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Abstract 

The market demand for portable multimedia applications 
has exploded in the recent years.  Unfortunately, for such 
applications current compilers and software optimization 
methods often require of designers to do part of the 
optimization manually.  Namely, the high-level arithmetic 
optimizations and the use of complex instructions are left 
to the designers' ingenuity.  In this paper, we present a tool 
flow, OptAlg, that partially automates the optimization of 
power-intensive algorithmic constructs using symbolic 
algebra techniques combined with energy profiling.  
OptAlg is used to optimize and tune the algorithmic level 
description of an MPEG Layer III (MP3) audio decoder for 
the SmartBadge [2] portable embedded system.  We show 
that our tool lowers the number of instructions and 
memory accesses necessary to run the MP3 code and thus 
lowers the system power consumption.  The optimized MP3 
audio decoder software meets real-time constraints on the 
SmartBadge system with low energy consumption.  
Performance increase of a factor of 7.27 and energy 
consumption decrease of a factor of 1.19 over the original 
executable specification has been achieved. 

1. Introduction 

Low cost with fast time to market is the top requirement 
in system-level design of embedded multimedia appliances. 
In embedded system design environment, the degrees of 
freedom in hardware are often very limited, whereas for 
software much more freedom is available.  As a result, the 
primary requirement for embedded system-level design 
methodology is to effectively support code performance 

and energy consumption optimization.  Automating as many 
steps in design of software from algorithmic-level 
specification is necessary to meet time to market 
requirements. Unfortunately, currently available compilers 
and software optimization tools cannot meet all designer 
needs.  Typically, software engineers start with algorithmic 
level C code, often developed by standards groups, and 
manually optimize it to execute on the given hardware 
platform such that power and performance constraints are 
satisfied.  Needless to say, this conversion is a time-
consuming and often error-prone task, which introduces 
undesired delay in the overall development process.  In 
addition, often compilers are unable to compile C code 
efficiently for embedded processors.  Therefore, software 
engineers need to design key routines in assembly [1], 
which is extremely time consuming.   

Our objective is to improve quality of the compiled code 
for embedded systems and facilitate the software design 
process.  In this paper, we propose a new methodology 
based on symbolic manipulation of polynomials and energy 
profiling which reduces manual interventions.  We apply a 
set of techniques previously used in algorithmic-level 
hardware synthesis [22] and combine them with energy 
profiling, floating-point to fixed-point data conversion, and 
polynomial approximation to achieve a new embedded 
software optimization methodology.  The combination of 
these tools and standard compiler optimization techniques, 
allows for novel automatic code transformations.  

As a motivating example, consider the code segment 
shown below: 

for i=1..3 
 y = y + cos(i*x); 

Using standard loop unrolling, the given code is 
transformed into the following: 

y = cos(x) + cos(2*x) + cos(3*x); 
Now assume that for a given application cos(x) can be 
approximated into a Taylor series with three terms without 
noticeable degradation on the output.  Many multimedia 
applications tolerate computational inaccuracy well, as long 
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as the resulting effects (e.g. audio, video degradation) are 
limited.  Therefore, y can be transformed into the following 
polynomial: 

4422442242 3
24
1

3
2
1

12
24
1

2
2
1

1
24
1

2
1

1 xxxxxxy +−++−++−=  

This polynomial can be further simplified using the expand 
routine in symbolic algebra: 
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Assuming that the embedded processor used to execute 
this code has a MAC instruction, another symbolic routine 
called the Horner transform can be used on y:    
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The new equation can be mapped to one multiply 
instruction and two multiply-accumulates.  Obviously, this 
mapping is much more efficient than three calls to the cosine 
library function.  Unfortunately, to our knowledge, there is 
no tool currently available that can perform this simple 
optimization automatically.  Thus it would be up to a 
designer to manually implement such optimizations.  

