
Modeling and Mitigation of Extra-SoC Thermal
Coupling Effects and Heat Transfer Variations in

Mobile Devices

Francesco Paterna and Tajana Šimunić Rosing
Department of Computer Science and Engineering

University of California, San Diego
La Jolla, California, USA

fpaterna@ucsd.edu tajana@ucsd.edu

Abstract— In smartphones and tablets, a number of
components, such as display and communication subsystem,
dissipate a significant amount of heat. This influences the SoC
thermal envelope, because of the absence of a fan. Thus the
thermal conditions of the SoC cannot simply be modeled as only
a function of the SoC component power. In addition, contact
surfaces and phone orientation variations (e.g., phone inside a
pocket, phone held in a hand, and phone laying on a desk) change
the heat transfer coefficients of the device over time and
influence the SoC temperature. In this work, we analyze the
thermal behavior of a commercial mobile device in varying user
interaction profiles and under different environmental
conditions. Next, we propose a system-variation aware thermal
modeling strategy that only uses available power and thermal
sensors. Lastly, we devise a novel ambient-aware proactive
thermal management algorithm. Our approach is able to meet
the given thermal constraints while providing stable performance
and comparable power consumption with respect to existing
techniques. In contrast, the state-of-the-art approaches, which do
not consider ambient condition variations, violate the thermal
constraints and lead up to 2.6x higher performance variations.

Keywords— Handheld devices; dynamic thermal modeling and
management

I. INTRODUCTION
While mobile SoC performance has become comparable

with desktop and laptop processors for both graphic and
computational applications, the increase in the SoC’s power
density has raised new challenges. The usability of a handheld
device is limited by the battery charge duration and the device
temperature. While research to date has presented multiple
solutions to optimize the energy consumed by device resources
such as SoC [18][5], display [15], and transceiver [12][7], the
state-of-the-art on thermal modeling has mainly focused on
static thermal analysis [29], which is useful at the design phase
but cannot be effectively leveraged at run time.

When a handheld device extensively uses the most power
hungry resources such as an SoC with GPUs and CPUs,
transceiver which integrates 3/4G, WiFi, and display, the
temperature of the cover increases as well as the chips’
temperatures. Human skin can tolerate up to 45oC for plastic
and 41oC for aluminum covers [4]. Today, many thermal

sensors are embedded in phones. Sensors on the phone cover
are also available. However to proactively control the thermal
profile, and ensure reliability [26], a valid thermal model of the
entire phone is needed. Effective approaches for proactive
management of server size SoCs use linear-time invariant
(LTI) system representations of the multicore processor’s
thermal behavior to leverage control theory techniques for
proactive task migration and/or voltage-frequency scaling
[3][31].

Identifying the LTI equivalent thermal model for a mobile
SoC has some difficulties. First, because of the absence of a
fan, the various heat sources inside the device are directly
thermally coupled. Second, the heat is dissipated via the natural
convection [13] but the heat transfer coefficients change
because of the device’s orientation (i.e. vertical, horizontal)
and contact surfaces (i.e., hand, pocket, blanket, and desk).
Moreover, the heat flows through many different paths; the
major ones are through the front and back covers. Each path
has independent transfer coefficients. In conclusion, a
smartphone can be described as a stack of layers built from
different materials and containing several heat sources that are
thermally coupled depending on the heat transfer coefficients
of the device’s front and back. An illustration of this is shown
in Fig. 1.

Fig. 1. Stack representation of a phone (not to scale)

978-1-4673-8388-2/15/$31.00 ©2015 IEEE 831

The contribution of this paper is three-fold. We first
evaluate the effects of ambient variations (i.e., contact surface
and orientation) on the thermal profile by measurements on our
target device. We change ambient conditions and automatically
replay a sequence of user-interactions over a set of mobile
applications. We fix both CPU and GPU frequencies and set
the “airplane mode”. We observe that over a period of 10min,
when the phone is lying on a desk, the SoC temperature is 1oC
cooler than when it is held by a hand. If the phone is oriented
vertically instead, the temperature is lower by as much as
2.5oC. Newer mobile SoCs have a larger number of CPUs and
accelerators, which lead to even larger power density variations
and thermal differences. Second, we propose a blind-box
strategy to model the thermal behavior of the device by only
accessing power and thermal sensors [16][14], as that is
typically the only information that the operating system (OS)
vendors have access to. The average error of our modeling
approach is only 0.3oC. Last, we devise an ambient-aware
thermal management technique, which manages both CPU and
GPU frequency, by implementing proactive control to keep the
temperature of the phone below a predefined threshold while
adapting to user and environmental changes. We demonstrate
through experimental results that our strategy is tolerant to
ambient variations and can meet the thermal constraints. The
proposed technique maintains the performance stable and
provide power consumptions comparable to the traditional
thermal management approaches. The state-of-the-art
approaches lead up to 2.6x higher performance variations to
keep the SoC in desired thermal conditions.

