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ABSTRACT 
With growing demand for embedded multimedia applications, time to market of embedded software has 

become a crucial issue.  As a result, embedded software designers often use libraries that have been pre-

optimized for a given processor to achieve higher code quality.  Unfortunately, current software design 

methodology often leaves high-level arithmetic optimizations and the use of complex library elements 

up to the designers' ingenuity.  In this paper, we present a tool flow and a methodology, SymSoft, that 

automates the use of complex processor instructions and pre-optimized software library routines using 

symbolic algebraic techniques.  We use SymSoft to optimize a set of examples for the SmartBadgeIV [2] 

portable embedded system running embedded Linux operating system.  The results of these 

optimizations show that by using SymSoft we can map the critical basic blocks of the examples to the 

StrongARM SA-1110 instruction set much more efficiently than the commercial StrongARM 

compiler.  SymSoft is also used to map critical code sections to commercially available software 

libraries with complex mathematical elements such as exp or the I DCT routine.  Our measurements 

show that even higher performance improvements and energy savings are achieved by using these library 

elements.  For example, the final optimized MP3 audio decoder runs four times faster than real-time 

playback while consuming four times less energy.  Since the decoder executes faster than real-time 

playback, additional energy savings are now possible by using processor frequency and voltage scaling.   
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1. INTRODUCTION 

The principal requirement in system-level design of embedded multimedia appliances is to reduce cost 

and time to market.  In embedded system design environment, the degrees of freedom in software design 

are often much higher than the freedom available in hardware design.  As a result, the primary 

requirement for embedded system-level design methodology is to effectively facilitate code performance 

and energy consumption optimization.  Automating as many steps in the design of software from 

algorithmic-level specification is necessary to meet time to market requirements.  Unfortunately, current 

available compilers and software optimization tools cannot meet all designers’  needs.  Typically, 

software engineers start with algorithmic level C code, often developed by standards groups, and 

manually optimize it to execute on the given hardware platform such that power and performance 

constraints are satisfied.  Needless to say, this conversion is a time-consuming and often error-prone 

task, which introduces undesired delay in the overall development process. 

Pre-optimized software libraries and complex processor instructions are often available for embedded 

system design.  But, most compilers are unable to use these complex assembly instructions and pre-

optimized library elements efficiently while compiling C code for embedded processors.  Therefore, 

software engineers need to design key routines in assembly [1] or manually map a code section to a pre-

optimized library element.  Example of complex instructions available range from the simple multiply-

accumulate (MAC) to a library of more complex instructions, such as those developed by Tensilica tools 

[6].  There are several pre-optimized software libraries commercially available.  Intel recently released a 

library targeted at multimedia developers for StrongARM SA-1110 embedded processor [14], and TI 

has a similar library for TI’54x DSP [15].  Embedded operating systems typically provide a choice from 

a number of mathematical and other libraries [16][17]. When a set of pre-optimized libraries is available, 
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the designer has to choose the elements that perform best for a given section of code.  For example, 

consider a section of code that calls the l og function. The library used in mapping consists of four 

different l og implementations: double, float, fixed point using simple bit manipulation algorithm [18], 

and fixed point using polynomial expansion.  Each implementation has a different accuracy, 

performance, and energy trade-off.  A designer would need to estimate which of the four 

implementations would work best, test the hypothesis, and iterate until the best result is found.  

Designers are faced with an even more complex problem when attempting to map a software 

implementation of IDCT already present in MP3 standards code into an embedded software library.  

There are many ways to implement IDCT on a given processor, and it may be difficult for a designer to 

determine which library element is most appropriate.   

Our objective is to improve the quality of compiled code for embedded systems and facilitate the 

software design process.  In this paper, we propose a new methodology based on symbolic manipulation 

of polynomials and energy profiling which reduces manual intervention.  Our methodology automates 

the process of identifying the code sections that benefit from complex library mapping, and then 

performs the mapping using symbolic techniques.  We apply a set of techniques previously used in 

algorithmic-level hardware synthesis [28][29] and combine them with energy profiling, floating-point to 

fixed-point data conversion, and polynomial approximation to achieve a new embedded software 

optimization methodology.  The combination of these tools and standard compiler optimization 

techniques allow novel automatic code transformations.  

