
GazeTube: Gaze-Based Adaptive Video Playback for
Bandwidth and Power Optimizations

Shruti Patil∗†, Yu Chen∗‡ and Tajana Simunic Rosing†
†University of California San Diego, ‡ Boston University
†patil@ucsd.edu, ‡chenyua@bu.edu, †tajana@ucsd.edu

Abstract—With the popularity of mobile devices for personal
entertainment, video streaming over mobile networks has seen
a dramatic increase. We observe that users are often interested
in just the supporting audio within the videos rather than the
visual content, for example, when users play videos to listen
to music. New mobile device capabilities such as gaze tracking
enable easy detection of such use-cases. We propose to exploit
such capabilities to selectively stream audio/video content based
on user gaze. This eliminates unnecessary streaming, with two-
fold advantages: first, it saves precious network bandwidth for
ISPs, and second, reduction in video processing decreases device
power. Using an android-based gaze-aware media application, we
evaluate three strategies: a maximal saving scheme that cuts off
video stream at source when user gaze is directed away from
the screen; a conservative scheme that reduces video resolution,
aimed at maintaining user experience, and a third, intermediate
scheme that streams the videos at a reduced frame rate. Our
evaluation shows that gaze awareness during video streaming can
lead to high bandwidth savings that are linearly proportional to
Gaze-OFF ratios, and up to 46% power savings on device (up to
28% power savings considering gaze tracking overheads).

I. INTRODUCTION

A recent study shows that 50% of YouTube’s [1] traffic
now stems from mobile devices, compared to just 25% last
year and 6% only two years ago. 23% of all Netflix sub-
scribers watch videos on smartphones, and 15% use iPads [2].
VEVO music video platform’s mobile and TV app audience
ballooned by 184% in 2014, with half of its views coming
from mobile devices. Further, Amazon has about 16.7 million
Prime subscribers that get unlimited video streaming on Kindle
devices and via Amazon’s mobile apps. Similar studies have
been undertaken in [3], [4], [5]. Given this fast growing need
for high quality on-demand video streaming with limited band-
width infrastructure, techniques to optimize bandwidth without
reducing user experience are critical for video providers, as
well as for clients that are charged as per their data usage.

In smart devices, a new class of user interfaces called ‘At-
tentive User Interfaces’ is gaining traction to enable responsive
and user aware device operation [6]. Speech and gaze aware-
ness are the primary features provided by these interfaces.
Accessibility to gaze detection features on mobile devices
provides an opportunity to exploit user awareness during video
streaming applications. In particular, tracking the “eye contact”
between user and mobile device can enable video bandwidth
optimizations. During video streaming, when the user’s gaze
trails away from the screen, precious network bandwidth and
device computation resources are wasted. However, in many
cases, the audio content may continue to be of interest. Such
situations occur often for distracted users with inactive gaze at

∗Both authors have contributed equally to the paper.

the screen. Typical examples are when users resort to playing
music videos primarily for their music content instead of the
video, or when users watch news or sports videos in the
background while working inside a different application.

We propose GazeTube, gaze driven video streaming opti-
mization schemes that reduce streaming overheads of video
traffic, without interrupting the audio stream. When user gaze
moves away from the screen, we assume the video stream is
no longer of primary interest, allowing for crucial bandwidth
optimizations. We propose and evaluate three strategies. First,
the video transmission is blocked at the source, allowing
audio packets to continue streaming. This is aimed at maximal
savings (MaxSav). To evaluate the bandwidth and power
savings enabled by MaxSav, we implement a gaze-aware media
player application in Android OS, that tracks user gaze and
transmits a ‘gaze-on’ and ‘gaze-away’ signal to the streaming
server. The server executes the selective video streaming
strategy, conserving network bandwidth for the duration of
time the gaze is away. Our evaluation seeks to study the
overheads in terms of user experience, i.e. the duration of
time video content is absent when gaze returns. To minimize
the discontinuity experienced by the user, we implement a
second strategy where the video quality is degraded to minimal
acceptable resolution (ResSav). This is a conservative strategy
that reduces video quality instead of halting the video stream.
However, in maintaining acceptable user experience, the power
benefits of the optimization are reduced. To decrease the power
consumption on the device, we evaluate a third strategy that
streams the low resolution video at lower frame rate (FpsSav).
This scheme strikes a middle ground between MaxSav and
ResSav, providing a trade-off between user experience and the
metrics of bandwidth and power.