The remaining of this paper is organized as follows.
Section II reviews the related work. Section III illustrates the
analysis of the ambient variations on the target phone’s thermal
profile. Sections IV,V, and VI illustrate the thermal, power,
and performance modeling strategy. Section VII presents the
proposed management technique. Section VIII summarizes the
experimental results, while Section IX concludes the paper.

II. RELATED WORK
A number of publications have focused on developing SoC

thermal models, but only a few studies to date attempted to go
beyond. In [9], the thermal properties of typical smartphone
components, such as printed circuit board (PCB), ICs, battery,
display, and cover, have been studied separately after
dissembling the device. The work in [29] discusses how the air
gap between PCB and back cover impact the device’s skin and
the SoC temperature. The authors also analyze the impact of
the materials on the leakage power. A steady-state simulator is
proposed as a tool for selecting materials and dimensions of the
phone. In [30], the thermal coupling between battery and SoC
is studied. An RC equivalent thermal circuit is proposed and
used to analyze the impact of the coupling and lead the
decisions of a thermal management on selecting the best V/f
setting of the CPU in order to keep the SoC temperature below
a threshold. In [17], the impact of ambient temperature
variations and WiFi activity on the SoC temperature are
evaluated. A thermal management algorithm leverages these
measurements to select the most profitable CPU frequency.
The proposed model and management techniques are specific
for the phone and the benchmark used. In [27], the authors use

phase change material in mobile devices to store dissipated
heat and therefore reduce the temperature. In [24], the authors
first identify thermal and power models for a heterogeneous
platform and then they propose a thermal and power
management technique. This work does not consider ambient
variation changes.

Thermal management techniques have primarily focused on
multicore processors in many application domains. The most
recent implementations proactively change core frequency to
avoid thermal violations [3][6][23][31][10][11] while meeting
performance constraints. This paper overcomes a number of
major limitations of the state-of-the-art’s solutions.

• RC models require physical information of the device
that are often not available to OS and system vendors at
the level of necessary detail. Our first contribution is to
get the thermal model of commercial phones by only
accessing power and thermal sensors, a much simpler
but still accurate approach.

• Previous papers have focused on the internal thermal
characteristics of mobile devices, disregarding the fact
that the heat internally generated also depends on the
device’s orientation and contact surfaces. Our model
and management technique is aware of this behavior.

• State-of-the-art solutions only control the CPU
frequency even if the GPU currently consumes more
power in mobile SoCs. Instead, our management
technique controls V/f setting of the both resources
separately, thus delivering a more efficient and higher
performing solution.

Fig. 2. SnapdragonTM MSM 8660 by Qualcomm®.

Fig. 3. Impact of contact surface (S) & orientation (O) on the thermal

profile.

832

III. METHODOLOGY

A. Target Device
The smartphone used in this paper is the SnapdragonTM

Development Platform by Qualcomm® (see Fig. 2) [20]. This
device has a MSM8660 SoC with two ARM15 [2] CPUs and
AdrenoTM GPU [19]. The OS is Android 2.3 Gingerbread. We
use the Trepn profiler [21] to collect power data from the
CPUs, the GPU, the DRAM, the display, and the battery. The
sample time is set to 0.1sec. By accessing the virtual system
sysf through the Android Debug Bridge (ADB), we obtain the
SoC temperature. We can also set the two CPU and the GPU
frequency independently from user-space from
/sys/devices/system/cpu and /sys/class/kgls, respectively.
Although we use this phone to develop and verify our model,
the same modeling procedure can work with any mobile
device. We use record-and-replay routines [8] to replay user-
interactions on specific mobile applications with the goal of
evaluating the impact of ambient variations on the
performance, the temperature, and the power consumption of
CPU and GPU at different frequency settings. During our
experiments, we keep the phone in airplane mode as it was not
possible to measure power and temperature of the transceiver.

