
Low Power Embedded Software Optimization using Symbolic Algebra

Armita Peymandoust
Computer Systems Laboratory

Stanford University
Stanford, CA 94305

Tajana Simunic
HP Labs & Stanford University
1501 Page Mill Rd., MS 3U-4

Palo Alto, CA 94304

Giovanni De Micheli
Computer Systems Laboratory

Stanford University
Stanford, CA 94305

{armita, tajana, nanni}@stanford.edu

Abstract

The market demand for portable multimedia applications
has exploded in the recent years. Unfortunately, for such
applications current compilers and software optimization
methods often require of designers to do part of the
optimization manually. Namely, the high-level arithmetic
optimizations and the use of complex instructions are left
to the designers' ingenuity. In this paper, we present a tool
flow, OptAlg, that partially automates the optimization of
power-intensive algorithmic constructs using symbolic
algebra techniques combined with energy profiling.
OptAlg is used to optimize and tune the algorithmic level
description of an MPEG Layer III (MP3) audio decoder for
the SmartBadge [2] portable embedded system. We show
that our tool lowers the number of instructions and
memory accesses necessary to run the MP3 code and thus
lowers the system power consumption. The optimized MP3
audio decoder software meets real-time constraints on the
SmartBadge system with low energy consumption.
Performance increase of a factor of 7.27 and energy
consumption decrease of a factor of 1.19 over the original
executable specification has been achieved.

1. Introduction

Low cost with fast time to market is the top requirement
in system-level design of embedded multimedia appliances.
In embedded system design environment, the degrees of
freedom in hardware are often very limited, whereas for
software much more freedom is available. As a result, the
primary requirement for embedded system-level design
methodology is to effectively support code performance

and energy consumption optimization. Automating as many
steps in design of software from algorithmic-level
specification is necessary to meet time to market
requirements. Unfortunately, currently available compilers
and software optimization tools cannot meet all designer
needs. Typically, software engineers start with algorithmic
level C code, often developed by standards groups, and
manually optimize it to execute on the given hardware
platform such that power and performance constraints are
satisfied. Needless to say, this conversion is a time-
consuming and often error-prone task, which introduces
undesired delay in the overall development process. In
addition, often compilers are unable to compile C code
efficiently for embedded processors. Therefore, software
engineers need to design key routines in assembly [1],
which is extremely time consuming.

Our objective is to improve quality of the compiled code
for embedded systems and facilitate the software design
process. In this paper, we propose a new methodology
based on symbolic manipulation of polynomials and energy
profiling which reduces manual interventions. We apply a
set of techniques previously used in algorithmic-level
hardware synthesis [22] and combine them with energy
profiling, floating-point to fixed-point data conversion, and
polynomial approximation to achieve a new embedded
software optimization methodology. The combination of
these tools and standard compiler optimization techniques,
allows for novel automatic code transformations.

As a motivating example, consider the code segment
shown below:

for i=1..3
 y = y + cos(i*x);

Using standard loop unrolling, the given code is
transformed into the following:

y = cos(x) + cos(2*x) + cos(3*x);
Now assume that for a given application cos(x) can be
approximated into a Taylor series with three terms without
noticeable degradation on the output. Many multimedia
applications tolerate computational inaccuracy well, as long

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on
the first page. To copy otherwise, or republish, to post on servers
or to redistribute to lists, requires prior specific permission and/or a
fee.
Conference ’02, Month 1-2, 2002, City, State.
Copyright 2002

as the resulting effects (e.g. audio, video degradation) are
limited. Therefore, y can be transformed into the following
polynomial:

4422442242 3
24
1

3
2
1

12
24
1

2
2
1

1
24
1

2
1

1 xxxxxxy +−++−++−=

This polynomial can be further simplified using the expand
routine in symbolic algebra:

42

12
49

73 xxy +−=

Assuming that the embedded processor used to execute
this code has a MAC instruction, another symbolic routine
called the Horner transform can be used on y:

22)
12
49

7(3 xxy +−+=

The new equation can be mapped to one multiply
instruction and two multiply-accumulates. Obviously, this
mapping is much more efficient than three calls to the cosine
library function. Unfortunately, to our knowledge, there is
no tool currently available that can perform this simple
optimization automatically. Thus it would be up to a
designer to manually implement such optimizations.