This paper presents a tool-flow, called OptAlg, that 
automates the algebraic manipulations such as the one 
shown in the previous example.  First, the energy critical 
code sections are identified using the energy profiler.  Then, 
a tool like Fridge [4] can be used to transform floating-point 
data types into fixed-point, if necessary.  Next, complex 
nonlinear arithmetic functions are approximated as 
polynomials such that the final output is within the 
acceptable tolerance limits.  Finally, symbolic algebra is 
used to map the polynomial representations of the critical 
basic blocks to the instruction set available so that 
performance and power consumption are optimized.  Note 
that more complex instructions (such as those developed by 
Tensilica tools [5]) and hardware accelerators can also be 
used during the mapping step.  

We used OptAlg to optimize the implementation of MP3 
software decoder so that it would meet real-time constraints 
on the SmartBadge [2].  The SmartBadge, as shown in 
Figure 1, is an embedded system consisting of Sharp’s 

display, Lucent’s WLAN link, StrongARM-1100 processor, 
RAM, FLASH, sensors, and modem/audio analog front-end 
on a PCB board powered by the batteries through a DC-DC 
converter.  The outcome of this experiment is a higher 
performance MP3 decoder software on SmartBadge that 
uses less power.  For an MP3 player, shorter than real-time 
execution time implies that lower voltage and frequency can 
still meet the real-time constraint.  This in turn translates 
into longer battery life or lighter battery requirement for the 
embedded system. 

The paper is organized as follows:  Section 2 discusses 
previous work done in the area of software optimization for 
energy and performance.  Section 3 presents the OptAlg 
flow, and gives an overview of each of its component.  The 
results of MP3 decoder optimization for SmartBadge are 
presented in Section 4. Performance increase of a factor of 
7.27 and energy consumption decrease of a factor of 1.19 
over the original executable specification has been 
achieved. Finally, Section 5 summarizes the contributions of 
this work. 

2. Related Work 

Optimization of software performance and size has been 
utilized by designers for many years.  Code optimization 
process translates a high level specification into optimized 
machine code for the target processor, often using 
compilers.  There has been a lot of research on optimizing 
compilers in last few years [6]. Prototype research compilers 
have shown impressive results [7]. Most optimizing 
compilers target high-performance and/or general-purpose 
computers.  Relatively little effort has been dedicated to 
create powerful optimizing compilers for embedded 
processors. Even though several researchers are studying 
automatic code optimization techniques for embedded 
processors [8,9], currently, most embedded processors (or 
DSPs) are programmed directly by expert programmers and 
code optimization is mostly based on human intuition and 
skill.  In addition, due to recent growth in market demand for 
portable devices, optimization of software for power 
consumption is gaining in importance.  As a result, one of 
the primary requirements for system-level design 
methodology of embedded devices is to effectively support 
code energy consumption optimization.  

Several optimization techniques for lowering energy 
consumption have been presented in the past.  A 
methodology that combines automated and manual software 
optimizations focused on optimizing memory accesses has 
been presented in [10]. Tiwari et al.[11,12] uses instruction-
level energy models to develop compiler-driven energy 
optimizations at assembly level such as instruction 
reordering, reduction of memory operands, operand 
swapping in the Booth multiplier,  efficient usage of memory 
banks, and series of processor specific optimizations.  In 
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Figure 1. SmartBadge Architecture 



addition, several other optimizations have been suggested, 
such as energy efficient register labeling during the compile 
phase [13], procedure inlining and loop unrolling [14] as well 
as instruction scheduling [15]. Work presented in [16] 
applies a set of compiler optimizations concurrently and 
evaluates the resulting energy consumption via simulation. 
All of these techniques focus on automated instruction-
level optimizations driven by the compiler. Unfortunately, 
currently available commercial compilers have limited 
capabilities. Specifically, the arithmetic optimization, such as 
the example discussed in the Introduction, illustrates the 
limitations of current optimization tools.    

Our proposed methodology and tools automates the 
process of identifying the code sections that would profit 
from algebraic optimizations, and then performs the 
optimization using symbolic techniques.  Such symbolic 
techniques have been previously used in algorithmic level 
synthesis of data intensive circuits [22].  OptAlg uses the 
same principles previously used for high-level component 
mapping of hardware and applies them to the software 
optimization problem.   

