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Abstract— In smartphones and tablets, a number of 
components, such as display and communication subsystem, 
dissipate a significant amount of heat. This influences the SoC 
thermal envelope, because of the absence of a fan.  Thus the 
thermal conditions of the SoC cannot simply be modeled as only 
a function of the SoC component power. In addition, contact 
surfaces and phone orientation variations (e.g., phone inside a 
pocket, phone held in a hand, and phone laying on a desk) change 
the heat transfer coefficients of the device over time and 
influence the SoC temperature. In this work, we analyze the 
thermal behavior of a commercial mobile device in varying user 
interaction profiles and under different environmental 
conditions. Next, we propose a system-variation aware thermal 
modeling strategy that only uses available power and thermal 
sensors. Lastly, we devise a novel ambient-aware proactive 
thermal management algorithm. Our approach is able to meet 
the given thermal constraints while providing stable performance 
and comparable power consumption with respect to existing 
techniques. In contrast, the state-of-the-art approaches, which do 
not consider ambient condition variations, violate the thermal 
constraints and lead up to 2.6x higher performance variations. 

Keywords— Handheld devices; dynamic thermal modeling and 
management 

I. INTRODUCTION 
While mobile SoC performance has become comparable 

with desktop and laptop processors for both graphic and 
computational applications, the increase in the SoC’s power 
density has raised new challenges. The usability of a handheld 
device is limited by the battery charge duration and the device 
temperature. While research to date has presented multiple 
solutions to optimize the energy consumed by device resources 
such as SoC [18][5], display [15], and transceiver [12][7], the 
state-of-the-art on thermal modeling has mainly focused on 
static thermal analysis [29], which is useful at the design phase 
but cannot be effectively leveraged at run time. 

When a handheld device extensively uses the most power 
hungry resources such as an SoC with GPUs and CPUs, 
transceiver which integrates 3/4G, WiFi, and display, the 
temperature of the cover increases as well as the chips’ 
temperatures. Human skin can tolerate up to 45oC for plastic 
and 41oC for aluminum covers [4].  Today, many thermal 

sensors are embedded in phones. Sensors on the phone cover 
are also available. However to proactively control the thermal 
profile, and ensure reliability [26], a valid thermal model of the 
entire phone is needed. Effective approaches for proactive 
management of server size SoCs use linear-time invariant 
(LTI) system representations of the multicore processor’s 
thermal behavior to leverage control theory techniques for 
proactive task migration and/or voltage-frequency scaling 
[3][31]. 

Identifying the LTI equivalent thermal model for a mobile 
SoC has some difficulties. First, because of the absence of a 
fan, the various heat sources inside the device are directly 
thermally coupled. Second, the heat is dissipated via the natural 
convection [13] but the heat transfer coefficients change 
because of the device’s orientation (i.e. vertical, horizontal) 
and contact surfaces (i.e., hand, pocket, blanket, and desk). 
Moreover, the heat flows through many different paths; the 
major ones are through the front and back covers. Each path 
has independent transfer coefficients. In conclusion, a 
smartphone can be described as a stack of layers built from 
different materials and containing several heat sources that are 
thermally coupled depending on the heat transfer coefficients 
of the device’s front and back. An illustration of this is shown 
in Fig. 1. 

 
Fig. 1. Stack representation of a phone (not to scale) 
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The contribution of this paper is three-fold. We first 
evaluate the effects of ambient variations (i.e., contact surface 
and orientation) on the thermal profile by measurements on our 
target device. We change ambient conditions and automatically 
replay a sequence of user-interactions over a set of mobile 
applications. We fix both CPU and GPU frequencies and set 
the “airplane mode”. We observe that over a period of 10min, 
when the phone is lying on a desk, the SoC temperature is 1oC 
cooler than when it is held by a hand.  If the phone is oriented 
vertically instead, the temperature is lower by as much as 
2.5oC. Newer mobile SoCs have a larger number of CPUs and 
accelerators, which lead to even larger power density variations 
and thermal differences. Second, we propose a blind-box 
strategy to model the thermal behavior of the device by only 
accessing power and thermal sensors [16][14], as that is 
typically the only information that the operating system (OS) 
vendors have access to. The average error of our modeling 
approach is only 0.3oC. Last, we devise an ambient-aware 
thermal management technique, which manages both CPU and 
GPU frequency, by implementing proactive control to keep the 
temperature of the phone below a predefined threshold while 
adapting to user and environmental changes. We demonstrate 
through experimental results that our strategy is tolerant to 
ambient variations and can meet the thermal constraints. The 
proposed technique maintains the performance stable and 
provide power consumptions comparable to the traditional 
thermal management approaches. The state-of-the-art 
approaches lead up to 2.6x higher performance variations to 
keep the SoC in desired thermal conditions. 