Our work makes the following contributions:
• To the best of our knowledge, this is the first investigation

of application of gaze detection for network bandwidth
reduction. Data usage savings are proportional to the gaze-
away ratios. On the device side, up to 46% power savings
are possible by stalling video stream during user inattention.

• We measure the degradation of user experience due to video
discontinuity. Our evaluation revealed that while the network
communication delay is low, application playback settings
can introduce a perceptible delay before the new video
frames are displayed on the phone. To reduce the delay
experienced by the user, we evaluate two additional schemes
that reduce video resolution instead of stalling video stream,
while offering comparable bandwidth savings.

• We illustrate the possible data savings through two case
studies by inferring average user attention during video
streaming. Our analytical calculations reveal considerable
savings for ISPs.



In existing streaming protocols, data is already provided in
differentiated packets of audio and video, making the schemes
easy to implement without significant changes. The largest
overhead of implementing the schemes is imposed by gaze
tracking on the device. We expect that custom gaze tracking
features will soon become available on future phones, in much
similar manner as custom ultra-low power always-on speech-
aware circuitry has become available in existing phones. In this
paper, to provide a proof-of-concept, we implement a software-
based gaze detection using the front camera in the phones.

The paper is organized as follows: Section II discusses
related work. Section III describes the strategies proposed in
this paper. Section IV describes the experimental framework.
Section V presents our results and case-studies. Finally, Sec-
tion VI concludes the paper.

II. RELATED WORK

New sensors are being added to smartphones to support
functionalities that enhance user experience. Addition of front
facing cameras in smartphones has enabled applications such
as Samsung’s ‘Smart Scroll’/‘Smart Pause’ [7], and Amazon
Fire Phone’s Head and Gaze Tracking APIs [8] to track user
gaze and customize application behavior. Apple has also shown
interest in gaze detection for their product lines[9].

Gaze Detection: Extensive research has been conducted
in gaze detection algorithms. Some techniques use a single
camera [10], [11], [12], [13], [14], while other schemes need
additional hardware, such as auxiliary infra-red LEDs [15],
stereo camera [16]. Use of such additional hardware may lead
to better detection results, but they are not yet available in
current smartphones. A low-power hardware implementation
is proposed in [17], which achieves gaze detection within a
70mW power budget. We use the results from this paper to
analyze our gaze detection overheads.

Video Bandwidth Optimizations: To save bandwidth,
[18] optimizes video broadcasting protocol by removing re-
dundant data. Similarly, [19] and [20] share video data among
cellphones within the same WiFi network through Bluetooth to
save cellular bandwidth. Granola [21] is a protocol designed
for on-demand video streaming, where only one stream of
video data is sent to cellphones within the same subnet, which
then share the data through WiFi to save server bandwidth.

Video Power Optimizations: In reducing power of video
streaming, downloads are smartly scheduled on 3G/4G radio
leveraging user viewing history [22]. Screen luminosity is var-
ied according to different types of videos in [23] , while cross-
layer optimizations are performed in [24]. Power optimization
has also been studied with respect to video data, by analyzing
the stream and reducing redundant computations [25]. Our
work focuses on point-to-point protocol, and switches the
video and audio stream using gaze detection. Video decoding
power reduces due to absence of video stream at the source.

So far, bandwidth and power saving techniques in existing
video playback applications have not taken advantage of
gaze detection capabilities. Mobile vendors have identified
possible device power optimizations with the proposed gaze
detection capabilities, such as screen dimming when user gaze
is away[9]. Samsung uses gaze detection to pause videos when

Gaze-Back 

Restart Delay 

Gaze-Away MaxSav 

ResSav 

FpsSav 

Time 

Time 

Time 

Low Quality Video 

1 fps Video 

Fig. 1: MaxSav, ResSav and FpsSav schemes

user gaze is away[7]. However, our observation and case study
illustrates that the video content is not requested for some of
the use cases when user gaze is away. We therefore exploit
gaze detection to propose optimizations for device power,
WiFi/cellular data transmission, and network bandwidth, in
video streaming applications.