B. Impact of Ambient Conditions
We analyze the impact of different contact surfaces and

phone’s orientation on the thermal profile of the device. We set
the CPU frequency to 1080MHz and GPU to 200MHz, and we
record a sequence of user interactions with a set of apps such
as ONE Browser, Photo Gallery, VideoPlayer, and InkPad
(text editor), which are available application on Amazon App
Store [1]. For the browser, we use a set of locally stored
websites. Interactions consist of actions such as zooming in
and out, scrolling up and down, typing, and others. The
duration of the recorded session is ~10min. We evaluate three
different scenarios characterized by orientation (O) and contact
surface (S). First, the phone is in a horizontal position lying on
a desk. Then, the phone is horizontal but held by a hand. Last,
the phone is standing vertically with no contact to display or
back cover. Before each run, we left the phone charging and
idle for 10 minutes to ensure all experiments start at the same
initial temperature, which is 38oC.

We measured the SoC temperature and plotted it in Fig. 3.
The dotted black curve is phone standing vertically with no
contact surface (i.e., S=air), the blue line represents when the
phone is lying on a desk in a horizontal position, while the
dashed red is for the case when the phone is held by a hand in a
horizontal position. Because our test cases are replayable and
frequencies are fixed, the differences in temperature are mainly
due to different ambient conditions. When the phone is on the
desk surface and horizontally oriented or when it is vertically
surrounded by air, it is cooler than when it is held by a hand by
1oC & 2.5oC respectively. Newer mobile SoCs have a larger
number of CPUs and accelerators that lead to even larger
thermal differences. Since such ambient condition variations
are common in practice, it is important to account for the effect
they cause on the SoC temperature. Thus, in the next sections
we describe a new thermal modeling strategy combined with a
management technique for ambient-aware thermal control with

the goal of meeting thermal constraints while reducing the
impact on performance.

IV. THERMAL MODEL
Our goal is to identify a thermal modeling strategy that can

be easily used by OS vendors for any mobile device. Thus, we
assume that we have no access about the detailed information
describing topological and physical parameters of the phone
(e.g. we do not know material characteristics and layers of the
phone’s PCB board). We also assume that our system can
access coarse grained power and thermal sensors of the
phone’s key heat sources. Indeed, such information are
available in today’s devices [14][16].

Let the number of the heat sources be n.
nℜ∈kT

!
 and

nℜ∈kP
!

 represent the vectors of the temperature and the

power at instant k.
nnB A, ×ℜ∈ are defined as the state and the

input matrices. The order of the model is equal to the number
of the heat sources (i.e., n), which is usually small. In this
paper we use n=6. The output of the model is the predicted
temperature at time k+1, given input of currently measured
temperatures and power consumption at time k. The equivalent
state-space model of the smartphone’s thermal behavior is
given in Equation (4.1). It is represented at 0.1sec resolution as
we get power and thermal measurements at the same
granularity.

kkk PBTAT ⋅+⋅=+1 (4.1)

Deriving the model (i.e. matrices A & B) of Equation (4.1)
by only accessing power and temperature is a blind
identification problem. To solve this problem, the numerical
algorithm for subspace system identification, N4SID, offers
several advantages. It is not iterative and the initial state does
not have to be specified. N4SID has two steps: (i) a state
sequence of the system is recognized by projecting an input
and an output sequence; (ii) the matrices of the state-space
representation of the system are recognized by using a least
squares approach. More details are provided in [28].

Fig. 4. CPU power versus frequency model.

Fig. 5. GPU power versus utilization model.

833

V. POWER MODEL
To control the power, and thus the temperature, we base on

V/f scaling of the SoC’s units. To act a proactive management
control we need power and performance models. We discuss
the CPU and the GPU power model in Sections V.A and V.B
while we illustrate the performance model in Section VI.

A. CPU Power Model
For a CPU, the power is the sum of two contributions:

dynamic and leakage. The dynamic power can be modeled
through Equation (5.1) where α an C are the activity factor and
the switching capacitance.

Pdyn−CPU =αCVdd−CPU
2 fCPU (5.1)

The leakage power can be modeled through Equation (5.2)
where T represent the temperature; the coefficient b1 accounts
technology dependent constants, channel length, and width;
the coefficient b2 accounts the Boltzmann constant, the
electron charge, and the threshold voltage; and Igate is the gate
leakage current that can be assumed constant.

Plkg−CPU =Vdd−CPU b1T
2 exp b2

T
"

#
$

%

&
'+ Igate

"

#
$

%

&
'
 (5.2)

As the frequency f linearly increase with respect to the Vdd,
the dynamic power can be approximated as a cubic function of
the frequency while the leakage power can be approximated as
linear function of the frequency. To identify the CPU power
model we have executed several registrations of user
interactions such as zooming and scrolling when using
Gallery, ONE Browser, Adobe PDF Reader, which are mobile
applications available on Amazon App Store [1]. Each run had
fixed CPU and GPU frequency. We have evaluated all the
possible frequency configurations. We have measured the
power consumption for each run. We have seen that both
thermal and GPU frequency variations do not significantly
influence the CPU power that we have thus modeled as
function of the frequency as illustrate Equation (5.3) and
plotted in Fig. 4. We have identified the coefficients a1 and a2
by executing the nonlinear least square fitting over the
collected data. The approximation error of the power model
over the collected data is below 4%.