The remaining of this paper is organized as follows. 
Section II reviews the related work. Section III illustrates the 
analysis of the ambient variations on the target phone’s thermal 
profile. Sections IV,V, and VI illustrate the thermal, power, 
and performance modeling strategy. Section VII presents the 
proposed management technique. Section VIII summarizes the 
experimental results, while Section IX concludes the paper. 

II. RELATED WORK 
A number of publications have focused on developing SoC 

thermal models, but only a few studies to date attempted to go 
beyond. In [9], the thermal properties of typical smartphone 
components, such as printed circuit board (PCB), ICs, battery, 
display, and cover, have been studied separately after 
dissembling the device. The work in [29] discusses how the air 
gap between PCB and back cover impact the device’s skin and 
the SoC temperature. The authors also analyze the impact of 
the materials on the leakage power. A steady-state simulator is 
proposed as a tool for selecting materials and dimensions of the 
phone. In [30], the thermal coupling between battery and SoC 
is studied. An RC equivalent thermal circuit is proposed and 
used to analyze the impact of the coupling and lead the 
decisions of a thermal management on selecting the best V/f 
setting of the CPU in order to keep the SoC temperature below 
a threshold. In [17], the impact of ambient temperature 
variations and WiFi activity on the SoC temperature are 
evaluated. A thermal management algorithm leverages these 
measurements to select the most profitable CPU frequency. 
The proposed model and management techniques are specific 
for the phone and the benchmark used. In [27], the authors use 

phase change material in mobile devices to store dissipated 
heat and therefore reduce the temperature. In [24], the authors 
first identify thermal and power models for a heterogeneous 
platform and then they propose a thermal and power 
management technique. This work does not consider ambient 
variation changes. 

Thermal management techniques have primarily focused on 
multicore processors in many application domains. The most 
recent implementations proactively change core frequency to 
avoid thermal violations [3][6][23][31][10][11] while meeting 
performance constraints. This paper overcomes a number of 
major limitations of the state-of-the-art’s solutions. 

• RC models require physical information of the device 
that are often not available to OS and system vendors at 
the level of necessary detail.  Our first contribution is to 
get the thermal model of commercial phones by only 
accessing power and thermal sensors, a much simpler 
but still accurate approach.   

• Previous papers have focused on the internal thermal 
characteristics of mobile devices, disregarding the fact 
that the heat internally generated also depends on the 
device’s orientation and contact surfaces. Our model 
and management technique is aware of this behavior. 

• State-of-the-art solutions only control the CPU 
frequency even if the GPU currently consumes more 
power in mobile SoCs. Instead, our management 
technique controls V/f setting of the both resources 
separately, thus delivering a more efficient and higher 
performing solution. 

 
Fig. 2. SnapdragonTM MSM 8660 by Qualcomm®. 

 

 
Fig. 3. Impact of contact surface (S) & orientation (O) on the thermal 

profile. 
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III. METHODOLOGY 

A. Target Device 
The smartphone used in this paper is the SnapdragonTM 

Development Platform by Qualcomm® (see Fig. 2) [20]. This 
device has a MSM8660 SoC with two ARM15 [2] CPUs and 
AdrenoTM GPU [19]. The OS is Android 2.3 Gingerbread. We 
use the Trepn profiler [21] to collect power data from the 
CPUs, the GPU, the DRAM, the display, and the battery. The 
sample time is set to 0.1sec. By accessing the virtual system 
sysf through the Android Debug Bridge (ADB), we obtain the 
SoC temperature. We can also set the two CPU and the GPU 
frequency independently from user-space from 
/sys/devices/system/cpu and /sys/class/kgls, respectively. 
Although we use this phone to develop and verify our model, 
the same modeling procedure can work with any mobile 
device. We use record-and-replay routines [8] to replay user-
interactions on specific mobile applications with the goal of 
evaluating the impact of ambient variations on the 
performance, the temperature, and the power consumption of 
CPU and GPU at different frequency settings. During our 
experiments, we keep the phone in airplane mode as it was not 
possible to measure power and temperature of the transceiver. 