III. BACKGROUND AND APPROACH

The goal of our work is to reduce bandwidth and power
usage for video content that is not being consumed by the user.
However, for gaze-away scenarios, the audio content may be of
interest to the user and hence must continue to play. Compared
to video size, audio files are considerably smaller in size (in
our experiments, the video data rate is ∼1.5 Mbps, while audio
data rate is 64kbps i.e. ∼23X lower) and incur lower bandwidth
and processing overheads. Thus, significant amount of network
bandwidth and mobile device battery can be conserved by
reactively controlling the video data at source. We first describe
how video streaming is accomplished in mobile networks and
then introduce our optimization schemes.

A. Video Streaming

Numerous protocols exist for streaming multimedia from
Content Delivery Networks (CDNs) to mobile users. Android
OS natively supports Real-Time Streaming Protocol (RTSP)
for multimedia streaming. It provides for communication be-
tween Client and Server with a ‘VCR-style’ remote control
over the stream of multimedia data over an IP network [26].
The Client can issue requests such as play, pause, fast forward,
and seek within the stream. On receiving the request, the
Server begins sending the audio and video stream over Real-
Time Transport Protocol (RTP), a widely-used communication
protocol for IP audio and video packets.

Another popular streaming protocol with CDNs is the Dy-
namic Adaptive Streaming over HTTP (DASH)[27]. It allows
dynamic switching between videos that differ in bit rates based
on network load and congestion. This protocol is widely used
by streaming providers such as Netflix to ensure continuous
playback without frequent buffering[28]. Videos are split into
multiple segments (of 2-10sec typically) and get buffered
segment-by-segment as video content is consumed. While our
underlying protocol is RTSP, we dynamically switch between
video streams of varying resolution through app-level control,
triggered by user gaze feedback. Similar to DASH, the Server
hosts multiple video streams, and streams the one requested
by the Client gaze engine. We also propose two schemes to
tackle the video restart delay experienced upon gaze return for
RTSP and buffering based protocols like DASH.



B. Gaze aware optimizations

1) Maximal Savings Scheme (MaxSav): Maximum band-
width and power savings can be achieved by completely
blocking the video stream when gaze is directed away. When
gaze returns, the video computation must seek to the correct
video frame, synchronize it with the audio and restart playback.

Video 
streaming 

begins 

User gaze 
trails away 

Gaze-Away 
signal generated 

Video stream 
stopped by server; 

audio stream 
continues 

User gaze 
returns 

Gaze return 
detected 

Video 
streaming 

resumed by 
server 

Video 
streaming 
resumes 

on screen 

time 

A B C D E F G

Fig. 2: Delays involved during playback
The gaze feedback control signaling between Client and

Server for MaxSav introduces a delay. Figure 2 illustrates
the delays involved during playback. We find that the regular
operations of play and pause appear to be instantaneous,
however, the delay of restarting the video (E+F+G) when gaze
returns is not negligible. Restart delay is due to signaling
latency, seek overhead on the Server, Client playback settings
for processing new data frames, and Client video pipeline refill.
The actions of play and pause only incur signaling latencies,
and both Server and Client instantly resume operation from
their point of halt. We discuss the restart latency in Section IV.

2) Reduced Resolution Scheme (ResSav): A critical per-
formance metric in interactive applications is user experience.
High video restart latency degrades user experience by affect-
ing the continuity of video playback for the user. To address
this, ResSav reduces the video quality by lowering resolu-
tion instead of stopping video packets completely. Similar to
MaxSav, the delay of restarting or refilling the pipeline still
exists when switching between the video streams. However,
the media player can continue to play the low-res video, while
simultaneously processing the new high-res frames, offering a
seamless switch. This scheme trades-off bandwidth and power
savings for un-interrupted user experience.

3) Reduced FPS (FpsSav): To improve power gains in
ResSav, we exploit the trade-off of user experience to power
and bandwidth by controlling video frame-rate. Reducing the
frame-per-second (FPS) decreases the video decoder computa-
tion, while user continues to get periodic updates on the screen.
In our experiments, we set the FPS to 1 during gaze-away, so
that the user receives content that is at most 1sec old when
gaze returns.

Figure 1 illustrates the proposed schemes. These require
a signaling between Client-Server that supports switching be-
tween streams of varying resolutions or frame rates. Provisions
for such signaling already exist in CDNs as they support
adaptive protocols like DASH. While DASH stream is selected
based on network load measurements by the Client, our
schemes select the stream type based on user gaze. Although
reduced number of video packets decreases computation power
on the mobile device, some gains are lost to the overheads
introduced by gaze detection, discussed in Section V-D.