PCPU fCPU() = a1 fCPU3 + a2 fCPU (5.3)

B. GPU Power Model
We have seen the GPU power seems mostly correlated to

the GPU utilization UGPU because in our system the voltage of
the GPU remains fixed over frequency changes. Therefore, we
describe the GPU power PGPU through Equation (5.4). We
have identified the coefficients b1 and b2 by executing the
linear least square fitting over the collected data. Fig. 5 plots
the GPU power model versus the GPU utilization. The
approximation error of the power model over the collected
data is below 4%.

PGPU uGPU() = b1uGPU + b2 (5.4)

VI. PERFORMANCE MODEL
The Quality of Experience (QoE) of the device can be

evaluated by verifying that the system responds sufficiently
fast to the user interactions. Some applications, such as video
playback, do not have frequent user interactions. The frame
rate that guarantees satisfactory execution of the video is
usually relatively low, such as 25 frames per second (fps). Our
target device can meet 25fps at fairly low CPU and GPU
frequency as long as there are not too many other active
processes. In contrast, when scrolling or zooming, the phone
tries to execute the workload at 60fps, maximum observed
frame rate. Therefore, for the purposes of this work, we
quantify performance as a normalized frame rate.

Performance is a function of both CPU and GPU
frequencies. Memory traffic impacts the computational
efficiency of the SoC. We measure the frame rate for a set of
replayable runs, each one executed at different CPU and GPU
frequencies. We divide the runs into two categories: fast,
when the user is scrolling and zooming quickly (e.g. looking
for a picture or a detail in some pictures) and slow, when the
user is scrolling or zooming at lower speeds (i.e., the user
reads contents of a webpage). We examine all the possible
CPU and GPU frequency configurations. Each run lasts
approximately 10 seconds. We measure the average frame rate
per run. Equation (6.1), which is a function of the CPU
frequency fCPU, provides a sufficiently accurate performance
model of our platform. The coefficient c1 and c2 of Equation
(6.1) depend on GPU frequency. We obtain the values for
these coefficients during fast and slow interactions with
nonlinear least square fit over the collected data. Fig.s 6a) and
6b) plot the performance versus the CPU frequency at

a) Fast interactions (i.e., scrolling through pictures)

b) Slow interactions (i.e., reading news)

Fig. 6 Performance versus CPU frequency at different GPU frequencies

Fig. 6. Performance versus CPU frequencies at different GPU
frequencies.

834

different GPU frequencies. The error of the model as
compared to the collected data is less than 6%.

 FPS fCPU() fGPU
= c1 log c2 fCPU() (6.1)

Fig.s 6a) and 6b) shows that the maximum GPU frequency
does not always provide maximum performance. For instance,
during fast interactions, when the CPU frequency is below
1026 MHz, better performance is provided by the GPU
clocked at 325 MHz. This happens because the high GPU
frequency creates more unproductive traffic to memory (i.e.,
polling).

In addition, we model GPU utilization as a function of
performance. GPU is fully utilized (i.e. UGPU=1) when the
frame rate is maximum possible one a given GPU frequency;
so we model the GPU utilization as shown in Equation (6.2).

UGPU fCPU() fGPU
= FPSGPU fCPU() fGPU

max FPS
GPU() (6.2)

VII. AMBIENT-AWARE PROACTIVE THERMAL MANAGEMENT
We propose an Ambient-aware Thermal Management

(APTM), which aims to meet a given thermal constraint while
maximizing the performance. APTM uses a set of thermal
models obtained offline using our strategy presented in Section
IV. The main APTM’s components are four. Power Limiter
computes the SoC power budget that guarantees the meeting of
the thermal constraint Tc. Power Limiter takes the thermal
model from Model Selector and reads the current SoC
temperature from the sensor. Governor reads the power budget
and application information from Application Manager to set
the CPU and the GPU frequency. Model Selector updates the
thermal model with respect to ambient condition changes.
APTM’s block diagram is shown in Fig. 7.