B. Impact of Ambient Conditions 
We analyze the impact of different contact surfaces and 

phone’s orientation on the thermal profile of the device. We set 
the CPU frequency to 1080MHz and GPU to 200MHz, and we 
record a sequence of user interactions with a set of apps such 
as ONE Browser, Photo Gallery, VideoPlayer, and InkPad 
(text editor), which are available application on Amazon App 
Store [1]. For the browser, we use a set of locally stored 
websites. Interactions consist of actions such as zooming in 
and out, scrolling up and down, typing, and others. The 
duration of the recorded session is ~10min. We evaluate three 
different scenarios characterized by orientation (O) and contact 
surface (S). First, the phone is in a horizontal position lying on 
a desk. Then, the phone is horizontal but held by a hand. Last, 
the phone is standing vertically with no contact to display or 
back cover. Before each run, we left the phone charging and 
idle for 10 minutes to ensure all experiments start at the same 
initial temperature, which is 38oC. 

We measured the SoC temperature and plotted it in Fig. 3. 
The dotted black curve is phone standing vertically with no 
contact surface (i.e., S=air), the blue line represents when the 
phone is lying on a desk in a horizontal position, while the 
dashed red is for the case when the phone is held by a hand in a 
horizontal position. Because our test cases are replayable and 
frequencies are fixed, the differences in temperature are mainly 
due to different ambient conditions. When the phone is on the 
desk surface and horizontally oriented or when it is vertically 
surrounded by air, it is cooler than when it is held by a hand by 
1oC & 2.5oC respectively. Newer mobile SoCs have a larger 
number of CPUs and accelerators that lead to even larger 
thermal differences. Since such ambient condition variations 
are common in practice, it is important to account for the effect 
they cause on the SoC temperature.  Thus, in the next sections 
we describe a new thermal modeling strategy combined with a 
management technique for ambient-aware thermal control with 

the goal of meeting thermal constraints while reducing the 
impact on performance. 

IV. THERMAL MODEL 
Our goal is to identify a thermal modeling strategy that can 

be easily used by OS vendors for any mobile device. Thus, we 
assume that we have no access about the detailed information 
describing topological and physical parameters of the phone 
(e.g. we do not know material characteristics and layers of the 
phone’s PCB board).  We also assume that our system can 
access coarse grained power and thermal sensors of the 
phone’s key heat sources. Indeed, such information are 
available in today’s devices [14][16]. 

Let the number of the heat sources be n. 
nℜ∈kT

!
 and 

nℜ∈kP
!

  represent the vectors of the temperature and the 

power at instant k. 
nnB A, ×ℜ∈ are defined as the state and the 

input matrices. The order of the model is equal to the number 
of the heat sources (i.e., n), which is usually small.  In this 
paper we use n=6. The output of the model is the predicted 
temperature at time k+1, given input of currently measured 
temperatures and power consumption at time k. The equivalent 
state-space model of the smartphone’s thermal behavior is 
given in Equation (4.1). It is represented at 0.1sec resolution as 
we get power and thermal measurements at the same 
granularity. 

kkk PBTAT ⋅+⋅=+1                          (4.1) 

Deriving the model (i.e. matrices A & B) of Equation (4.1) 
by only accessing power and temperature is a blind 
identification problem. To solve this problem, the numerical 
algorithm for subspace system identification, N4SID, offers 
several advantages. It is not iterative and the initial state does 
not have to be specified. N4SID has two steps: (i) a state 
sequence of the system is recognized by projecting an input 
and an output sequence; (ii) the matrices of the state-space 
representation of the system are recognized by using a least 
squares approach. More details are provided in [28]. 

 
Fig. 4. CPU power versus frequency model. 

 
Fig. 5. GPU power versus utilization model. 
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V. POWER MODEL 
To control the power, and thus the temperature, we base on 

V/f scaling of the SoC’s units. To act a proactive management 
control we need power and performance models. We discuss 
the CPU and the GPU power model in Sections V.A and V.B 
while we illustrate the performance model in Section VI. 

A. CPU Power Model 
For a CPU, the power is the sum of two contributions: 

dynamic and leakage. The dynamic power can be modeled 
through Equation (5.1) where α an C are the activity factor and 
the switching capacitance. 