IV. EXPERIMENTAL SETUP

For evaluation of the three schemes, we implement an
Android-based media player application for smartphones. We

first describe the hardware and software used in the experi-
ments. We then describe our implementation of gaze-detection
algorithm. Lastly, we explain our benchmarking and overhead
measurement methodology.

Hardware: We use Snapdragon MSM8960 smartphone
(Table I). A desktop acts as a Server delivering video content to
the phone. The phone communicates with the Server through
WiFi within same subnet.

TABLE I: Snapdragon S4 MSM8960 hardware parameters
Processor Snapdragon S4 MSM8960 with asynchronous dual Krait

CPU cores at 1.5GHz each
Graphics Adreno 225 graphics processing unit (GPU)

OS Android Version: 4.1.1;
Kernel Version: 3.4.0-g6ad319f-dirty

Display 4.0in WSVGA 1024x600 multi-touch display

Video 1080 High-definition video recording and playback up
to 30 frames per second;
Stereoscopic 3D playback via HDMI output

Camera 13MP main camera with flash; 2MP front facing camera
Memory 1GB LPDDR2; 16 GB eMMC

Software: To emulate realistic streaming environment, we
use the Wowza Streaming Engine as video stream server [29].
Wowza is designed for streaming of live and on-demand
multimedia through IP networks to network-connected devices.
It supports a wide variety of video streams, including RTSP,
DASH, Apple HLS and Adobe RTMP. Due to native support
for RTSP in Android, we implemented an RTSP client appli-
cation using the mediaplayer class provided in Android 4.0.
It first establishes a connection using the Server URL, sends
RTSP request signals, receives RTP video stream, and plays the
video stream. We use Apache web server to separately stream
the audio data using an MP3 audio file. The Android device
loads the entire audio file when the video is initially loaded. A
synchronization logic monitoring audio and video timestamps
is used to keep the audio-video in sync during display.

Our Gaze Detection Algorithm: To provide proof-of-
concept, we implement software-based gaze detection with
the front camera in our media player application. We use
Android OpenCV SDK [12] to trace the relative position of
the iris to determine ‘gaze-on’ or ‘gaze-away’. Our algorithm
is implemented as follows:

(a) First, we use the Cascades algorithm with the training
set lbpcascade-frontalface[30] to track the face.The eyes are
assumed to be located at relative dimensions to the face, within
a bounding box of 2

9 to 4
9 th fractions of the face height, and

1
8 to 7

8 th fraction of the face width [14].

(b) Using templates of left and right iris, the eye area is
scanned. Template matching requires two images: the source
image (I), in which we hope to find the object; and the
template image of the iris (T ), which is captured for the user
at the start. To detect the area with the highest match, the mask
is moved over the image one pixel at a time, from top left to
the bottom right. The correlation is calculated as follows:

R(x, y) =

∑
x′,y′ T

′(x′, y′) · I ′(x+ x′, y + y′)√∑
x′,y′ T

′(x′, y′)2 ·
∑
x′,y′ I

′(x+ x′, y + y′)2

where (x, y) is the position of source pixel and (x′, y′) is
the position of mask pixel. For each location of T over I, it



(a) Result matrix R
matching eye areas. (b) Relative iris positions detected

Fig. 3: Detecting gaze on and away signals

generates the metric of one point. After scanning the source
image, the result matrix R is produced (Figure 3a). The
brightest locations indicate the highest matches.

(c) We use Kalman filter on the X and Y positions of the
iris to obtain a stable output.

The above steps are repeated for each frame captured at 1s
interval. In our experiments, the computation executed within
0.143s on average. Thus, delays B and E in Fig. 2 are at
most 1.143s. Iris templates are captured at the beginning of
the program, or when the user loses the tracking of eyes. If
no face can be found, or if the eyes’ relative position is larger
than a threshold, then gaze-away is signaled. Figure 3b shows
the gaze signals determined from distance calculations.

User behavior model: To simulate user gaze changes, we
model normally distributed gaze-on and gaze-away intervals,
targeting a specific proportion of on and away time. Figure 4
shows an example schedule with 80% gaze-on ratio.

Benchmark: The BigBuckBunny video benchmark[31]
encoded with H.264 video codec is used for our experiments.
High-res video is 480p at data rate of 1.5Mbps, and low-res
video is 144p, at data rate of 0.103Mbps. The audio stream is
encoded at 64kbps. While we experiment with two videos at
fixed high and low resolution, the schemes can be extended to
multiple levels of resolution if desired.

