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ABSTRACT

Associative memory in form of look-up table can decrease the energy
consumption of GPGPU applications by exploiting data locality
and reducing the number redundant computations. State of the art
architectures utilize associative memory as static look-up tables.
Static designs lack the ability to adapt to applications at runtime,
limiting them to small segments of code with high redundancy. In
this paper, we propose an adaptive look-up based approach, called
ALOOK, which uses a dynamic update policy to maintain a set of
recently used operations in associative memory. ALOOK updates
with values computed by floating point units at runtime to adapt to
the workload and matches the stored results to avoid recomputing
similar operations. ALOOK utilizes a novel FPU architecture which
accelerates GPU computation by parallelizing the operation look-
up process. We test the efficiency of ALOOK on image processing,
general purpose, and machine learning applications by integrating
it beside FPUs in an AMD Southern Island GPU. Our evaluation
shows that ALOOK provides 3.6x EDP (Energy Delay Product)
and 32.8% performance speedup, compared to an unmodified GPU,
for applications accepting less than 5% output error. The proposed
ALOOK architecture improves the GPU performance by 2.0x as
compared to state-of-the-art computational reuse methods for the
same level of output error.
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1 INTRODUCTION

In recent years the number of devices making up the Internet of
Things (IoT) has rapidly increased. These devices generate massive
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quantities of data with over 90% produced in the last 2 years [1-3],
but lack the performance required to process it in real time. Many
IoT devices have limited energy resources available. In some cases,
data can be sent to the cloud for processing, but this approach cannot
guarantee real time results. Limitations, such as transfer speeds and
bandwidth, limit the scalability of cloud-based processing. Reducing
the transfer of personal information is an important aspect of ensur-
ing user security and privacy [4-6]. As a result, the computation of
large amounts of data needs to be performed locally on a wide vari-
ety of devices. Novel architectural designs are necessary to provide
good performance while maintaining low power.

Many computing applications, such as multimedia, machine learn-
ing, search algorithms, and computer vision, handle large quantities
of data and do not require perfect accuracy [7-11]. For example,
limitations of human senses mean media applications can allow
small visual or audio errors, while machine learning techniques are
stochastic in nature and have inherent error [12—17]. Approximate
computing involves trading output accuracy for improvements to
performance and energy consumption.

Many of these applications involve a large number of redundant
computations which can be exploited to save energy by using look-
up tables composed of associative memory [18-21]. Commonly
computed values are stored in memory rather than recomputing the
same result repeatedly. Computational look-up approaches suffer
from two main drawbacks. First, static tables can only cover a limited
portion of small applications that do not deviate significantly from
the profiling dataset. Based on our testing, in the Sobel application
up to 75% of operations are redundant, however, a large static table
with can only avoid recomputing 40% of them. Second, existing
computational reuse architectures perform lookup sequentially and
are tied to the GPU pipeline. These designs only improve power
efficiency, not performance.

In this paper we propose an adaptive computational reuse ap-
proach, called ALOOK, which dynamically updates values stored in
associative memory at runtime to improve the energy efficiency of
GPGPU applications. To control the energy cost of ALOOK updates,
we reduce the number of writes by only replacing values in ALOOK
intermittently. In addition, to the best of our knowledge, we propose
the first GPU-based computational reuse approach which signifi-
cantly exploits associative search to improve the GPU performance.
ALOOK duplicates the first stage of the floating point unit (FPU)
pipeline enabling processing and computational reuse of two inputs
simultaneously. Doubling the first stage adds less than 4.5% area
overhead to a conventional FPU. Using this architecture, ALOOK
can parallelize the FPU computation, unless ALOOK cannot match
a stored value with either operation.

We examine the proposed techniques for a range of OpenCL
GPGPU applications, as well as several machine learning bench-
marks from the Rodinia benchmark suite. We test the efficiency of
ALOOK by integrating it beside FPUs in an AMD Southern Island


https://doi.org/10.1145/3287624.3287634
https://doi.org/10.1145/3287624.3287634
https://doi.org/10.1145/3287624.3287634

ASPDAC ’19, January 21-24, 2019, Tokyo, Japan

GPU. Our evaluation shows that ALOOK provides 3.6 x EDP (En-
ergy Delay Product) and 32.8% performance speedup, compared to
an unmodified GPU, for applications accepting less than 5% output
error. The proposed ALOOK architecture improves the GPU perfor-
mance by 2.0x as compared to state-of-the-art computational reuse
methods [22, 23] for the same level of output error.