This paper presents a tool-flow, called OptAlg, that
automates the algebraic manipulations such as the one
shown in the previous example. First, the energy critical
code sections are identified using the energy profiler. Then,
a tool like Fridge [4] can be used to transform floating-point
data types into fixed-point, if necessary. Next, complex
nonlinear arithmetic functions are approximated as
polynomials such that the final output is within the
acceptable tolerance limits. Finally, symbolic algebra is
used to map the polynomial representations of the critical
basic blocks to the instruction set available so that
performance and power consumption are optimized. Note
that more complex instructions (such as those developed by
Tensilica tools [5]) and hardware accelerators can also be
used during the mapping step.

We used OptAlg to optimize the implementation of MP3
software decoder so that it would meet real-time constraints
on the SmartBadge [2]. The SmartBadge, as shown in
Figure 1, is an embedded system consisting of Sharp’s

display, Lucent’s WLAN link, StrongARM-1100 processor,
RAM, FLASH, sensors, and modem/audio analog front-end
on a PCB board powered by the batteries through a DC-DC
converter. The outcome of this experiment is a higher
performance MP3 decoder software on SmartBadge that
uses less power. For an MP3 player, shorter than real-time
execution time implies that lower voltage and frequency can
still meet the real-time constraint. This in turn translates
into longer battery life or lighter battery requirement for the
embedded system.

The paper is organized as follows: Section 2 discusses
previous work done in the area of software optimization for
energy and performance. Section 3 presents the OptAlg
flow, and gives an overview of each of its component. The
results of MP3 decoder optimization for SmartBadge are
presented in Section 4. Performance increase of a factor of
7.27 and energy consumption decrease of a factor of 1.19
over the original executable specification has been
achieved. Finally, Section 5 summarizes the contributions of
this work.

2. Related Work

Optimization of software performance and size has been
utilized by designers for many years. Code optimization
process translates a high level specification into optimized
machine code for the target processor, often using
compilers. There has been a lot of research on optimizing
compilers in last few years [6]. Prototype research compilers
have shown impressive results [7]. Most optimizing
compilers target high-performance and/or general-purpose
computers. Relatively little effort has been dedicated to
create powerful optimizing compilers for embedded
processors. Even though several researchers are studying
automatic code optimization techniques for embedded
processors [8,9], currently, most embedded processors (or
DSPs) are programmed directly by expert programmers and
code optimization is mostly based on human intuition and
skill. In addition, due to recent growth in market demand for
portable devices, optimization of software for power
consumption is gaining in importance. As a result, one of
the primary requirements for system-level design
methodology of embedded devices is to effectively support
code energy consumption optimization.

Several optimization techniques for lowering energy
consumption have been presented in the past. A
methodology that combines automated and manual software
optimizations focused on optimizing memory accesses has
been presented in [10]. Tiwari et al.[11,12] uses instruction-
level energy models to develop compiler-driven energy
optimizations at assembly level such as instruction
reordering, reduction of memory operands, operand
swapping in the Booth multiplier, efficient usage of memory
banks, and series of processor specific optimizations. In

UCB1200
Analog &

Digital
Sensors

Microphone
and

Speakers

Memory:
Flash
SRAM

Display

DC-DC
Converter

RF

StrongARM
SA-1100

Ba
tt

er
y

Figure 1. SmartBadge Architecture

addition, several other optimizations have been suggested,
such as energy efficient register labeling during the compile
phase [13], procedure inlining and loop unrolling [14] as well
as instruction scheduling [15]. Work presented in [16]
applies a set of compiler optimizations concurrently and
evaluates the resulting energy consumption via simulation.
All of these techniques focus on automated instruction-
level optimizations driven by the compiler. Unfortunately,
currently available commercial compilers have limited
capabilities. Specifically, the arithmetic optimization, such as
the example discussed in the Introduction, illustrates the
limitations of current optimization tools.

Our proposed methodology and tools automates the
process of identifying the code sections that would profit
from algebraic optimizations, and then performs the
optimization using symbolic techniques. Such symbolic
techniques have been previously used in algorithmic level
synthesis of data intensive circuits [22]. OptAlg uses the
same principles previously used for high-level component
mapping of hardware and applies them to the software
optimization problem.