Bandwidth and Data Usage: Linux-based Android offers
several tools for network monitoring. We use tcpdump to
monitor real-time data rate for the Client-Server channel.

Power: We measure power using the Trepn Profiler[32],
a diagnostic tool designed for Snapdragon-based phones to
measure the performance of Android applications. The Trepn
Profiler uses exclusively designed hardware hooks embedded
in the Snapdragon MDP to isolate and measure real power,
CPU usage, and other data points specific to certain blocks
of the hardware, providing a breakdown of power and perfor-
mance measurements, along with total battery energy.

Measuring video restart latency: We break down the
video restart latency into two parts - the Server turnaround
delay and video player delay. Server turnaround delay is the
time between when the client sends the ‘gaze-back’ signal and
when the first packet of video stream arrives at the client.
This delay happens in any RTSP operation. Video player delay
is the time between when the first video packet arrives at
the client and when the player resumes displaying the new

Fig. 4: Bandwidth trace for MaxSav with 80% gaze-on ratio

content on the screen. Server turnaround time is profiled in
the application through instrumentation. To measure video
player delay, we record a video of the smartphone screen.
Although our overhead results are specific to the RTSP setup,
the measurement approach is applicable to other protocols.

V. EVALUATION

A. Bandwidth and Power Savings

Figure 4 shows an example of real time bandwidth plot for
MaxSav with 80% average gaze-on ratio. Bandwidth usage
over a range of gaze-on ratios (0-100%) for proposed schemes
is compared in Figure 5. Average bandwidth is normalized to
100% gaze-on ratio, which is the same for the three schemes
since there is no switching in the video playback. ResSav
consumes an average of 18% more data than MaxSav. Results
show that the bandwidth reduces by an average 19% as the
proportion of gaze-on ratio reduces in 20% steps with the
maximal savings scheme. The reduction is 17% on an average
with ResSav. This shows that most of the bandwidth savings
(∼90%) of MaxSav can be retained in ResSav while maintain-
ing an uninterrupted user experience. Quantitatively, the data
usage and savings for the two schemes can be expressed with
the following equations:
UsedMax = α · vh · t+ A; SavedMax = (1− α) · vh · t
UsedRes = α · vh · t+ vl(1− α)t+ A; SavedRes = (vh − vl)(1− α)t

DataUsageMax and DataUsageRes is the the total data
transmitted with the MaxSav and ResSav schemes respectively.
α is the average gaze-on ratio. t is the total video playback
time at high resolution. vh and vl are the average video data
rates. In the experiment, vh = 1.49 Mbps and vl = 0.103Mbps,
as set for the benchmark. A is the size of the audio file. The
results expected analytically match our experimental results
closely. In both schemes, data savings are proportional to the
gaze-away ratio (1 − α). With ResSav, the data savings are
also linearly proportional to the relative difference between vl
and vh. Although actual data savings increase if 720p or more
high-res video is used, the normalized bandwidth gains stay
comparable. This is because the differences in data savings in
the two schemes stem from the term vl · (1−α) · t. With 144p
low-res video, this amounts to a small additional bandwidth
consumption compared to MaxSav. Bandwidth savings with
FpsSav fall between those of MaxSav and ResSav.

Figure 6 compares the power consumption of the whole
cellphone for the three schemes at 90% confidence intervals.
The empirical measurements show 5-15% reduction in power
consumption with MaxSav as user attentiveness reduces in
steps of 20%. Power decreases by about 42% compared to
baseline of 100% gaze-on, when user gaze is present for 20%
time. On the other hand, only 6% savings are observed with
ResSav at 20% user gaze. FpsSav comes up as middle ground



100% 80% 60% 40% 20% 0%
0

0.2

0.4

0.6

0.8

1

Percentage of average Gaze−ON time

N
or

m
al

iz
ed

 A
ve

ra
ge

 B
an

dw
id

th

 

 

 MaxSav
 ResSav
 FpsSav

Fig. 5: Average bandwidth for schedules with 0-100% gaze-on.