2 RELATED WORK

There are many existing strategies for implementing approximate
hardware, such as voltage over scaling (VOS), approximate arith-
metic units, and approximate memory based accelerators. The volt-
age over scaling (VOS) involves reducing the voltage of the circuit
until logic errors begin to appear [21, 24]. The errors can be profiled
and predicted in order to control error. If the voltage is decreased too
drastically, critical timings errors begin to appear, potentially causing
massive faults in the application. VOS rarely scales gracefully in
unoptimized circuits, but careful redesigns can shorten critical paths
to reduce error [25-27]. Even with specially designed circuits, VOS
has limited scalability and is highly sensitive to process variation.
Approximate arithmetic units simplify the hardware used in the com-
putation of operations, such as addition, multiplication, or division.
These designs may use simplified building blocks [11, 28, 29], re-
duced precision [11], or speculative hardware [30]. Error correction
and control in approximate computational units require additional
steps after computation and causes sizable energy overhead. Appli-
cation output error is difficult to control as it requires runtime output
sampling to adjust the rate of approximation used.

Approximate memory based accelerators store common inputs
and output pairs to implement computational reuse. The associative
memory searches for the nearest distance value in the table to return
as the result for the given inputs [18, 21, 22, 31]. This method is
effective at saving power in applications with many identical or sim-
ilar computations. Associative memory is placed adjacent to FPUs
to store commonly occurring data. In these designs, developers must
identify and profile key regions of approximable code for common
inputs and outputs to load into a static table. In [21], the authors
propose a configurable associative memory which relaxes compu-
tation by applying VOS to the non-volatile associative memory to
trade accuracy for energy savings. Work in [23] designed a novel
associative memory based on non-volatile memory which supports
searches for nearest absolute distance, rather than Hamming dis-
tance similarity. All existing work provide low hit rate on practical
applications because their stored values are static and cannot change
to adapt to a running application. Work in [22] proposed a method
which is capable of updating associative memory through online
training. However, this approach suffers from high overhead and
energy cost.

We propose ALOOK, a dynamic lookup table capable of improv-
ing GPGPU performance and reducing power use. ALOOK does not
require code sampling and profiling prior to runtime and reduces
energy consumption by searching associative memory for previously
computed results. Unlike existing approaches in which GPU perfor-
mance is bound by pipeline stages, ALOOK is the first design which
exploits the redundant GPU computation to improve the computation
performance.
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Figure 1: The process flow for a) the static lookup table [23] and
b) the dynamic ALOOK.

3 ADAPTIVE LOOKUP DESIGN

Many GPGPU workloads show large amounts of computational data
locality with identical or highly similar operations recomputed re-
peatedly. In these applications, inputs and output pairs for frequently
used operations can be stored in associative memory. Inputs for op-
erations are used to search the memory to find the nearest distance
match and return the associated output.

We propose ALOOK, a dynamic lookup table capable of adapting
to short-term data locality, thus improving GPGPU performance and
reducing power use by eliminating redundant computations. Our
design provides three major improvements over previous work. First,
we eliminate the need to profile the application before runtime for
common operations to store in the table. Second, ALOOK updates
data entries dynamically to adapt to changes within the application
over time. Third, ALOOK uses a duplicated first pipeline stage and
reorder buffer to speed up applications, unlike prior designs which
only offer energy improvements.

3.1 Lookup Overview

Placing a small lookup table next to each floating point unit enables
approximate computational reuse [21, 23]. Figure 1a) shows the
pre-run and profiling stage of a static table [23]. During the pre-run
stage, the user must flag the section of OpenCL code they wish to
approximate. Then, the application is profiled with a training data set
and the input and outputs of each arithmetic operation is recorded.
Each unique 1/O pair is counted and the pairs are sorted by frequency.
Prior to a non-profiling run, the top N most common pairs are loaded
into the lookup table, where N is the number of entries the table can
store. At run-time, the lookup table searches for each operation’s
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input values and returns the corresponding output. The table returns
the nearest distance match rather than recomputing the result. The
nearest distance match is not guaranteed to be an exact match, so the
final application accuracy is managed through error control. Error
for a match grows as the difference between the input values and the
closest match increases. Error control identifies matches with a large
distance from the inputs and assigns them to hardware to compute
exact results, while close matches are used directly as output, saving
power.