Power Limiter proactively fixes an SoC power budget PBSoC
so that the estimated SoC temperature is less than the
constraint Tc (i.e., T[k] < Tc) for a period τ, which ranges from
1 to 4 sec. It uses the thermal model of Equation (4.1) and the
initial temperature Ts, which is read from the sensors. Starting
from the maximum SoC power (i.e., the power obtained at the
maximum CPU and the maximum GPU frequency), Power
Limiter checks whether the estimated SoC temperature is
below the threshold for every sample k. If τ=1 sec, the
number of samples to check is 10. If not, the power is

decreased by 0.1W and the comparison is repeated until either
the constraint is met or the power is as much as the minimum
value (i.e., the power value obtained at the minimum CPU and
the minimum GPU frequency). Power Limiter uses a thermal
model shown in Equation (4.1), which requires data from six
power sources. Three of them are related to the SoC (i.e., 2
CPUs and 1 GPU) while the others are display, battery, and
DRAM. The current budget of PBSoC is divided by assuming
that ¼ PBSoC is consumed by each CPU and ½ PBSoC is
consumed by the GPU. For power consumed by display,
DRAM, and battery, it is assumed that those sources will
consume the same power as during the last period τ. The power
data can be obtained via power sensors [16].

Application Manager evaluates performance as a function of
SoC power by using models of Sections V and VI. Fig.s 8a)
and 8b) shows the trends of performance versus power at
different GPU frequencies for fast and slow interactions. Fig.
8a) shows that for fast interactions there are three significant
power ranges. Until 0.9W, GPU running at 400MHz provides
better performance. From 0.9 to 1.2W GPU at 325MHz is the
best, while at power values larger than 1.2W, the GPU
frequency of 400MHz is again more appropriate. In contrast,
when iterations are slow (see Fig. 8b)), if the power budget is
not larger than 0.75W the best GPU frequency is 128MHz.
From 0.75 to 1.2W the GPU frequency is set to 400MHz. If the
power budget is larger than 1.2W, GPU frequency of 325MHz
is the best. Application Manager stores these power ranges and
depending on the current application, it provides this data to
Governor. This approach is not limited to only to fast and slow
interactions but it can be extended to more types of workload.

Governor selects CPU and GPU frequency at every
scheduling tick. It relies on a set of power ranges provided by
the Application Manager. The Governor sets the GPU
frequency depending on the current power budget provided by

Fig. 7. APTM block diagram.

a) Fast interactions (i.e., scrolling through pictures)

b) Slow interactions (i.e., reading news)

Fig. 8. Performance versus power consumption at different GPU
frequencies.

835

Power Limiter and subsequently it selects the CPU frequency
as described next. Starting from the highest frequency, it
computes the total power by using the model of Equation (5.3)
and compares it to the budget. Next, it decreases the CPU
frequency until either the estimated total power is not larger
than the budget or the CPU frequency is the lowest possible.

Model Selector updates the thermal model for Power Limiter.
It has stored a set of precomputed thermal models generated
for different ambient conditions. The models are sorted from
the coolest to the hottest as a function of the modeled
temperature. Model Selector reads the current temperature
from the sensor Ts and compares it against the estimated one
Te from Power Limiter. If the difference is smaller than 1oC no
action is taken. Otherwise, if Ts > Te , the current model is
replaced with the next hotter one, else the next cooler model is
chosen.

VIII. RESULTS

A. Experimental Setup
We next evaluate the effectiveness of our models and

management techniques presented in Sections IV and VII. For
all measurements we use the phone described in Section III.A.
Six different heat sources are taken into account: CPU1, CPU2,
GPU, DRAM, display, and battery. Our modeling and
management strategies need as many power and temperature
sensors but the phone only provides one SoC thermal sensor.
Therefore, we combine the measurements we obtain from the
phone with a simulation infrastructure.

We create a thermal model of the whole phone by using
3D-ICE, a tool for transient thermal modeling of 3D IC
structures [25]. 3D-ICE is suitable for modeling the thermal
behavior of smartphones for a few reasons. First, it is possible
to set the natural convection via two different paths to the
ambient, top & bottom, with their respective heat transfer
coefficients [W/m2-K]. As a result, we can model a
parallelepiped for which the heat internally generated is
transferred to the ambient through the top and bottom face (e.g.
phone’s display and the back cover). We used a calibration
procedure to set the two heat transfer coefficients. For each
ambient condition analyzed in Section III.B, we found the two
coefficients that match the simulated SoC temperature with the

measured one. Second, the parallelepiped can be modeled as
stack of layers composed of different materials. For each layer,
dimensions, thermal conductivity [W/m-K] and volumetric
heat capacity [J/m3-K] of the material can be specified.
Different material characteristics across the same layer can be
specified to model a number of components mounted on a PCB
and separated by air gaps.