3. OptAlg Flow 

 Here we present a tool flow, OptAlg, which aims to 
automate most of parts of embedded system software 
optimization for the given embedded processor.  Ideally, the 
software designer would code an algorithmic-level 
description of the software and have a compiler-like tool 
optimize it for the given platform.  However, optimum 
implementation of calculation heavy routines for the 
particular hardware design is not possible with traditional 
compiler optimizations alone.  Commonly, the designer has 
to do most of such optimizations by hand.  Automating 
even a portion of the optimization process can save much 
design time.    

OptAlg embodies a set of tools that enable the 
optimization process.  Figure 2 shows the OptAlg flow.  The 
first step in the optimization is to check if software data 
representation matches the hardware implementation.  Most 
embedded processors support only fixed point computation, 
but many multimedia algorithms that are currently being 
implemented on portable systems utilize floating point 
operations.  The profiler, described in Section 3.2, detects if 
data representation is an issue in a matter of seconds.  
Then, if needed, floating point operations can be replaced 
with fixed point using a tool such as Fridge [4].  The next 
step is to profile the code using the energy profiler.  The 
output of profiling identifies target routines for optimization.   
Next, basic blocks of the critical routines are identified, and 
if needed, reformulated using polynomial approximation 
techniques.  Accuracy of optimization has to be checked 
against the original code, as both during the data 
representation conversion and during the polynomial 

formulation, some rounding occurs.  Once accuracy is 
satisfactory, resulting polynomials are decomposed into a 
sequence of instructions available on the particular 
hardware by novel symbolic techniques discussed in 
Section 3.4.  Finally, another check is done using the profiler 
to see if the code has been sufficiently improved in terms of 
energy consumption and performance.  Typically, it takes at 
most a few iterations to obtain the optimized code.   

Our key contribution in OptAlg is a new method for basic 
block optimization using symbolic polynomial manipulation 
algorithms.  We should also note that OptAlg is compliant 
with other software optimization techniques.  Additional 
benefits are gained by combining traditional complier 
optimization algorithms with symbolic polynomial 
decomposition.  The next sections described each portion of 
OptAlg in detail. 

 
3.1 Data Representation Conversion 

Signal processing algorithms are generally developed 
used ANSI-C with IEEE floating-point data types.  However, 
these algorithms are often implemented in embedded 
systems using fixed-point data types in order to meet the 
power, cost, and performance requirements.  Converting a 
floating-point algorithm to a fixed-point algorithm is a time 
consuming and error prone task.  Facilitating and semi-
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automating this conversion has been targeted by tools such 
as Fridge (a.k.a. CoCentric fixed-point designer) [4].  Such 
tools use interpolative analysis to convert floating point C 
code into appropriate fixed-point code to reduce the manual 
work and the number of simulations required.  The designer 
annotates the critical variables of the design with the 
desired bit width and uses Fridge to automate the rest of the 
conversion through simulation and numerical analysis. 

3.2 Energy Profiling 

Code optimization requires extensive program execution 
analysis to identify energy-critical bottlenecks and to 
provide feedback on the impact of transformations.  
Profiling is typically used to relate performance to the 
source code for CPU and L1 cache [17]. Energy profiler 
enables easy identification of the most energy-critical 
procedures, as well as analysis of the impact optimization 
transformations might have not only on the processor 
energy consumption, but also on the memory hierarchy and 
the system busses.  

 The profiler exploits a cycle-accurate energy 
consumption simulator [18] to relate the embedded system 
energy consumption and performance to the source code. 
Thus, it can be used for analysis  (i.e., to find energy-critical 
sections of the code), and for validation (i.e., to assess the 
impact of each code optimization). Estimation results were 
shown to be within 5% of measured energy consumption on 
the SmartBadge hardware.   

The profiler architecture is shown in Figure 3.  Source 
code is compiled using a compiler for a target processor. 
The output of the compiler is the executable that the cycle-
accurate simulator executes (represented as assembly code 
that is input into the simu lator) and a map of locations of 
each procedure in the executable that a profiler uses to 
gather statistics (the map is correspondence of assembly 
code blocks to procedures in 'C' source code).  The profiler 
works concurrently with the cycle-accurate simulator.  It 
periodically samples the simulation results (using sample 
interval specified by the user) and maps the energy and 
performance to the function executed using information 
gathered at the compile time.  Once the simulation is 
complete, the results of profiling can be printed out by the 
total energy or time spent in each function.   