3. OptAlg Flow

 Here we present a tool flow, OptAlg, which aims to
automate most of parts of embedded system software
optimization for the given embedded processor. Ideally, the
software designer would code an algorithmic-level
description of the software and have a compiler-like tool
optimize it for the given platform. However, optimum
implementation of calculation heavy routines for the
particular hardware design is not possible with traditional
compiler optimizations alone. Commonly, the designer has
to do most of such optimizations by hand. Automating
even a portion of the optimization process can save much
design time.

OptAlg embodies a set of tools that enable the
optimization process. Figure 2 shows the OptAlg flow. The
first step in the optimization is to check if software data
representation matches the hardware implementation. Most
embedded processors support only fixed point computation,
but many multimedia algorithms that are currently being
implemented on portable systems utilize floating point
operations. The profiler, described in Section 3.2, detects if
data representation is an issue in a matter of seconds.
Then, if needed, floating point operations can be replaced
with fixed point using a tool such as Fridge [4]. The next
step is to profile the code using the energy profiler. The
output of profiling identifies target routines for optimization.
Next, basic blocks of the critical routines are identified, and
if needed, reformulated using polynomial approximation
techniques. Accuracy of optimization has to be checked
against the original code, as both during the data
representation conversion and during the polynomial

formulation, some rounding occurs. Once accuracy is
satisfactory, resulting polynomials are decomposed into a
sequence of instructions available on the particular
hardware by novel symbolic techniques discussed in
Section 3.4. Finally, another check is done using the profiler
to see if the code has been sufficiently improved in terms of
energy consumption and performance. Typically, it takes at
most a few iterations to obtain the optimized code.

Our key contribution in OptAlg is a new method for basic
block optimization using symbolic polynomial manipulation
algorithms. We should also note that OptAlg is compliant
with other software optimization techniques. Additional
benefits are gained by combining traditional complier
optimization algorithms with symbolic polynomial
decomposition. The next sections described each portion of
OptAlg in detail.

3.1 Data Representation Conversion

Signal processing algorithms are generally developed
used ANSI-C with IEEE floating-point data types. However,
these algorithms are often implemented in embedded
systems using fixed-point data types in order to meet the
power, cost, and performance requirements. Converting a
floating-point algorithm to a fixed-point algorithm is a time
consuming and error prone task. Facilitating and semi-

Figure 2. OptAlg Tool Flow

Data
Representation

Conversion

Floating pt.
Problem?

Energy
Profiling

Symbolic Algebra
Decomposition

Polynomial
Formulation

Accuracy
Problem?

Optimization
Done?

Yes

Yes

Yes

No

No

No

Algorithmic-level
C Code

Optimized C Code with
inline Assembly

Critical Basic Blocks

automating this conversion has been targeted by tools such
as Fridge (a.k.a. CoCentric fixed-point designer) [4]. Such
tools use interpolative analysis to convert floating point C
code into appropriate fixed-point code to reduce the manual
work and the number of simulations required. The designer
annotates the critical variables of the design with the
desired bit width and uses Fridge to automate the rest of the
conversion through simulation and numerical analysis.

3.2 Energy Profiling

Code optimization requires extensive program execution
analysis to identify energy-critical bottlenecks and to
provide feedback on the impact of transformations.
Profiling is typically used to relate performance to the
source code for CPU and L1 cache [17]. Energy profiler
enables easy identification of the most energy-critical
procedures, as well as analysis of the impact optimization
transformations might have not only on the processor
energy consumption, but also on the memory hierarchy and
the system busses.

 The profiler exploits a cycle-accurate energy
consumption simulator [18] to relate the embedded system
energy consumption and performance to the source code.
Thus, it can be used for analysis (i.e., to find energy-critical
sections of the code), and for validation (i.e., to assess the
impact of each code optimization). Estimation results were
shown to be within 5% of measured energy consumption on
the SmartBadge hardware.

The profiler architecture is shown in Figure 3. Source
code is compiled using a compiler for a target processor.
The output of the compiler is the executable that the cycle-
accurate simulator executes (represented as assembly code
that is input into the simu lator) and a map of locations of
each procedure in the executable that a profiler uses to
gather statistics (the map is correspondence of assembly
code blocks to procedures in 'C' source code). The profiler
works concurrently with the cycle-accurate simulator. It
periodically samples the simulation results (using sample
interval specified by the user) and maps the energy and
performance to the function executed using information
gathered at the compile time. Once the simulation is
complete, the results of profiling can be printed out by the
total energy or time spent in each function.