100% 80% 60% 40% 20% 0%
150

200

250

300

350

400

450

500

Percentage of average Gaze−ON time

A
ve

ra
ge

 B
at

te
ry

 P
ow

er
 (

m
W

)

 

 

 MaxSav
 ResSav
 FpsSav

Fig. 6: Device power for schedules with 0-100% gaze-on

between the two schemes, with 32% power savings at 20%
gaze-on. Thus, while the bandwidth savings are comparable
with the three schemes, trading off user experience for frame-
rate allows for achieving significant power gains. We expect
realistic scenarios to fall within the 60-80% gaze-on ratios.
For example, we found 18-44% advertisement time (Table II)
accompanying popular TV shows when streamed on the mobile
device, during which user gaze is likely to trail away. At 60%
gaze-on ratios, we can expect to get 21.8%, 4.6% and 9.7%
power savings with MaxSav, ResSav and FpsSav respectively.
With MaxSav at 0% gaze-on ratio, up to 46% maximum power
savings are observed owing to reduced computation.

TABLE II: Analyzing Advertisement-to-Episode time ratio
when streaming TV shows on mobile devices

Six Award-winning TV Shows Episode Total Ad Ad-to-Episode
Time (s) Time (s) Ratio (%)

Fox-Family Guy (S13E12) 1297 243 18.7
Fox-Gotham (S1E18) 2630 438 16.7
ABC-Modern Family (S6E17) 1291 576 44.6
ABC-Agents of S.h.i.e.l.d (S2E13) 2583 942 36.5
NBC-Saturday Night Live (S40E15) 3431 904 26.3
NBC-The Tonight Show Jimmy Fallon (E233) 2484 660 26.6

B. Video restart delay

We measure the video restart delay in two parts as de-
scribed in Section IV. On an average, the Server turnaround
time is 47.5ms, while the videoplayer delay time is 2.28s.
Latter delay is sensitive to video player application settings.
For e.g., applications typically wait for 60 frames to arrive at
the device before processing the frames. This ensures uninter-
rupted video display on the screen. This is also necessary to
ensure that a new video keyframe is obtained in order to refresh
the contents faithfully. For DASH like protocols, the restart

TABLE III: Youtube Data Savings for audio-focused videos

Len (s) Number of
Views (as
of Mar-15-
2015)

Video
BW
(kbps)

BW-
Savings-
per-view
(kbps)

Total
Data
Saved
(TB)

LinkID

Beck-BlueMoon 241 3,582,521 239.00 109.54 4.73 WIWbgR4vYiw
Coldplay-
SkyFullOfStars

274 48,895,276 338.69 210.22 140.82 v=zp7NtW hKJI

Coldplay-Magic 285 29,070,048 305.96 176.84 73.26 1PvBc2TOpE4
EdSheeran-Afire 323 17,025,841 274.92 146.13 40.18 JznXx1Ns374
EdSheeran-
ThinkingOutLoud

292 23,365,988 334.25 205.48 70.10 WpyfrixXBqU

LanaDelRey-
BigEyes

283 2,946,903 534.28 404.24 16.86 Col9Av1ydS4

Maroon5-Maps 189 44,695,400 355.56 224.34 94.75 xj6fHiF8Osg
TheBlackKeys-
Fever

246 7,930,868 806.50 676.42 65.98 iZZUY32iCzU

269.15
(Avg)

506.68
(Total)

latency may arise due to the amount of buffering requirements.
These delays degrade user experience. Prior studies recom-
mend latencies less than 250ms for video conferencing[33].
This is the main motivation for the conservative low-res
schemes. Alternatively, the user experience degradation can be
avoided by predicting the gaze-back signal, which is still an
interesting problem. In general, if duration of ‘gaze-away’ is
less than 2s, then the video stream player is desired to continue
playing instead of being stopped. Predicting expected gaze-
away durations is a part of our future investigations.

C. Case Studies - Expected Network Data Savings

The benefits of gaze-aware schemes for bandwidth reduc-
tion are significant considering the massive scale of video
streaming over the internet. We describe two analytical case
studies to illustrate this.

1) Audio-only videos: YouTube is a popular application for
watching videos[1]. While majority of the YouTube content is
video, a significant number of videos are audio-only and use
static or neutral video frames. Since they carry no useful video
content, we conclude that these videos are accessed primarily
for their audio content, and expect 0-20% gaze-on. We pick
ten such videos1 uploaded in 2014 by official music channels
with more than a million views. Table III analyzes the possible
bandwidth savings by assuming 20% gaze-on. The videos
are downloaded at 360p resolution. Savings are analytically
calculated as data size * 80% gaze-away * number of views *
% views from mobile platforms. We use 2014 statistic of 50%
video views from mobile platforms[1]. With the eight videos,
more than 500TB mobile network data savings were possible
in 2014. These numbers are compelling when we consider
the large number of youtube uploads that are aimed at audio-
focused access, such as ‘playlist mixes’.