Fig. 9 shows the thermal results we obtained with phone
lying on a desk. The thermal simulation with 3D-ICE (dotted
red curve) is only an approximation of the real thermal
behavior (dashed blue curve) since the heat is not dissipated
uniformly through the front and back faces of phone. Also,
even if we access the phone’s thermal sensors every 100ms, the
register may not been updated as often, resulting in the
difference between the simulated and measured data.

B. Modeling
In this section we show that the identification approach of
Section IV can find an accurate thermal model of smartphones
in various ambient conditions. We store the power traces of
CPU1, CPU2, GPU, DRAM, display, and battery using Trepn
[19] for a set of sessions running on the phone described in
Section III.A, roughly 10min long. We use the following
mobile applications: ONE Browser, InkPad, Galley, and
VideoPlayback. Frequency governor is set to ondemand. We
provide the power traces to the phone’s thermal simulator
configured in three different ways related to the ambient
conditions analyzed in Section III.B: {desk; horiz.}, {hand;
horiz.}, and {air; vertical}.

Using N4SID, we generate three different state-space
models described by Equation (4.1) (i.e., A & B matrix) for
each ambient condition (i.e., contact surface and orientation).
The order is set to the number of heat sources (6). The average
error, when comparing both training and test sets is 0.3oC
while the maximum error is below 1.5oC. For the case {desk;
horiz.}, the CPU1, DRAM, and Display target temperatures
(blue dashed curves) versus the ones estimated with the model
found by N4SID (red dotted curves) are shown in Fig. 10.

Fig. 9. SoC temperature obtained from the sensors (dashed blue curve)

versus the simulated (dotted red curve)

Fig. 10. Comparison between the CPU1, DRAM, and Display

temperatures using the model found with N4SID (dotted red) versus the
target traces (dashed blue) for the ambient condition {desk;oriz.}.

836

We also evaluate the time required by N4SID on a
computer with an Intel Quad Core Q8300 running at 2.5GHz.
We changed the number of inputs and outputs from 5 to 7 and
the number of samples from 1000 to 2000. It took only 9sec
on average to compute. This procedure is always executed
offline (once for each ambient condition) while the resulting
models are used by the management technique online as
explained in Section VII and evaluated in Section VIII.C.

C. Management
In this experiment, we demonstrate the effectiveness of the

proposed Ambient-aware Proactive Thermal Management
(APTM) technique presented in Section VII. We a simulation
infrastructure composed of thermal, power, and performance
models illustrated in Sections IV, V, and VI.

We gathered the power traces from our target device using
Trepn [21]. We execute multiple runs on our target phone.
During each run, we scroll and zoom on the phone to simulate
user interaction. We used Gallery, ONE Browser (for which we
navigated through locally stored webpages), and Acrobat PDF
Reader, which are mobile applications available on Amazon
App Store [1].

We used several thermal models, each one related to a
different ambient condition. We considered a set of nine heat
transfer coefficient configurations {Kf, Kb}, in which Kf refers
to the heat transfer coefficient on the front of the device (see
Fig. 1) while Kb refers to the back (see Fig. 1). In each
simulation, we randomly change the ambient conditions (i.e.,
the heat transfer coefficients) every 100sec. The normalized
values are reported on the top x-axis of Fig. 11a.

We compare the proposed APTM against the Reactive
Thermal Management (REAC) technique, akin to [22], &
ambient-agnostic Proactive Thermal Management (PTM)
technique, akin to [24].

REAC [22] activates every 0.1sec and operates CPU and GPU
frequency scaling. If the temperature read from the sensor TS is

larger than the thermal constraint TC, the CPU frequency is
reduced by one step unless the CPU frequency is already set at
the lowest level. In the latter case, the GPU frequency is
decreased by one step and the CPU frequency is set to the
maximum value. If TS < TC - δ, where δ is set to 1oC, the
complementary approach is used to increase the performance.
PTM executes the APTM scheme but it does not update the
thermal model (i.e. Model Selector) as is customary in the
state-of-the-art’s model predictive control techniques [24].

The three SoC thermal envelopes are shown in Fig. 11a
while the performances are plotted in Fig. 11b. The CPU and
GPU frequency are plotted in Fig. 11c and 11d, respectively. In
all cases the initial temperature is 38oC. The curves are plotted
after the warm-up phase that lasted approximately 200sec. The
proposed APTM is the only policy able to meet the thermal
constraint, set to 55oC. When the heat conduction capability is
high (i.e., {Kf=2.0, Kb=1.5} at 500, 900, and 1100 sec), APTM
recognizes this and increases performance. PTM slightly
violates the thermal constraint and generates wider
performance variations. PTM uses as initial temperature the
one read from the sensor so even if its thermal model is not
accurate, it is able to prevent large thermal violations but it
uses wider CPU and GPU frequency changes. REAC
continuously violates the thermal constraints, has large CPU
and GPU frequency variations leading to erratic performance.