With the profiler, OptAlg can obtain energy
consumption breakdown by procedures in the source code
and thus can quickly identify the areas in the source code
whose optimization can provide largest overall energy
savings. In addition, with the cycle-accurate simulator that
is at the heart of the profiler, OptAlg can get detailed
information about performance and energy consumption of
smaller subsections of code. Therefore, in this step, the
critical basic blocks of the power hungry procedures are
identified. These basic blocks are then passed on as inputs
to polynomial approximation and symbolic mapping tools
which can optimally map that section of code to assembly
instructions in matter of minutes.

3.3 Polynomial Formulation

The energy profiler helps detect the critical basic blocks
of the code. The next step is to map the critical basic blocks
to assembly instructions so that optimum power
consumption and performance are achieved. The mapping
algorithm, described in Section 3.4, uses the principles of
symbolic algebra and Gröbner basis. The inputs to the
mapping algorithm are the polynomial representations of the
critical basic blocks and the polynomial equivalence of the
arithmetic assembly instructions. The polynomial
formulation step prepares the input to the symbolic mapping
algorithm by calculating a polynomial representation for the
critical basic blocks.

The polynomial representation of a basic block can be
directly extracted from the C code if the basic block
calculates a linear function. If the basic block performs a
series of bit manipulations or Boolean functions previously
developed algorithms based on interpolation [24] can be
used to formulate the equivalent polynomial representation.
When the basic block implements a nonlinear function, we
use an approximation, such as the Taylor or Chebyshev
series expansion, as the polynomial representation for that
basic block.

ARM Instruction-level Simulator

Processor & L1 Cache Energy Model

Interconnect Energy Model

L2 Cache Memory

L1 Cache

Energy Model Energy Model

Processor Core Model

DC-DC
Converter

Energy
Model B

at
te

ry

AddressData

AddressData

AddressCycle Type

L2 Cache Current

Memory Current

Processor
Current

Battery
Current

Interconnect
Current

Cycle Type

Cycle Type

Data

Profiler

Source Code

 for (i=0; i<30; i++)
 {

x[i] = y[i] + 2 * x[i + 1];
z[i] -= x[i];
y[i] = x[i] + z[i];

 }

LD R21, #30;
ADD R21, R23,R27;
...

Energy
Consumption

Software Profile

 fun energy

 getD 15%
 sort 10%
 init 2%
 ...

Figure 3. Profiler Architecture

The chosen polynomial approximation has to be verified
by simulation to make sure that the software constraints,
such as audio quality, are satisfied. A good approximation
can result in even greater performance and power
improvements for multimedia applications, since these
applications can tolerate a slight degradation in the
resulting output. For example, to verify the accuracy of the
MP3 decoder we have used the compliance test provided by
the MPEG standard [19]. The range of RMS error between
the samples defines the compliance level. If the
approximation is not sufficient to satisfy the accuracy
constraints, the quality of approximation is changed and
verified again through simulation.

3.4 Symbolic Optimization

 At this step, the polynomial representations for critical
basic blocks of the code are available. Arithmetic assembly
instructions of the target embedded processor are also
represented as polynomials. The goal of the symbolic
optimization step is to decompose the polynomial
representations of the basic blocks into the polynomial
representations of available assembly instruction so that
power consumption and performance are optimized.

 Symbolic computer algebra is a set of algorithms capable
of algebraic manipulation of expression containing
undetermined values (symbols), such as variable x in
(x+1)*(x-1). Several commercial symbolic computer
algebra systems are available on the market; Maple [20] and
Mathematica [21] are most widely used. The algebraic
object to be symbolically manipulated is a multivariate
polynomial that represents a critical basic block identified in
the profiling step. Most interesting symbolic polynomial
manipulations are based on Gröbner bases [23]. Gröbner
bases also solve variable elimination in a set of polynomials
and ideal membership problems, which is the core of
simplification modulo set of polynomials [23].

))12)(
2

12(
72

cos(+++π= m
N

pd

(1)

 In order to show the power of symbolic algebra, let us
consider a simple example. Consider a basic block
implementing Equation 1 and an instruction set that
includes add, multiply, subtract, MAC, and square. The
basic block has been approximated to the polynomial shown
in Equation 2 in the previous step of the OptAlg flow.