With the profiler, OptAlg can obtain energy 
consumption breakdown by procedures in the source code 
and thus can quickly identify the areas in the source code 
whose optimization can provide largest overall energy 
savings.  In addition, with the cycle-accurate simulator that 
is at the heart of the profiler, OptAlg can get detailed 
information about performance and energy consumption of 
smaller subsections of code.  Therefore, in this step, the 
critical basic blocks of the power hungry procedures are 
identified.  These basic blocks are then passed on as inputs 
to polynomial approximation and symbolic mapping tools 
which can optimally map that section of code to assembly 
instructions in matter of minutes.  

 
3.3 Polynomial Formulation 

The energy profiler helps detect the critical basic blocks 
of the code.  The next step is to map the critical basic blocks 
to assembly instructions so that optimum power 
consumption and performance are achieved.  The mapping 
algorithm, described in Section 3.4, uses the principles of 
symbolic algebra and Gröbner basis.  The inputs to the 
mapping algorithm are the polynomial representations of the 
critical basic blocks and the polynomial equivalence of the 
arithmetic assembly instructions.  The polynomial 
formulation step prepares the input to the symbolic mapping 
algorithm by calculating a polynomial representation for the 
critical basic blocks.   

The polynomial representation of a basic block can be 
directly extracted from the C code if the basic block 
calculates a linear function.  If the basic block performs a 
series of bit manipulations or Boolean functions previously 
developed algorithms based on interpolation [24] can be 
used to formulate the equivalent polynomial representation.  
When the basic block implements a nonlinear function, we 
use an approximation, such as the Taylor or Chebyshev 
series expansion, as the polynomial representation for that 
basic block.   
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    for ( i=0; i<30; i++)
   {

x[i] = y[i] + 2 * x[i + 1];
z[i] -= x[i];
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   }
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The chosen polynomial approximation has to be verified 
by simulation to make sure that the software constraints, 
such as audio quality, are satisfied.  A good approximation 
can result in even greater performance and power 
improvements for multimedia applications, since these 
applications can tolerate a slight degradation in the 
resulting output. For example, to verify the accuracy of the 
MP3 decoder we have used the compliance test provided by 
the MPEG standard [19]. The range of RMS error between 
the samples defines the compliance level.  If the 
approximation is not sufficient to satisfy the accuracy 
constraints, the quality of approximation is changed and 
verified again through simulation.   

 
3.4 Symbolic Optimization 

 At this step, the polynomial representations for critical 
basic blocks of the code are available. Arithmetic assembly 
instructions of the target embedded processor are also 
represented as polynomials. The goal of the symbolic 
optimization step is to decompose the polynomial 
representations of the basic blocks into the polynomial 
representations of available assembly instruction so that 
power consumption and performance are optimized.   

 Symbolic computer algebra is a set of algorithms capable 
of algebraic manipulation of expression containing 
undetermined values (symbols), such as variable x in  
(x+1)*(x-1).  Several commercial symbolic computer 
algebra systems are available on the market; Maple [20] and 
Mathematica [21] are most widely used.  The algebraic 
object to be symbolically manipulated is a multivariate 
polynomial that represents a critical basic block identified in 
the profiling step.  Most interesting symbolic polynomial 
manipulations are based on Gröbner bases [23].  Gröbner 
bases also solve variable elimination in a set of polynomials 
and ideal membership problems, which is the core of 
simplification modulo set of polynomials [23]. 
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 In order to show the power of symbolic algebra, let us 
consider a simple example.  Consider a basic block 
implementing Equation 1 and an instruction set that 
includes add, multiply, subtract, MAC, and square.  The 
basic block has been approximated to the polynomial shown 
in Equation 2 in the previous step of the OptAlg flow. 
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The simplification modulo set of polynomials routine 
can be used to map the numerator and denominator of 
Equation 2 to the available instruction set.  In order to 
comply with Maple terminology, we call the routine simplify  
and the set of polynomials side relations as shown below.   