Pdyn−CPU =αCVdd−CPU
2 fCPU     (5.1) 

The leakage power can be modeled through Equation (5.2) 
where T represent the temperature; the coefficient b1 accounts 
technology dependent constants, channel length, and width; 
the coefficient b2 accounts the Boltzmann constant, the 
electron charge, and the threshold voltage; and Igate is the gate 
leakage current that can be assumed constant. 

Plkg−CPU =Vdd−CPU b1T
2 exp b2

T
"

#
$

%

&
'+ Igate

"

#
$

%

&
'
   (5.2) 

As the frequency f linearly increase with respect to the Vdd, 
the dynamic power can be approximated as a cubic function of 
the frequency while the leakage power can be approximated as 
linear function of the frequency. To identify the CPU power 
model we have executed several registrations of user 
interactions such as zooming and scrolling when using 
Gallery, ONE Browser, Adobe PDF Reader, which are mobile 
applications available on Amazon App Store [1]. Each run had 
fixed CPU and GPU frequency. We have evaluated all the 
possible frequency configurations. We have measured the 
power consumption for each run. We have seen that both 
thermal and GPU frequency variations do not significantly 
influence the CPU power that we have thus modeled as 
function of the frequency as illustrate Equation (5.3) and 
plotted in Fig. 4. We have identified the coefficients a1 and a2 
by executing the nonlinear least square fitting over the 
collected data. The approximation error of the power model 
over the collected data is below 4%.  

PCPU fCPU( ) = a1 fCPU3 + a2 fCPU     (5.3) 

B. GPU Power Model 
We have seen the GPU power seems mostly correlated to 

the GPU utilization UGPU because in our system the voltage of 
the GPU remains fixed over frequency changes. Therefore, we 
describe the GPU power PGPU through Equation (5.4). We 
have identified the coefficients b1 and b2 by executing the 
linear least square fitting over the collected data. Fig. 5 plots 
the GPU power model versus the GPU utilization. The 
approximation error of the power model over the collected 
data is below 4%. 

PGPU uGPU( ) = b1uGPU + b2     (5.4) 

VI. PERFORMANCE MODEL 
The Quality of Experience (QoE) of the device can be 

evaluated by verifying that the system responds sufficiently 
fast to the user interactions. Some applications, such as video 
playback, do not have frequent user interactions. The frame 
rate that guarantees satisfactory execution of the video is 
usually relatively low, such as 25 frames per second (fps). Our 
target device can meet 25fps at fairly low CPU and GPU 
frequency as long as there are not too many other active 
processes. In contrast, when scrolling or zooming, the phone 
tries to execute the workload at 60fps, maximum observed 
frame rate. Therefore, for the purposes of this work, we 
quantify performance as a normalized frame rate.  

Performance is a function of both CPU and GPU 
frequencies. Memory traffic impacts the computational 
efficiency of the SoC. We measure the frame rate for a set of 
replayable runs, each one executed at different CPU and GPU 
frequencies. We divide the runs into two categories: fast, 
when the user is scrolling and zooming quickly (e.g. looking 
for a picture or a detail in some pictures) and slow, when the 
user is scrolling or zooming at lower speeds (i.e., the user 
reads contents of a webpage). We examine all the possible 
CPU and GPU frequency configurations. Each run lasts 
approximately 10 seconds. We measure the average frame rate 
per run. Equation (6.1), which is a function of the CPU 
frequency fCPU, provides a sufficiently accurate performance 
model of our platform. The coefficient c1 and c2 of Equation 
(6.1) depend on GPU frequency. We obtain the values for 
these coefficients during fast and slow interactions with 
nonlinear least square fit over the collected data. Fig.s 6a) and 
6b) plot the performance versus the CPU frequency at 

 
a) Fast interactions (i.e., scrolling through pictures) 

 

 
b) Slow interactions (i.e., reading news) 

Fig. 6 Performance versus CPU frequency at different GPU frequencies 
 

Fig. 6. Performance versus CPU frequencies at different GPU 
frequencies. 
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different GPU frequencies. The error of the model as 
compared to the collected data is less than 6%. 

 FPS fCPU( ) fGPU
= c1 log c2 fCPU( )    (6.1) 

Fig.s 6a) and 6b) shows that the maximum GPU frequency 
does not always provide maximum performance. For instance, 
during fast interactions, when the CPU frequency is below 
1026 MHz, better performance is provided by the GPU 
clocked at 325 MHz. This happens because the high GPU 
frequency creates more unproductive traffic to memory (i.e., 
polling).  