642

642

39251520
127

2360
1

7788
229

1

7850304
2923

25960
711

7788
3665

1

)12)(
2

12(
72

xxx

xxx
d

m
N

px

+++

−+−
=

+++
π

=

 (2)

The simplification modulo set of polynomials routine
can be used to map the numerator and denominator of
Equation 2 to the available instruction set. In order to
comply with Maple terminology, we call the routine simplify
and the set of polynomials side relations as shown below.

> dn:=1-a*x^2+b*x^4-c*x^6:
 siderels:={y=b-c*x^2, z=-a+y*x^2}
> simplify(dn, siderels,[x,y,z]);

1+z*x^2

Note that side relations are a subset of our instruction
set. If the side relation set is changed, other possible
solutions for the specification may be found. The result
indicates that:

dn:=1-a*x^2+b*x^4-c*x^6:=1+z*x^2

:=1+(-a+(b-c*x^2)*x^2)*x^2

Therefore, the numerator of Equation 2 can be mapped to
one square and three MACs instructions. Assuming R1,
R2, R3, R4, and R5 hold 1, -a, b, -c, and x, respectively, the
resulting assembly code is:

SQUARE R6, R5
MAC R7, R3, R2, R6
MAC R8, R2, R7, R6
MAC R7, R1, R8, R6

The original basic block shown in Equation 1, takes 2384
cycles to run on the StrongARM-1100 processor. The
optimized version of this basic block executes in only 1257
cycles. Thus we have achieved an improvement of 47% for
this simple example.

Choosing the side relation set is a non-trivial task. In
previous work [22], an algorithm was introduced to select
the side relation set such that the hardware implementation
of a polynomial representing a (portion of) data path with a
given component library has minimal critical path delay. In
this paper, we use the algorithm to optimize mapping of the
critical basic blocks of software to assembly instructions.
This method performs even more effectively when a rich
instruction set (e.g. ASIP or hardware accelerator) is
available.

Figure 4 gives a brief overview of the mapping algorithm.
Inputs to the algorithm are the polynomial representations
of the critical basic blocks and the polynomial
representations of the given instruction set. The goal of the
symbolic mapping algorithm is to decompose the
polynomial representation of the critical basic block (CBB)
into polynomial representations of the instruction set (IS)
such that power consumption and delay are minimized. The
power and number of cycles it takes to execute each
instruction in the IS are given to the mapping algorithm as
constants.

Decomposing CBB into elements of IS is synonymous to
simplifying CBB modulo elements of the set IS as side
relations. Thus, the symbolic algebra routine used for this

decomposition is simplification modulo set of polynomials.
Since different side relation sets result in different mappings
of a basic block, the algorithm uses branch-and-bound
method to reduce the search space. The bounding function
is the best execution time or power dissipation seen so far.
Expression manipulation techniques available in symbolic
algebra are used as heuristic guidelines for choosing the
side relation set. Initially, tree-height reduction,
factorization, expansion, and Horner-based transform are
applied to CBB resulting in several polynomial
representations of the same basic block. Each of these
representations can result in the desirable mapping based
on the available instruction set. Starting with the inputs of
the basic block, we try covering the expression tree with the
available instructions. We choose all instructions that
cover the inputs and a portion of the expression tree as a
side relation. If the CBB is not yet fully mapped, we
decompose the result without further guidance from the
expression tree. This algorithm was imp lemented in C with
calls to Maple V for the symbolic manipulations used.

Figure 4. Overview of the mapping algorithm

4. Results

We have optimized several portions of the algorithmic
level C program of MP3 decoder using OptAlg in order to
run it on the SmartBadge embedded system [1] shown in
Figure 1. We obtained the original MP3 audio decoder
software from the International Organization for
Standardization [3]. Our design goal was to obtain real-time
performance with low energy consumption while keeping
full compliance with the MPEG standard.

The first step in decoding MP3 stream is synchronizing
the incoming bitstream and the decoder. Huffman decoding
of the subband coefficients is performed before

requantization. Stereo processing, if applicable, occurs
before the inverse mapping which consists of an inverse
modified cosine transform (IMDCT) followed by a
polyphase synthesis filterbank.

The manual optimization for MP3 decode on the
SmartBadge, as implemented in [18], required the designer
first to implement a fixed point library and replace all floating
point operations with fixed point, and then to fully
understand the details of the SmartBadge’s design, so that
the critical arithmetic operations could be manually
optimized, often with inline assembly code. The full
optimization process took a number of days when done
manually. In contrast, OptAlg partially automates the same
process and its iterations take only a few minutes.