Figure 1b) shows the improvements, in green, ALOOK offers over
previous work. ALOOK entirely eliminates the prerun profiling steps
required for static designs. The user must still flag code safe for
approximation, but no longer needs to sample the application for
I/O pairs and identify the most common ones. At run-time ALOOK
searches for the nearest distance match to each input within the table.
To speed up applications while still allowing accuracy control, two
incoming operations are run in parallel. Parallel data lookup searches
two duplicate tables simultaneously, then a reorder buffer ensures
results are output in the order they arrived in the pipeline. The output
values associated with the nearest match is used as the result for
the operation rather than running on the FPU. Accuracy checks are
made on each operation using error control, shown in Figure 1 in
light blue, to ensure close matches for operations. ALOOK supports
the closest distance search within a user set maximum error. If the
input data has distance larger than the specified distance, it will not
match any entries. Instead of using poor matches, the results are
computed on exact hardware and the newly computed values replace
stored entries in the table using an LRU policy. Rewriting on every
miss is unnecessary, so rewrite control is added improve the energy
efficiency of ALOOK. Updating the entries with recently computed
values increases the search hit rate, reducing energy consumption
and accelerating a wide range of applications.

3.2 Parallel Data Lookup

ALOOK is able to speedup GPGPU applications by eliminating a
fraction of redundant computations, unlike existing computational
reuse approaches which only reduce GPU power consumption [21].
Although these techniques improve the GPU power efficiency, they
cannot exploit the input redundancy for computation speedup. They
only improve performance for individual operations within stages of
the GPU pipeline, but not the whole application. We use duplicate
tables to speed up applications through parallel data lookup while
still allowing accuracy control.

Figure 2 shows the placement of ALOOK within an AMD South-
ern Island-based 7970. The GPU has 32 compute units each with 4
SIMD units. The SIMDs have 16 cores for computing arithmetic op-
erations. Two lookup tables are placed alongside each floating point
unit to enable parallel lookup. We implement ALOOK with content
addressable memory (CAM) introduced in [23]. The lookup table
identifies nearest distance matches for each incoming set of input
values. When a search provides a poor match for an operation the
FPU computes the result exactly and the table updates dynamically
using this value.

Figure 3 shows the architecture of an enhanced FPU using a sin-
gle lookup table to store highly frequent patterns [23]. The table
is placed adjacent to the first pipeline stage of the FPU block and
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search operations occur during this stage. The most similar entry
to the inputs and the error distance for each incoming operation
are identified. If a close approximate match is found, the output
associated with the best match is used as the result and clock gating
disables the FPU computation to save power. If a close match is not
located in the lookup table the computation continues as normal in
the second FPU stage. Lookup table matches do not improve perfor-
mance as the operations are processed sequentially in the pipeline.
Regardless of a hit or miss in ALOOK, the FPU spends a single cycle
for each value read from the input buffer. This architecture cannot
use associative memory to speed up the GPU process, only reduce
energy.

We propose parallel data lookup, a novel architecture, which
exploits the GPU computational reuse in order to accelerate the
computation. Figure 4 shows the integration of parallel lookup tables
next to the floating point pipeline stage. ALOOK duplicates the first
stage of the FPU and uses a lookup table beside each block. In
contrast to conventional FPU which read a single operand from the
input buffer, ALOOK processes two operands each cycle. ALOOK
reads two inputs and processes them in parallel at the first duplicated
FPU block. At the same time, lookup tables next to FPU blocks
check for entries closely matching the input operands. Depending
on the hit or miss in these two blocks, ALOOK works in one of the
following configurations:

e If both input operands hit in the lookup tables (Hit; = 1 and
Hity = 1), ALOOK accesses the pre-stored results of compu-
tation and clock gates the next FPU stages.

e If input operands hit only in one of the lookup tables (e.g.
Hit; =1 and Hity = 0), ALOOK bypasses the computation in
one of the FPUs and exploits the next FPU stages to process
the missed input.

e If neither input operands match entries in the lookup tables
(Hit; =0 and Hit, = 0), they process serially in the next FPU
stages. When this occurs, ALOOK does not read any input
operands for a single cycle.