As Fig. 11b shows, APTM has less performance variations
than either state of the art technique. APTM’s minimum
performance is always better than the minimum performance
of PTM and REAC. To further quantify the stability of
delivered performance, we calculate for each technique the
ratio between the standard deviation of the performance (σ)
and the average of the performance (µ), and then normalized
results to our technique, APTM, as it has by far the lowest

Fig. 11a). SoC temperature comparison.

Fig. 11b). Performance comparison.

Fig. 11c). CPU frequency comparison.

Fig. 11d). GPU frequency comparison.

TABLE I. Performance variations. Standard deviation over average.

 REAC [22] PTM [24] APTM
σ / µ 2.60 2.25 1.00

837

performance variations. The results are shown in Table I. In
comparison to APTM, PTM and REAC, have 2.25x and 2.6x
higher performance variations, a big issue when it comes to
user interaction. The power consumed by the APTM and PTM
is comparable and equal to 0.6W on average. REAC consumes
as much as 1W on average. In summary, the results
demonstrate the importance of using a model which is aware of
ambient condition variations and that the proposed strategy is
effective in controlling the thermal profile of the SoC while
guaranteeing stable performance.

IX. CONCLUSION
In this work, we address the problem of heat transfer

variations and thermal coupling between components in
smartphones. We propose a proactive control technique
supported by a novel modeling strategy to keep the device
below a predefined thermal threshold while minimizing
performance variations. Our results show that the existing
techniques, which are not aware of ambient condition
variations, lead to thermal violations and 2.6x higher
performance variations, while our proposed method meets the
thermal constraints and keeps performance stable.

ACKNOWLEDGMENT
The research has been supported by NSF SHF: Small: Cooling, energy and

performance management in computing systems.

REFERENCES
[1] Amazon App Store. Amazon.com April 2015 [online]
[2] ARM Ltd. Cortex A15. July 2014.
[3] Bartolini A., Cacciari M., Tilli A., and Benini, L., "A distributed and

self-calibrating model-predictive controller for energy and thermal
management of high-performance multicores," In Proc. of the Int. Conf.
on Design, Automation & Test in Europe, pages.1-6, IEEE, 2011.

[4] Berhe, M.K., “Ergonomic Temperature Limits for Handheld Electronic
Devices”, In Proceedings of InterPACK, ASME, 2007.

[5] Chen X., Chen Y., Dong M., and Zhang C.. “Demystifying Energy
Usage in Smartphones.” In Proc. of the Design Automation Conference,
pages 1-6, ACM, 2014.

[6] Coskun, A.K.; Rosing, T.S.; Gross, K.C., "Utilizing Predictors for
Efficient Thermal Management in Multiprocessor SoCs," Computer-
Aided Design of Integrated Circuits and Systems, IEEE Transactions on
, vol.28, no.10, pages 1503-1516, Oct. 2009.

[7] Ding N., Wagner D., Chen X., Pathak A., Hu Y C., and Rice
A.“Characterizing and modeling the impact of wireless signal strength
on smartphone battery drain”, In Proc. of the Int. Conf. on Measurement
and Modeling of Computer Systems, pages 29-40, ACM, 2013.

[8] Gomez L., Neamtiu I., Azim T., and Millstein T. “RERAN: timing- and
touch-sensitive record and replay for Android”, In Proc. of the Int. Conf.
on Software Engineering, pages 72-81. IEEE, 2013.

[9] Gurrum S., Edwards D., Marchand-Golder T., Akiyama J., Yokoya S.,
Drouard J., and Dahan F. Generic thermal analysis for phone and tablet
systems. In Proc. of the Int. Conf. on Electronic Components and
Technology, pages 1488–1492. IEEE, 2012.

[10] Hanumaiah V. and Vrudhula, S. "Energy-Efficient Operation of
Multicore Processors by DVFS, Task Migration, and Active Cooling,"
Computers, IEEE Transactions on , vol.63, no.2, pp.349,360, Feb. 2014.

[11] Hanumaiah V., Desai D., Gaudette B., Wu C., and Vrudhula S.
“STEAM: A Smart Temperature and Energy Aware Multicore
Controller,” ACM Trans. Embed. Comput. Syst. 13, 5s, Article 151,
Oct. 2014.

[12] Huang J., Qian F., Gerber A., Mao M. Z., Sen S., and Spatscheck O. “A
close examination of performance and power characteristics of 4G LTE
networks”. In Proc. of the Int. Conf. on Mobile systems, Applications,
and Services, pages 225-238, ACM, 2012.