2) Streaming talks: As second case study, we study band-
width savings for TED talks. These videos are typically 15mins
or longer in duration, and elicit a vast audience. The length
of these talks makes gaze awareness schemes highly relevant
when streaming to mobile devices. We analytically model
the possible data savings using 80%, 50% and 20% gaze-on
ratios. Table IV shows the data savings considering that the
optimization is applicable to at least 10% of the viewers. The
calculations show the possibility of over 290TB data savings
for five popular videos.

1Videos can be accessed at https://www.youtube.com/watch?v=[LinkID]



TABLE IV: Analytical Data Savings for five TED videos
Title Talk Video

Size
Audio
Size

Num of
views (as
of Mar-25-

Data Savings
with X% Gaze
(MB)

Savings for
10% users
(TB)

(MB) (MB) 2015) X=20 / 50 / 80 20 50 80
Ken Robinson - 136.6 7.4 32,120,098 103.36 332.0 207.5 83.0
How schools 64.6
kill creativity 25.84
Amy Cuddy - Your 153.2 15.5 24,629,660 110.16 271.3 169.6 67.8
body language 68.85
shapes who you are 27.54
Simon Sinek - How126.3 11.4 21,673,662 91.92 199.2 124.5 49.8
great leaders 57.45
inspire action 22.98
Brené Brown - The145 12.8 19,279,475 105.76 203.9 127.4 51.0
power of 66.1
vulnerability 26.44
Jill Bolte Taylor - 124 8.4 16,956,622 92.48 156.8 98.0 39.2
My stroke of insight 57.8

23.12
Total 1163 727 290

D. Gaze Detection Overhead

Continuous gaze detection on mobile systems is challenged
by power consumption. A recent effort in addressing this chal-
lenge on mobile platforms has yielded a low-power solution
that consumes about 70mW power [17] which is about 18%
that of the maximum power consumption in our experiments.
This implies that if user gaze-on is 60% or lower, the proposed
MaxSav scheme has the potential to reduce power consumption
in the device by up to 28%. Our paper is based on the
premise that power efficient hardware gaze tracking circuitry
will soon become mainstream on mobile devices to facilitate
power optimizations as well as improved user experience.
Recent introduction of such hardware in the Amazon Fire
phone[8] and Samsung devices[7] are promising steps towards
the availability of such sensors in future devices.

These strategies can also be easily extended to desk-
top/laptop class multimedia player. Most PCs are equipped
with front camera, and likely to encounter gaze-away scenarios
more often due to their static location, for example, when users
use video playlists for listening to music, which is not always
available on-demand on audio streaming websites. Besides
signals from the active gaze tracking circuitry, other indicators
are also useful to initiate the bandwidth saving schedule, for
instance when user switches to other windows or locks the
screen. These can be detected using software-driven events,
without incurring gaze tracking overheads.

VI. CONCLUSION

Video consumption by mobile users has dramatically risen
over the past few years, and is expected to become a domi-
nant part of wireless network traffic in the near future. New
smart features being added to phones provide an opportunity
to reduce wasteful consumption of the network and device
resources. We exploit the ability of gaze detection on a
smartphone to monitor user attention during video streaming.
When durations of inattention are detected, the video stream
can either be stopped or reduced in resolution until gaze
returns. Our experiments show that network bandwidth savings
are proportional to the gaze-away ratio when video streaming
is completely stopped, but results in degraded user experi-
ence due to video restart delay on gaze return. Alternatively,
conservative schemes that reduce video resolution quality
maintain the user experience, providing trade-offs between user
experience, and savings in bandwidth and power.

REFERENCES

[1] YouTube, https://www.youtube.com/yt/press/statistics.html, 2015.
[2] Business Insider, http://www.businessinsider.com/

mobile-video-statistics-and-growth-2013-12, [accessed 05-Jan-2014].
[3] eMarketer, [2013]http://www.emarketer.com/Article/

DoPeopleWatchVideoDifferentlyonMobilePhonesvsTablets/1009733.
[4] MarketingLand, http://marketingland.com/

nielsen-time-accessing-internet-smartphones-pcs-73683.
[5] salesforce, http://www.exacttarget.com/sites/exacttarget/files/

deliverables/etmc-2014mobilebehaviorreport.pdf, 2014.
[6] P. Maglio et al., “Gaze and speech in attentive user interfaces,” in ICMI

2000, 2000, vol. 1948, pp. 1–7.
[7] Samsung, “Galaxy S4,” http://www.samsung.com/global/microsite/

galaxys4/lifetask.html, 2013, [Online; accessed 15-Mar-2015].
[8] Amazon, https://developer.amazon.com/public/binaries/content/

assets/javadoc/fire-phone/reference/com/amazon/headtracking/
package-summary.html, 2015, [Online; accessed 01-Jan-2015].