In the first two cases, ALOOK processes two operands at a time,
doubling the FPU performance. The percentage of ALOOK time in
these configurations depends on the lookup table hit rate (¢). This
hit rate depends on the number of entries in the lookup table and the
level of approximation during the similarity check. Using a larger
lookup table or working at a higher approximation level increases
the hit rate and the possibility of improving GPU performance. In
Section 4.3, we explore parallel lookup efficiency.

3.3 Rewrite Control

Developers can adjust the level of accuracy for individual operations
for each section of code, with the default setting only providing
exact matches. In this way, even applications with high precision
requirements benefit from ALOOK. If the error of the closest match
is greater than a user-specified error max, the output is run on exact
hardware instead. Error control selects which of the two possible
results to output. When a search match exceeds the maximum error,
the tables must be updated, adding additional overhead due to write
costs. Rewrite control determines when and how often to rewrite
data in the table. We show reducing rewrite rate decreases overhead
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without significantly impacting hitrate, resulting in higher energy
savings.

We reduce the frequency of ALOOK rewrites in order to improve
energy efficiency. Decreasing the rewrite rate saves energy, but also
results in fewer hits. During periods of high hit rates, rewriting
on misses can remove common operations prematurely. ALOOK
replaces infrequently used entries with a least recently used (LRU)
replacement policy. When a close match is found for given inputs, the
counter is set to zero and the other counter values are incremented.
When a miss occurs in ALOOK, the value with the highest count is
evicted and replaced with the result computed on exact hardware.
To enable LRU policy we use m bits, based on the number of entries
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Figure 5: Increase in hitrate for a dynamic table over a static
table [23] for exact matches and approximate matches with less
than 5% error

in the table, to keep track of the values in the dynamic lookup table.
‘When two misses occur during parallel data lookup, only the furthest
distance miss is used to update the tables to ensure consistent values.

For a hardware implementation, we used a Content Addressable
Memory (CAM) using Non-Volatile Memory (NVM) [32, 33]. In
particular, we used memristor CAM with 2 transistors and 2 resistors
(2T-2R) for our implementing. Write speeds in CAM memory are
slower and consume more energy than reads. When processing code
sections with low data locality, the cost of constantly rewriting data
becomes high and penalizes energy savings. We decrease the number
of writes by only replacing values in ALOOK once for every 8 misses
as determined by our experimental results. In Section 4.4 we examine
the trade-off between energy efficiency and update frequency.

A dynamically updating table can handle larger and more varied
data sets than static designs. Static profiled data may not accurately
represent the runtime data. A training set needs to be varied enough
to cover a wide variety of inputs, but this generalization can provide
sub-optimal hit rates and accuracy. The profiling data set may not
accurately reflect all use cases and contain gaps for some real-world
cases. In many workloads, the data locality changes significantly
over time. The more distinct regions a data set has, the harder it is
for a small static lookup table to cover the changes over time.
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Figure 6: Operation hitrate and energy improvement over unmodified GPU for a static lookup table [23] compared to ALOOK.

4 EXPERIMENTAL RESULTS

4.1 Experimental Setup

The proposed ALOOK is implemented beside each floating point unit
on an AMD Southern Island architecture GPU, Radeon HD 7970
device. We use Multi2sim, a cycle accurate CPU-GPU simulator and
modify the kernel code for profiling and runtime simulation [34]. We
test the design using 8 OpenCL applications: 5 from AMD APP SDK
v2.5 [35] and 3 from the Rodinia 3.1 machine learning benchmark
suite [36]. From AMD APP SDK we test Sobel, Roberts, Sharpen,
MersenneTwister, and BlackScholes. From Rodinia we test Knn,
K-means, and BackProp. We use the Caltech 101 computer vision
dataset [37] for image processing applications. For other applica-
tions, we use application specific data sets. For image processing,
we define PSNR as the accuracy metric. For general applications
working with numbers, the average relative error is defined as the
accuracy metric. For each machine learning algorithm, we define a
unique accuracy metric to test the impact of approximation. The cir-
cuit level associative memory is simulated using HSPICE in 45-nm
technology with a 1V supply voltage. We extract frequent patterns
of four GPU floating point units; adder (ADD), multiplier (MUL),
multiply accumulator (MAC) and square root (SQRT).