[13] Incropera FP and DeWitt DP, ”Foundamentals of Heat and Mass
Trasnfer” John Wiley and Sons, 1996.

[14] Intel® 64 and IA-32 Architectures Software Developer’s Manual -
Volume 3B. Intel Corporation, Jun. 2009.

[15] Kim D., Jung N., and Cha H. Content-centric Display Energy
Management for Mobile Devices. In Proc. of Design Automation
Conference, pages 1-6, ACM, 2014.

[16] Maxim Integrated™ 78M6631 3-Phase Power Measurement and
Monitoring SoC data sheet, Arp 2012.

[17] Paterna F., Zanotelli J. and Rosing T. "Ambient variation-tolerant and
inter components aware thermal management for mobile system on
chips." In Proc. of the Int. Conf. on Design, Automation and Test in
Europe, pages 1-6, IEEE, 2014.

[18] Pathania A., Jiao Q., Prakash A., and Mitra T. “Integrated CPU-GPU
Power Management for 3D Mobile Games.” In Proc. of the Design
Automation Conference, pages 1-6, ACM, 2014.

[19] Qualcomm developer network. Adreno. April 2015
developer.qualcomm.com/discover/chipsets-and-modems/adreno-gpu
[online].

[20] Qualcomm developer network. Snapdragon™ S4 Plus MSM8960 MDP.
April 2015
developer.qualcomm.com/mobile-development/development-
devices/snapdragon-s4-msm8960-mdps [online].

[21] Qualcomm developer network. Trepn. April 2015
developer.qualcomm.com/mobile-development/performance-
tools/trepn-profiler [online]

[22] Rodero I., Lee E., Pompili D., Parashar M., Gamell M., and Figueiredo,
R., "Towards energy-efficient reactive thermal management in
instrumented datacenters," In Proc. of the Int. Conf. on Grid Computing,
pages 321-328. IEEE/ACM, 2010.

[23] Sharifi, S.; R. Ayoub, and T. Rosing. Tempomp: Integrated prediction
and management of temperature in heterogeneous mpsocs. In Proc. of
the Int. Conf. on Design, Automation Test in Europe Conference
Exhibition, pages 593–598. IEEE, 2012.

[24] Singla G., Kaur G., Unver A, and Ogras U. “Predictive Dynamic
Thermal and Power Management for Heterogenous Mobile Platforms,”
In Proc. of the Int. Conf. on Design, Automation and Test in Europe,
pages 1-6, IEEE, 2015.

[25] Sridhar A., Vincenzi A., Ruggiero M., Brunschwiler T., and Atienza D.
3d-ice: Fast compact transient thermal modeling for 3d ics with intertier
liquid cooling. In Proc. of the Int. Conf. on Computer-Aided Design,
pages 463–470. IEEE, 2010.

[26] Srinivasan J, Adve S., Bose P., and Rivers J. “Lifetime Reliability:
Toward an Architectural Solution” Micro, 25(3):70–80, IEEE, 2005.[24]

[27] Tan, F.L.; Fok, S. C., "Thermal Management of Mobile Phone using
Phase Change Material,", In Proc. of Electronics Packaging Technology
Conference, pages 836-842, IEEE, 2007.

[28] Van Overschee, P. and De Moor, B. “N4SID: Subspace Algorithms for
the identification of Combined Deterministic-Stochastic Systems” In
Automatica 30(1), pages 75-93. Pergamon Press 1994.

[29] Xie Q., Dousti M.J., and Pedram M. “Therminator: a thermal simulator
for smaprthones producing accurate chip and sking temperature maps”,
In Proc. of the Int. Symp. on Low Power Electronics and Design, pages
117-122, ACM, 2014.

[30] Xie Q., Kim J., Wang Y., Shin D., Chang N., and Pedram M. “Dynamic
thermal management in mobile devices considering the thermal coupling
between battery and application processor”, In Proc. of the Int. Conf. on
Computer-Aided Design, pages 242-247, IEEE, 2013.

[31] Zanini F., Atienza D., Benini L., and De Micheli G. “Multicore thermal
management with model predictive control," In Proc. of the Int. Conf.
on Circuit Theory and Design, pages 23-27, IEEE, 2009.

838

	MAIN MENU
	Help
	Search
	Print
	Author Index
	Table of Contents

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move up by 14.40 points
 Normalise (advanced option): 'original'

 32

 D:20150619150348
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Up
 14.4000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Up
 3.6000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 0
 1

 1

 HistoryList_V1
 qi2base