In addition, we model GPU utilization as a function of 
performance. GPU is fully utilized (i.e. UGPU=1) when the 
frame rate is maximum possible one a given GPU frequency; 
so we model the GPU utilization as shown in Equation (6.2). 

UGPU fCPU( ) fGPU
= FPSGPU fCPU( ) fGPU

max FPS
GPU( )   (6.2) 

VII. AMBIENT-AWARE PROACTIVE THERMAL MANAGEMENT 
We propose an Ambient-aware Thermal Management 

(APTM), which aims to meet a given thermal constraint while 
maximizing the performance. APTM uses a set of thermal 
models obtained offline using our strategy presented in Section 
IV. The main APTM’s components are four. Power Limiter 
computes the SoC power budget that guarantees the meeting of 
the thermal constraint Tc. Power Limiter takes the thermal 
model from Model Selector and reads the current SoC 
temperature from the sensor. Governor reads the power budget 
and application information from Application Manager to set 
the CPU and the GPU frequency. Model Selector updates the 
thermal model with respect to ambient condition changes. 
APTM’s  block diagram is shown in Fig. 7. 

Power Limiter proactively fixes an SoC power budget PBSoC 
so that the estimated SoC temperature is less than the 
constraint Tc (i.e., T[k] < Tc) for a period τ, which ranges from 
1 to 4 sec. It uses the thermal model of Equation (4.1) and the 
initial temperature Ts, which is read from the sensors. Starting 
from the maximum SoC power (i.e., the power obtained at the 
maximum CPU and the maximum GPU frequency), Power 
Limiter checks whether the estimated SoC temperature is 
below the threshold for every sample k. If τ=1 sec, the 
number of samples to check is 10. If not, the power is 

decreased by 0.1W and the comparison is repeated until either 
the constraint is met or the power is as much as the minimum 
value (i.e., the power value obtained at the minimum CPU and 
the minimum GPU frequency). Power Limiter uses a thermal 
model shown in Equation (4.1), which requires data from six 
power sources. Three of them are related to the SoC (i.e., 2 
CPUs and 1 GPU) while the others are display, battery, and 
DRAM. The current budget of PBSoC is divided by assuming 
that ¼ PBSoC is consumed by each CPU and ½ PBSoC is 
consumed by the GPU. For power consumed by display, 
DRAM, and battery, it is assumed that those sources will 
consume the same power as during the last period τ. The power 
data can be obtained via power sensors [16]. 

Application Manager evaluates performance as a function of 
SoC power by using models of Sections V and VI. Fig.s 8a) 
and 8b) shows the trends of performance versus power at 
different GPU frequencies for fast and slow interactions. Fig. 
8a) shows that for fast interactions there are three significant 
power ranges. Until 0.9W, GPU running at 400MHz provides 
better performance. From 0.9 to 1.2W GPU at 325MHz is the 
best, while at power values larger than 1.2W, the GPU 
frequency of 400MHz is again more appropriate. In contrast, 
when iterations are slow (see Fig. 8b)), if the power budget is 
not larger than 0.75W the best GPU frequency is 128MHz. 
From 0.75 to 1.2W the GPU frequency is set to 400MHz. If the 
power budget is larger than 1.2W, GPU frequency of 325MHz 
is the best. Application Manager stores these power ranges and 
depending on the current application, it provides this data to 
Governor. This approach is not limited to only to fast and slow 
interactions but it can be extended to more types of workload. 

Governor selects CPU and GPU frequency at every 
scheduling tick. It relies on a set of power ranges provided by 
the Application Manager. The Governor sets the GPU 
frequency depending on the current power budget provided by 

 
Fig. 7. APTM block diagram. 

 
a) Fast interactions (i.e., scrolling through pictures) 

 

 
b) Slow interactions (i.e., reading news) 

Fig. 8. Performance versus power consumption at different GPU 
frequencies. 
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Power Limiter and subsequently it selects the CPU frequency 
as described next. Starting from the highest frequency, it 
computes the total power by using the model of Equation (5.3) 
and compares it to the budget. Next, it decreases the CPU 
frequency until either the estimated total power is not larger 
than the budget or the CPU frequency is the lowest possible. 