> dn:=1-a*x^2+b*x^4-c*x^6:   
   siderels:={y=b-c*x^2, z=-a+y*x^2} 
> simplify(dn, siderels,[x,y,z]); 

1+z*x^2 

Note that side relations are a subset of our instruction 
set.  If the side relation set is changed, other possible 
solutions for the specification may be found.  The result 
indicates that: 

dn:=1-a*x^2+b*x^4-c*x^6:=1+z*x^2 

:=1+(-a+(b-c*x^2)*x^2)*x^2 

Therefore, the numerator of Equation 2 can be mapped to 
one square and three MACs instructions.  Assuming R1, 
R2, R3, R4, and R5 hold 1, -a, b, -c, and x, respectively, the 
resulting assembly code is: 

SQUARE R6, R5 
MAC R7, R3, R2, R6 
MAC R8, R2, R7, R6 
MAC R7, R1, R8, R6 

The original basic block shown in Equation 1, takes 2384 
cycles to run on the StrongARM-1100 processor.  The 
optimized version of this basic block executes in only 1257 
cycles.  Thus we have achieved an improvement of 47% for 
this simple example. 

Choosing the side relation set is a non-trivial task.  In 
previous work [22], an algorithm was introduced to select 
the side relation set such that the hardware implementation 
of a polynomial representing a (portion of) data path with a 
given component library has minimal critical path delay.  In 
this paper, we use the algorithm to optimize mapping of the 
critical basic blocks of software to assembly instructions.  
This method performs even more effectively when a rich 
instruction set (e.g. ASIP or hardware accelerator) is 
available.   

Figure 4 gives a brief overview of the mapping algorithm.  
Inputs to the algorithm are the polynomial representations 
of the critical basic blocks and the polynomial 
representations of the given instruction set.  The goal of the 
symbolic mapping algorithm is to decompose the 
polynomial representation of the critical basic block (CBB) 
into polynomial representations of the instruction set (IS) 
such that power consumption and delay are minimized.  The 
power and number of cycles it takes to execute each 
instruction in the IS are given to the mapping algorithm as 
constants.    

Decomposing CBB into elements of IS is synonymous to 
simplifying CBB modulo elements of the set IS as side 
relations.  Thus, the symbolic algebra routine used for this 



decomposition is simplification modulo set of polynomials.  
Since different side relation sets result in different mappings 
of a basic block, the algorithm uses branch-and-bound 
method to reduce the search space.   The bounding function 
is the best execution time or power dissipation seen so far.  
Expression manipulation techniques available in symbolic 
algebra are used as heuristic guidelines for choosing the 
side relation set.  Initially, tree-height reduction, 
factorization, expansion, and Horner-based transform are 
applied to CBB resulting in several polynomial 
representations of the same basic block.  Each of these 
representations can result in the desirable mapping based 
on the available instruction set.  Starting with the inputs of 
the basic block, we try covering the expression tree with the 
available instructions.  We choose all instructions that 
cover the inputs and a portion of the expression tree as a 
side relation.  If the CBB is not yet fully mapped, we 
decompose the result without further guidance from the 
expression tree.  This algorithm was imp lemented in C with 
calls to Maple V for the symbolic manipulations used.   
 

Figure 4.  Overview of the mapping algorithm 

4. Results 

We have optimized several portions of the algorithmic 
level C program of MP3 decoder using OptAlg in order to 
run it on the SmartBadge embedded system [1] shown in 
Figure 1.  We obtained the original MP3 audio decoder 
software from the International Organization for 
Standardization [3].  Our design goal was to obtain real-time 
performance with low energy consumption while keeping 
full compliance with the MPEG standard.   

The first step in decoding MP3 stream is synchronizing 
the incoming bitstream and the decoder.  Huffman decoding 
of the subband coefficients is performed before 

requantization.  Stereo processing, if applicable, occurs 
before the inverse mapping which consists of an inverse 
modified cosine transform (IMDCT) followed by a 
polyphase synthesis filterbank. 