The first step in the optimization flow is to check if
floating-point data types are suitable for the given platform.
Since SmartBadge’s processor, StrongARM 1100, can only
emulate the floating-point operation, there is a need for data
representation transformation. The code was converted to
use fixed-point arithmetic. It was verified through
simulation that 27-bit precision fixed-point data-types are
sufficient to meet the compliance test provided by MPEG
standard [19]. The range of RMS error between the samples
defines the compliance level.

Table 1. Profiling the Original MP3 Code

Function % Power
SubBand 49%
IMDCT 26%
Dequant 5%
Antialias 0.74%
Hufman 0.47%
SynFilter 0.26%

 Energy profile of the original source code highlights the
critical procedures of the code and their critical basic blocks.
Table 1 shows a list of critical procedures and their impact
on the final power consumption. These sections of the
code are selected for further optimization. In the next step,
we use polynomial approximations for the non-linear
calculations in the critical basic blocks. This approximations
satisfy the MPEG compliance test. The polynomial
representations of the critical basic blocks are next mapped
into the assembly instructions by algorithm described in
Section 3.4. It is important to note that StrongARM
compiler was not capable of using the MAC instruction
effectively. Therefore, the result of the decomposing
algorithm was inserted as inline assembly in the C code.

The results of optimizing critical functions of the MP3
code by OptAlg are compared with the original results from
straightforward compilation in Table 2. As we can see 17-
56% improvement has been achieved using the OptAlg
methodology. This much improvement would previously be
possible only thorough manual software optimization. The

Polynomial Representation of Basic Block

THR Factor Horner

Select Side
Relation Set

Simplify

Mapped?

Add to Side
Relation Set

Polynomial Rep.
of Instruction Set

Select Best Solution

No

Yes

Expand

automation introduced by OptAlg drastically reduces the
embedded software optimization cycle.

Table 3 compares the power consumption and
performance of three versions of the MP3 decoder running
on the SmartBadge. The first column corresponds to the
original MP3 code obtained from the standards
organization. The second column corresponds to the
optimized code using the OptAlg flow. The third column is
the hand optimized code. It can be seen that OptAlg flow
can achieve results very close to manually optimized
software. However, manual optimization of the code was
done in number days while OptAlg optimization took only
matter of hours.

Table 3. MP3 Combined Optimization Results

Comparison Original OptAlg Manual

Energy (mWhr) 0.446 0.375 0.36

improvement factor 1.0 1.189 1.24

Performance (s) 68.5 9.42 8.20

improvement factor 1.0 7.27 8.353

5. Conclusion

The contribution of this paper is a tool flow, OptAlg, that
automates energy and performance optimization of
arithmetic sections of code for implementation on a given
embedded processor. Our tool combines energy profiling,
automated data representation conversion, derivation of
polynomial representation and symbolic algebra. Energy
profiling is necessary to identify critical sections of code
that need to be optimized. For more complex arithmetic
functions, the conversion into a polynomial representation
is needed in order to enable symbolic algebra techniques.
Symbolic computer algebra decomposes the polynomial
representation of the basic blocks into a set of instructions
available on the embedded processor.

We gave an example of application of our tool, OptAlg,
to the optimization of MP3 audio decoding for the
SmartBadge [2] portable embedded system. The final MP3

audio decoder is fully compliant with the MPEG standard
and runs in real time with low energy consumption. Using
OptAlg for source code optimization we have been able to
increase performance by a factor of 7.27 while decreasing
energy consumption by a factor of 1.19. This improvement
is primary achieved by reducing the number of instructions
and memory accesses executed in critical basic blocks. The
technique presented in this paper can be easily used in
conjunction with other compiler optimization techniques [6].

6. References

[1] P. G. Paulin, C. Liem, M. Cornero, F. Nacabal, and G. Goossens,
“Embedded software in real-time signal processing systems:
application and architecture trends,” Proc. IEEE, vol. 85, no. 3,
pp. 419-435, Mar. 1997.

[2] G. Q. Maguire, M. Smith, H. W. Peter Beadle, “SmartBadges: a
wearable computer and communication system”, 6th International
Workshop on Hardware/Software Codesign, Invited talk, 1998.

[3] “Coded representation of audio, picture, multimedia and
hypermedia information”, ISO/IEC JTC/SC 29/WG 11, Part 3.,
May 1993.