Model Selector updates the thermal model for Power Limiter. 
It has stored a set of precomputed thermal models generated 
for different ambient conditions. The models are sorted from 
the coolest to the hottest as a function of the modeled 
temperature. Model Selector reads the current temperature 
from the sensor Ts and compares it against the estimated one 
Te from Power Limiter. If the difference is smaller than 1oC no 
action is taken. Otherwise, if Ts > Te , the current model is 
replaced with the  next hotter one, else the next cooler model is 
chosen. 

VIII. RESULTS 

A. Experimental Setup 
We next evaluate the effectiveness of our models and 

management techniques presented in Sections IV and VII.  For 
all measurements we use the phone described in Section III.A. 
Six different heat sources are taken into account: CPU1, CPU2, 
GPU, DRAM, display, and battery. Our modeling and 
management strategies need as many power and temperature 
sensors but the phone only provides one SoC thermal sensor. 
Therefore, we combine the measurements we obtain from the 
phone with a simulation infrastructure.  

We create a thermal model of the whole phone by using 
3D-ICE, a tool for transient thermal modeling of 3D IC 
structures [25]. 3D-ICE is suitable for modeling the thermal 
behavior of smartphones for a few reasons. First, it is possible 
to set the natural convection via two different paths to the 
ambient, top & bottom, with their respective heat transfer 
coefficients [W/m2-K]. As a result, we can model a 
parallelepiped for which the heat internally generated is 
transferred to the ambient through the top and bottom face (e.g. 
phone’s display and the back cover). We used a calibration 
procedure to set the two heat transfer coefficients. For each 
ambient condition analyzed in Section III.B, we found the two 
coefficients that match the simulated SoC temperature with the 

measured one.  Second, the parallelepiped can be modeled as 
stack of layers composed of different materials. For each layer, 
dimensions, thermal conductivity [W/m-K] and volumetric 
heat capacity [J/m3-K] of the material can be specified. 
Different material characteristics across the same layer can be 
specified to model a number of components mounted on a PCB 
and separated by air gaps. 

Fig. 9 shows the thermal results we obtained with phone 
lying on a desk.  The thermal simulation with 3D-ICE (dotted 
red curve) is only an approximation of the real thermal 
behavior (dashed blue curve) since the heat is not dissipated 
uniformly through the front and back faces of phone. Also, 
even if we access the phone’s thermal sensors every 100ms, the 
register may not been updated as often, resulting in the 
difference between the simulated and measured data. 

B. Modeling 
In this section we show that the identification approach of 
Section IV can find an accurate thermal model of smartphones 
in various ambient conditions. We store the power traces of 
CPU1, CPU2, GPU, DRAM, display, and battery using Trepn 
[19] for a set of sessions running on the phone described in 
Section III.A, roughly 10min long. We use the following 
mobile applications: ONE Browser, InkPad, Galley, and 
VideoPlayback. Frequency governor is set to ondemand.  We 
provide the power traces to the phone’s thermal simulator 
configured in three different ways related to the ambient 
conditions analyzed in Section III.B: {desk; horiz.}, {hand; 
horiz.}, and {air; vertical}. 

Using N4SID, we generate three different state-space 
models described by Equation (4.1) (i.e., A & B matrix) for 
each ambient condition (i.e., contact surface and orientation). 
The order is set to the number of heat sources (6). The average 
error, when comparing both training and test sets is 0.3oC 
while the maximum error is below 1.5oC. For the case {desk; 
horiz.}, the CPU1, DRAM, and Display target temperatures 
(blue dashed curves) versus the ones estimated with the model 
found by N4SID (red dotted curves) are shown in Fig. 10.   

 
Fig. 9. SoC temperature obtained from the sensors (dashed blue curve) 

versus the simulated (dotted red curve) 

 

 
Fig. 10. Comparison between the CPU1, DRAM, and Display 

temperatures using the model found with N4SID  (dotted red) versus the 
target traces (dashed blue) for the ambient condition {desk;oriz.}. 
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We also evaluate the time required by N4SID on a 
computer with an Intel Quad Core Q8300 running at 2.5GHz. 
We changed the number of inputs and outputs from 5 to 7 and 
the number of samples from 1000 to 2000.  It took only 9sec 
on average to compute. This procedure is always executed 
offline (once for each ambient condition) while the resulting 
models are used by the management technique online as 
explained in Section VII and evaluated in Section VIII.C. 

C. Management 
In this experiment, we demonstrate the effectiveness of the 

proposed Ambient-aware Proactive Thermal Management 
(APTM) technique presented in Section VII. We a simulation 
infrastructure composed of thermal, power, and performance 
models illustrated in Sections IV, V, and VI.  

