictive controller for energy and
thermal management of high-performance multicores. In Proceedings
of the Design, Automation Test in Europe Conference Exhibition,
pages 1–6. IEEE, 2011.

[3] A. Carroll and G. Heiser. An analysis of power consumption in a

smartphone. In Proceedings of the conference on USENIX annual
technical conference, pages 21–21. USENIX Association, 2010.

[4] Y. Ge, P. Malani, and Q. Qiu. Distributed task migration for thermal
management in many-core systems. In Proceedings of the

International Conference on Design Automation Conference, pages

579–584. IEEE, 2010.

[5] S. Gurrum, D. Edwards, T. Marchand-Golder, J. Akiyama, S.

Yokoya, J. Drouard, and F. Dahan. Generic thermal analysis for

phone and tablet systems. In Proceedings of the International

Conference on Electronic Components and Technology, pages 1488–

1492. IEEE, 2012.

[6] G. P. Perrucci, F. Fitzek, and J. Widmer. Survey on energy

consumption entities on the smartphone platform. In Proceedings of

the International Vehicular Technology Conference, pages 1–6, 2011.

[7] S. Sharifi, R. Ayoub, and T. Rosing. Tempomp: Integrated prediction

and management of temperature in heterogeneous mpsocs. In

Proceedings of the Design, Automation Test in Europe Conference
Exhibition, pages 593–598. IEEE, 2012.

[8] J. W. Sheaffer, K. Skadron, and D. P. Luebke. Studying thermal
management for graphics-processor architectures. In Proceedings of

the International Symposium on Performance Analysis of Systems and

Software, pages 54–65. IEEE, 2005.

[9] A. Sridhar, A. Vincenzi, M. Ruggiero, T. Brunschwiler, and D.

Atienza. 3d-ice: Fast compact transient thermal modeling for 3d ics
with intertier liquid cooling. In Proceedings of the International

Conference Computer-Aided Design, pages 463–470. IEEE, 2010.

[10] Qualcomm developer network. Trepn. July 2013

https://developer.qualcomm.com/mobile-development/performance-

tools/trepn-profiler [online].

[11] Qualcomm developer network. Snapdragon™ S4 Plus MSM8960

MDP. July 2013

https://developer.qualcomm.com/mobile-development/development-
devices/snapdragon-s4-msm8960-mdps [online].

[12] Qualcomm developer network. Adreno. July 2013

https://developer.qualcomm.com/discover/chipsets-and-
modems/adreno-gpu [online].

[13] ARM Ltd. Cortex A15. July 2013
http://www.arm.com/products/processors/cortex-a/cortex-a15.php

[online].

[14] QTI. September 2013. http://www.thermistor.com/ [online].

[15] NI. September 2013 http://www.ni.com/data-acquisition/ [online].

[16] Labview. September 2013. http://www.ni.com/labview [online].

[17] 0xBenchmark. September 2013. http://code.google.com/p/0xbench/

[online].

[18] ONE Browser. September 2013

http://one-browser.com/mobile/home [online]

[19] Android Debug Bridge. September 2013.

http://developer.android.com/tools/help/adb.html [online]

[20] Android tuner app. September 2013.

https://play.google.com/store/apps/details?id=ccc71.at&hl=en

[online]

[21] V. Wienert, H. Sick and J. zur Mühlen. Local thermal stress tolerance

of human skin. In Anasth Intensivther Notfallmed, 18(2):88–90. 1983.