4.2 Static vs Dynamic

ALOOK adapts to previously unseen applications by updating the
values over time. Figure 5 shows the improvement a dynamic table
provides over a same sized static table [23]. The dynamic table
updates when it cannot provide a match, replacing old entries with
values computed on exact hardware based on an LRU policy. On
average the dynamic table improves the hit rate of exact matches for
the tested applications by 6% compared to an identical static design.
When matches are guaranteed to less than 5% error, the hit rate
improvement increases to 44.8%. The adaptability of allows fewer
entries to produce the same or better results than static memory,

resulting in significantly less area overhead and search power. In
our testing, static tables require up to 8 x more entries to provide
comparable hit rates to ALOOK. The MersenneTwister application
has temporal locality but exhibits drastic changes in computational
values over its run. As shown in Figure 5, a static design using
approximate matching provides 5% hit rate, while ALOOK can
approximate 70% of operations. Despite 65% difference in hit rate,
our adaptive approach produces less than 10% overall output error.

Figure 6 shows the hit rate and efficiency improvement of a GPU
enhanced with a static table [18, 23] compared to ALOOK as the
number of entries increases from 16 to 128 rows. We allow up to 5%
error on individual matches. Before the application is run, the static
table loads N pre-profiled pairs and these values remain fixed for
the run duration. ALOOK does not require pre-profiled data, instead
of updating entries on search misses allowing it to provide higher
hit rates. Based on our results the best average energy improve-
ment occurs when ALOOK has 32 rows, with an average energy
improvement of 2.7 x for the eight tested applications. The higher
activation rate of larger tables is negated by the increased energy
needed to search the additional rows. Our evaluation shows that
for same sized tables with similar computational accuracy, ALOOK
provides an average of 2.1 better energy savings compared to a
static table [23].

4.3 Parallel Data Lookup

We examine the ability to search two incoming sets of operations
simultaneously. ALOOK is adapted to allow for two parallel search
operations. When both operations miss, they are computed in exact
hardware in the order they arrived. If one misses and the other hits,
one is moved to the reorder buffer and the other is run on an exact
FPU. If both find close matches, they are moved to the reorder
buffer. Figure 7 shows the lookup table hit rate and the normalized
execution time for applications using a 128 entry ALOOK in exact
and approximate mode. For an approximation, we select a similarity
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metric which ensures less than 5% quality loss. The results show
that ALOOK using exact and approximate lookup table can speed up
the FPU execution time by 15.3% and 54.2% respectively.

4.4 Variable Rewrite

When a good match is not detected in ALOOK, the value must be
computed on exact hardware and written to the CAM. Our design
needs to have enough data entries so the effective hit rate overcomes
the energy overhead for write operations. Increasing the number
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of entries shows diminishing returns for hit rate improvement and
also raise the energy and time required to search the table. Figure 8
shows ALOOK hit rate and energy saving for decreased rewrite rates.
Initially, a write occurs for every search resulting in a poor match.
As rewrite rate decreases, the energy savings levels out and then
begins to rise slightly. Decreasing rewrites past a point results in
the energy savings from decreased matches impacting energy more
than saving energy from fewer writes. Based on our results, then it
is most efficient to rewrite once for every 8 misses, roughly 12% of
misses.

4.5 Accuracy-Energy Trade-off

In this section, we discuss the impact of hardware approximation
when trading accuracy for energy savings. In section 3.3 we discuss
that ALOOK has the capability to control maximum match distance
to control the level of approximation. Accuracy is controlled by
setting the maximum acceptable distance of input data to the stored
value in ALOOK. If the closest distance match error is more than
the specified maximum, the input data is sent to precise FPUs to
process. We adjust the maximum error distance to trade energy and
accuracy in different applications. Figure 9 shows the energy-delay
product (EDP) and performance speedup which each application can
achieve when running different applications using an ALOOK with
32 rows. As the error distance increases, more values are computed
using ALOOK resulting in better speed up and more energy savings.
The overall error is represented by the red line. In the eight tested
applications, ALOOK provides 3.6 x EDP (Energy Delay Product)
and 32.8% performance speedup, compared to an unmodified GPU,
with less than 5% output error.