[4] M. Willems, H. Keding, T. Grötket, and H. Meyr, “Fridge: An
interactive Fixed-Point Code Generation Environment for
HW/SW CoDesign”, Proceedings of Int. Conf. On Acoustics,
Speech, and Signal Processing, 1997.

[5] Albert Wang, Earl Killian, Dror Maydan, Chris Rowen,
“Hardware/Software Instruction Set Configurability for System-on-
Chip Processors”, Design Automation Conference, pp. 184-190,
2001.

[6] S. Muchnick, Advanced Compiler Design and Implementation,
Morgan Kaufmann, 1997.

[7] M. Hall, J. Anderson, S. Amarasinghe, B. Murphy, S. Liao, E.
Bugnion, M. Lam, “Maximizing multiprocessor performance with
the SUIF compiler”, IEEE Computer vol. 29, no. 12, pp. 84—89,
Dec. 1996.

[8] P. Marwedel and G. Goossens. Code Generation for Embedded
Processors. Kluwer Academic Publishers, 1995.

[9] R. Leupers, Retargetable Code Generation for Digital Signal
Processors, Kluwer Academic Publishers, 1997

[10] F. Catthoor, S. Wuytack, E. De Greef, F. Balasa, L. Nachtergaele,
A. Vanduoppelle, Custom Memory Management Methodology:
Exploration of Memory Organisation for Embedded Multimedia
System Design, 1998, Kluwer Academic Pub.

[11] V. Tiwari, S. Malik, A. Wolfe, M. Lee, “Instruction Level Power
Analysis and Optimization of Software”, Journal of VLSI Signal
Processing Systems, vol 13, no.2—3, pp.223—2383, 1996.

[12] V. Tiwari, S. Malik, A. Wolfe, “Power Analysis of Embedded
Software: A First Step Towards Software Power Minimization”,
IEEE Transactions on VLSI Systems, vol. 2, no.4, pp.437—445,
December 1994.

[13] H. Mehta, R.M. Owens, M.J. Irvin, R. Chen, D. Ghosh,
“Techniques for Low Energy Software”, International Symposium
on Low Power Electronics and Design, pp. 72—75, 1997.

[14] Y. Li and J. Henkel, “A Framework for Estimating and Minimizing
Energy Dissipation of Embedded HW/SW Systems”, Design
Automation Conference, pp.188—193, 1998.

Table 2. MP3 Results by Optimized Function

 Performance (#cycles) Energy Consumption (mJ)

Function original optimized %imp original optimized %imp

MDCTCoeff 1454550 957051 34.2 1.051 0.922 12.2

FilterS 5263831 4196853 20.3 3.630 3.319 8.6

Power3/4 14135 5380 61.9 0.040 0.009 76.6

Dequant 650894 421976 35.2 0.940 0.747 20.5

SubBandSyn 155204 70633 54.5 1.015 0.306 69.8

MDCT 63583 31954 49.7 0.101 0.051 49.6

[15] H. Tomyiama, H., T. Ishihara, A. Inoue, H. Yasuura, “Instruction
scheduling for power reduction in processor-based system design”,
Design, Automation and Test in Europe, pp. 23—26, February
1998.

[16] M. Kandemir, N. Vijaykrishnan, M. Irwin, W. Ye, “Influence of
Compiler Optimizations on System Power”, The 27th International
Symposium on Computer Architecture, pp.35—41, 2000.

[17] Advanced RISC Machines Ltd (ARM), ARM Software Development
Toolkit Version 2.11, 1996.

[18] T. Simunic, L. Benini, G. De Micheli, “Energy-Efficient Design of
Battery-Powered Embedded Systems”, Special Issue of IEEE
Transactions on VLSI, pp. 18-28, May 2001.

[19] ISO/IEC JTC 1/SC 29/WG 11 13818-4, “Information Technology,
Generic Coding of Moving Pictures and Associated Audio:
Conformance”, International Organization for Standardization,
1996.

[20] Maple, Waterloo Maple Inc., www.maplesoft.com, 1988.

[21] Mathematica, Wolfram Research Inc., www.wri.com, 1987.

[22] Omitted for blind review.

[23] T. Becker and V. Weispfenning, Gröbner Bases, Springer-Verlag,
New York, NY, 1993.

[24] J. Smith and G. De Micheli, “Polynomial Methods for Component
Matching and Verification”, Proceedings of the International
Conference on Computer Aided Design, 1998.