[9] A. Hodge and M. Rosenblatt, “Electronic devices with gaze detection
capabilities,” May 2013, US Patent 20130135198.

[10] N. H. Cuong and H. T. Hoang, “Eye-gaze detection with a single
webcam based on geometry features extraction,” in ICARCV, 2010.

[11] C. Li et al., “The indirect keyboard control system by using the gaze
tracing based on haar classifier in opencv,” in IFITA, 2009, pp. 362–366.

[12] OpenCV, http://docs.opencv.org/modules/objdetect/doc/cascade
classification.html, 2014, [Online; accessed 01-Feb-2015].

[13] P. Viola and M. Jones, “Rapid object detection using a boosted cascade
of simple features,” in CVPR, vol. 1. IEEE, 2001, pp. I–511.

[14] F. Timm and E. Barth, “Accurate eye centre localisation by means of
gradients,” in VISAPP’11, 2011, pp. 125–130.

[15] Q. Ji and X. Yang, “Real-time eye, gaze, and face pose tracking for
monitoring driver vigilance,” Real-Time Imaging, vol. 8, no. 5, 2002.

[16] Y. Matsumoto and A. Zelinsky, “An algorithm for real-time stereo
vision implementation of head pose and gaze direction measurement,”
in Automatic Face and Gesture Recognition, 2000, pp. 499–504.

[17] A. Mayberry et al., “iShadow: Design of a wearable, real-time mobile
gaze tracker,” in MobiSys ’14, 2014, pp. 82–94.

[18] J.-F. Paris, “A simple low-bandwidth broadcasting protocol for video-
on-demand,” in ICCCN, 1999, pp. 118–123.

[19] T. Pering et al., “Coolspots: Reducing the power consumption of
wireless mobile devices with multiple radio interfaces,” in MobiSys ’06.

[20] M. Ramadan, L. El Zein, and Z. Dawy, “Implementation and evaluation
of cooperative video streaming for mobile devices,” in PIMRC, 2008.

[21] D. Santos and A. Perkusich, “Granola: A location and bandwidth aware
protocol for mobile video on-demand systems,” in SoftCOM, Sept 2008.

[22] X. Li et al., “Greentube: Power optimization for mobile videostreaming
via dynamic cache management,” in MM ’12, 2012, pp. 279–288.

[23] S. Pasricha et al., “Reducing backlight power consumption for stream-
ing video applications on mobile handheld devices.” 2003, pp. 11–17.

[24] S. Mohapatra et al., “Integrated power management for video streaming
to mobile handheld devices,” in MULTIMEDIA, 2003, pp. 582–591.

[25] Y. Huang et al., “Using offline bitstream analysis for power-aware video
decoding in portable devices,” in MULTIMEDIA, 2005, pp. 299–302.

[26] C. Liu, “Handbook of emerging communications technologies,” 2000,
ch. Multimedia over IP: RSVP, RTP, RTCP, RTSP, pp. 29–46.

[27] MPEG DASH Protocol, http://dashif.org/mpeg-dash/.
[28] V. Adhikari et al., “Unreeling netflix: Understanding and improving

multi-cdn movie delivery,” in INFOCOM, March 2012, pp. 1620–1628.
[29] Wowza, http://www.wowza.com/, 2015, [accessed 01-Feb-2015].
[30] Itseez, https://github.com/Itseez/opencv/tree/master/data/lbpcascades.
[31] Peach Open Movie Project, “Big buck bunny,” https://peach.blender.org.
[32] Qualcomm, https://developer.qualcomm.com/mobile-development/

increase-app-performance/trepn-profiler, [accessed 01-Feb-2015].
[33] D. Ferrari, “Client requirements for real-time communication services,”

Communications Magazine, IEEE, vol. 28, no. 11, pp. 65–72, Nov 1990.