Figure 10 shows the accuracy of the K-means application when
the ALOOK is in exact and approximate modes. For clustering al-
gorithms, the accuracy is determined by identifying the number of

w

Relative
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Table 1: EDP improvement of ALOOK and other approximate
approaches on GPGPU with 5% maximum quality loss.

ReRAM [21] | ACAM [22] | Alook ReRAM [21] | ACAM [22] | Alook

Sobel 1.1x 1.3x 2.6x | BlackScholes 0.9x 1.6x 3.8x

Robert 1.2x 1.6x 4.0x NN 1.6x 1.9x 3.5%
Sharpen 1.4x 1.9x 6.3x Kmeans 1.2x 2.6x 5.9x
Merrnse 0.9x 1.3x 2.7x Bakcpropag 1.7x 2.4x 3.5%

incorrectly grouped points. The points wrongly classified by the
approximate hardware occur at the boundaries of two clusters.

4.6 Comparison

We compare the efficiency of the ALOOK with two state-of-the-art
approaches enabling computational reuse in GPU architecture. First,
ReCAM [21], which utilizes a static but configurable table to enable
approximation, and second ACAM [22] which uses online learning
to fill the lookup table values during runtime. We have implemented
both ReCAM and ACAM approaches in their best configurations
which results in maximum energy saving. All evaluations have been
performed using 32-row table and with 5% maximum quality loss.
Table 1 compares the energy-delay product improvement of different
designs as compared to conventional GPU architecture. Our evalu-
ation shows that ALOOK can achieve 2.9x and 2.0x higher EDP
improvement as compared to ReCAM and ACAM respectively. The
higher ALOOK efficiency comes from (i) the low hit rate of the
static table in ReCAM and the significant cost of the online learning
algorithm to update the lookup table values in ACAM. (ii) ALOOK
is capable of speeding up the GPU computation, while ReCAM and
ACAM work with the same performance as conventional GPU.

4.7 Overhead

We modify four main floating point units in GPU architecture by
duplicating their first stage and adding an associative memory next
to them. The tested FPUs utilize deep pipelines with 23 stages, so
the duplication of the first stage adds less than 4.5% area overhead to
a conventional FPU. In this paper, we exploit a crossbar lookup table
that can be integrated at the top of FPUs with minor area overhead.
Our evaluation shows that the peripheral circuits which enable the
nearest search operation adds an extra 0.3% area overhead to the
FPU (for a table with 32 rows).

The ALOOK search operations happen in a single cycle and in
parallel with the FPU’s computation, thus ALOOK does not add any
performance overhead to the GPU. However, a miss in ALOOK adds
5.7% energy overhead to FPU operations, since we still need to pay
the cost of FPU to process such data. To ensure no energy overhead
of a particular GPGPU application, ALOOK needs to produce a hit
rate of 17%. This hit rate is much lower than the numbers we saw in
the tested applications.

5 CONCLUSION

Associative memory in form of lookup table can decrease the energy
consumption of the parallel processor by exploiting data locality
and reducing the number redundant computation. We propose an
adaptive associative memory, called ALOOK, which accelerates
GPGPU computation by searching for the nearest distance value
for incoming FPU operations. ALOOK consists of a small dynamic

ASPDAC ’19, January 21-24, 2019, Tokyo, Japan

(a) Exact (b) Approx

Figure 10: Output quality comparison for K-means application
running on (a) exact hardware, (b) ALOOK in approximate
mode resulting in 2.9% error.

lookup table which adapts over time to an application. Our evaluation
shows that ALOOK provides 3.6x EDP (Energy Delay Product)
and 32.8% performance speedup, compared to an unmodified GPU,
for applications accepting less than 5% output error. The proposed
ALOOK architecture improves the GPU performance by 2.0x as
compared to state-of-the-art computational reuse methods for the
same level of output error.
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