We gathered the power traces from our target device using 
Trepn [21]. We execute multiple runs on our target phone. 
During each run, we scroll and zoom on the phone to simulate 
user interaction. We used Gallery, ONE Browser (for which we 
navigated through locally stored webpages), and Acrobat PDF 
Reader, which are mobile applications available on Amazon 
App Store [1].  

We used several thermal models, each one related to a 
different ambient condition. We considered a set of nine heat 
transfer coefficient configurations {Kf, Kb}, in which Kf refers 
to the heat transfer coefficient on the front of the device (see 
Fig. 1) while Kb refers to the back (see Fig. 1). In each 
simulation, we randomly change the ambient conditions (i.e., 
the heat transfer coefficients) every 100sec. The normalized 
values are reported on the top x-axis of Fig. 11a. 

We compare the proposed APTM against the Reactive 
Thermal Management (REAC) technique, akin to [22], & 
ambient-agnostic Proactive Thermal Management (PTM) 
technique, akin to [24].  

REAC [22] activates every 0.1sec and operates CPU and GPU 
frequency scaling. If the temperature read from the sensor TS is 

larger than the thermal constraint TC, the CPU frequency is 
reduced by one step unless the CPU frequency is already set at 
the lowest level. In the latter case, the GPU frequency is 
decreased by one step and the CPU frequency is set to the 
maximum value. If TS < TC - δ, where δ is set to 1oC, the 
complementary approach is used to increase the performance. 
PTM executes the APTM scheme but it does not update the 
thermal model (i.e. Model Selector) as is customary in the 
state-of-the-art’s model predictive control techniques [24]. 

The three SoC thermal envelopes are shown in Fig. 11a 
while the performances are plotted in Fig. 11b. The CPU and 
GPU frequency are plotted in Fig. 11c and 11d, respectively. In 
all cases the initial temperature is 38oC. The curves are plotted 
after the warm-up phase that lasted approximately 200sec. The 
proposed APTM is the only policy able to meet the thermal 
constraint, set to 55oC. When the heat conduction capability is 
high (i.e., {Kf=2.0, Kb=1.5} at 500, 900, and 1100 sec), APTM 
recognizes this and increases performance. PTM slightly 
violates the thermal constraint and generates wider 
performance variations. PTM uses as initial temperature the 
one read from the sensor so even if its thermal model is not 
accurate, it is able to prevent large thermal violations but it 
uses wider CPU and GPU frequency changes. REAC 
continuously violates the thermal constraints, has large CPU 
and GPU frequency variations leading to erratic performance. 

As Fig. 11b shows, APTM has less performance variations 
than either state of the art technique. APTM’s minimum 
performance is always better than the minimum performance 
of PTM and REAC. To further quantify the stability of 
delivered performance, we calculate for each technique the 
ratio between the standard deviation of the performance (σ) 
and the average of the performance (µ), and then normalized 
results to our technique, APTM, as it has by far the lowest 

 
Fig. 11a). SoC temperature comparison. 

 
Fig. 11b). Performance comparison. 

 
Fig. 11c). CPU frequency comparison. 

 
Fig. 11d). GPU frequency comparison. 

 
TABLE I. Performance variations. Standard deviation over average. 

 REAC [22] PTM [24] APTM 
σ  / µ 2.60 2.25 1.00 
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performance variations. The results are shown in Table I. In 
comparison to APTM, PTM and REAC, have 2.25x and 2.6x 
higher performance variations,  a big issue when it comes to 
user interaction. The power consumed by the APTM and PTM 
is comparable and equal to 0.6W on average. REAC consumes 
as much as 1W on average. In summary, the results 
demonstrate the importance of using a model which is aware of 
ambient condition variations and that the proposed strategy is 
effective in controlling the thermal profile of the SoC while 
guaranteeing stable performance. 

IX. CONCLUSION 
In this work, we address the problem of heat transfer 

variations and thermal coupling between components in 
smartphones. We propose a proactive control technique 
supported by a novel modeling strategy to keep the device 
below a predefined thermal threshold while minimizing 
performance variations. Our results show that the existing 
techniques, which are not aware of ambient condition 
variations, lead to thermal violations and 2.6x higher 
performance variations, while our proposed method meets the 
thermal constraints and keeps performance stable. 
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