The manual optimization for MP3 decode on the 
SmartBadge, as implemented in [18], required the designer 
first to implement a fixed point library and replace all floating 
point operations with fixed point, and then to fully 
understand the details of the SmartBadge’s design, so that 
the critical arithmetic operations could be manually 
optimized, often with inline assembly code.  The full 
optimization process took a number of days when done 
manually.  In contrast, OptAlg partially automates the same 
process and its iterations take only a few minutes. 

The first step in the optimization flow is to check if 
floating-point data types are suitable for the given platform.  
Since SmartBadge’s processor, StrongARM 1100, can only 
emulate the floating-point operation, there is a need for data 
representation transformation.  The code was converted to 
use fixed-point arithmetic.  It was verified through 
simulation that 27-bit precision fixed-point data-types are 
sufficient to meet the compliance test provided by MPEG 
standard [19]. The range of RMS error between the samples 
defines the compliance level.   

Table 1.  Profiling the Original MP3 Code 
 

Function % Power 
SubBand 49% 
IMDCT 26% 
Dequant 5% 
Antialias 0.74% 
Hufman 0.47% 
SynFilter 0.26% 

 Energy profile of the original source code highlights the 
critical procedures of the code and their critical basic blocks.  
Table 1 shows a list of critical procedures and their impact 
on the final power consumption.  These sections of the 
code are selected for further optimization.  In the next step, 
we use polynomial approximations for the non-linear 
calculations in the critical basic blocks.  This approximations 
satisfy the MPEG compliance test.  The polynomial 
representations of the critical basic blocks are next mapped 
into the assembly instructions by algorithm described in 
Section 3.4.  It is important to note that StrongARM 
compiler was not capable of using the MAC instruction 
effectively.  Therefore, the result of the decomposing 
algorithm was inserted as inline assembly in the C code. 

The results of optimizing critical functions of the MP3 
code by OptAlg are compared with the original results from 
straightforward compilation in Table 2.  As we can see 17-
56% improvement has been achieved using the OptAlg 
methodology.  This much improvement would previously be 
possible only thorough manual software optimization.  The 
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automation introduced by OptAlg drastically reduces the 
embedded software optimization cycle. 

Table 3 compares the power consumption and 
performance of three versions of the MP3 decoder running 
on the SmartBadge.  The first column corresponds to the 
original MP3 code obtained from the standards 
organization.  The second column corresponds to the 
optimized code using the OptAlg flow.  The third column is 
the hand optimized code.  It can be seen that OptAlg flow 
can achieve results very close to manually optimized 
software.  However, manual optimization of the code was 
done in number days while OptAlg optimization took only 
matter of hours.   

 
Table 3. MP3 Combined Optimization Results  

 

Comparison Original OptAlg Manual 

Energy (mWhr) 0.446 0.375 0.36 

improvement factor 1.0 1.189 1.24 

Performance (s)  68.5 9.42 8.20 

improvement factor 1.0 7.27 8.353 
 

 

5.  Conclusion 

The contribution of this paper is a tool flow, OptAlg, that 
automates energy and performance optimization of 
arithmetic sections of code for implementation on a given 
embedded processor. Our tool combines energy profiling, 
automated data representation conversion, derivation of 
polynomial representation and symbolic algebra.  Energy 
profiling is necessary to identify critical sections of code 
that need to be optimized.  For more complex arithmetic 
functions, the conversion into a polynomial representation 
is needed in order to enable symbolic algebra techniques.  
Symbolic computer algebra decomposes the polynomial 
representation of the basic blocks into a set of instructions 
available on the embedded processor.     

We gave an example of application of our tool, OptAlg, 
to the optimization of MP3 audio decoding for the 
SmartBadge [2] portable embedded system.  The final MP3 

audio decoder is  fully compliant with the MPEG standard 
and runs in real time with low energy consumption. Using 
OptAlg for source code optimization we have been able to 
increase performance by a factor of 7.27 while decreasing 
energy consumption by a factor of 1.19.  This improvement 
is primary achieved by reducing the number of instructions 
and memory accesses  executed in critical basic blocks.  The 
technique presented in this paper can be easily used in 
conjunction with other compiler optimization techniques [6]. 
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