Example 1. As a motivating example, let us look at the following code segment: 

f or  i =1. . 3 

 y  = y + cos( i * x) ;  
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Using standard loop unrolling, the given code is transformed into the following: 

y = cos( x)  + cos( 2* x)  + cos( 3* x) ;  

Now assume that for a given application cos(x) can be approximated into a Taylor series with three 

terms without noticeable degradation on the output.  Many multimedia applications tolerate 

computational inaccuracy well, as long as the resulting effects (e.g. audio, video degradation) are 

limited.  Therefore, y can be approximated as a polynomial: 
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This polynomial can be further simplified using the expand routine in symbolic algebra: 
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Assuming that the embedded processor used to execute this code has a multiply accumulate (MAC) 

instruction, another symbolic routine called the Horner transform can be used on y:    
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The new equation can be mapped to one multiply instruction and two multiply-accumulates.  

Obviously, this mapping is much more efficient than three calls to the cosine library function.  

Unfortunately, to our knowledge, there is no available software optimization tool that performs this 

simple optimization automatically.  Thus, it would be up to designers to manually implement such 

optimizations.                                         �  
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This paper presents a tool-flow, called SymSoft, that performs algebraic manipulations such as the 

one shown in Example 1 simultaneous with automatic complex instruction and library mapping.  First, a 

characterization function is derived for the pre-optimized library elements and complex assembly 

instructions.  Then, the performance and energy critical code sections are identified using the energy 

profiler.  If necessary, a tool such as Fridge [4] can be used to help transform floating-point data types 

into fixed-point.  Next, complex nonlinear arithmetic functions in critical blocks are approximated as 

polynomials such that the final output is within the acceptable tolerance limits.  Finally, symbolic 

algebra is used to map the polynomial representations of the critical basic blocks to the instruction set 

and library elements available automatically such that performance and power consumption are 

optimized.   

The paper is organized as follows:  Section 2 discusses previous work in software optimization for 

energy and performance.  Section 3 describes the software and hardware platform and the measurement 

setup we are using in our experiments.  Section 4 presents the SymSoft flow, and gives an overview of 

each of its steps and components.  The results of SymSoft optimizations on several software examples 

for the SmartBadgeIV system are presented in Section 5.  SymSoft lowers the execution time and energy 

consumption of these examples by using a pre-optimized software library available for StrongARM and 

the StrongARM instruction set.  Finally, Section 6 summarizes the contributions of this work.   

2. RELATED WORK 

Designers have used software performance and size optimization methodologies and tools of for many 

years.  Generally, compilers are used to translate a high-level specification into optimized machine code 

for a target processor.  Several researchers have worked on optimizing compilers in last few years [7].  

Prototype research compilers have shown impressive results [8]. Most optimizing compilers target high-
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performance and/or general-purpose computers.  Relatively little effort has been dedicated to create 

powerful optimizing compilers for embedded processors.  Even though several researchers are studying 

automatic code retargeting techniques for embedded processors [9][10], currently, most embedded 

processors (or DSPs) are programmed directly by expert programmers and code optimization is mostly 

based on human intuition and skill.  In addition, due to recent growth in market demand for portable 

devices, optimization of software for power consumption is gaining importance.  As a result, one of the 

primary requirements for system-level design methodology of embedded devices is to effectively support 

code performance and energy consumption optimization.  

Several optimization techniques for lowering energy consumption have been presented in the past.  

Numerous methodologies for optimizing memory accesses have been introduced that combine 

automated and manual software optimizations [11].  Tiwari et al [12][13] used instruction-level energy 

models to develop compiler-driven energy optimizations at assembly level such as instruction 

reordering, reduction of memory operands, operand swapping in the Booth multiplier, efficient usage of 

memory banks, and a series of processor specific optimizations.  Several other optimizations such as 

energy efficient register labeling during the compile phase [19], procedure inlining and loop unrolling 

[20] as well as instruction scheduling [21] have also been suggested.  In addition, various compiler 

optimizations have been applied concurrently and the resulting energy consumption was evaluated via 

simulation [22].  All of these techniques focus on automated instruction-level optimizations driven by 

the compiler. Unfortunately, current available compilers have limited capabilities.  Specifically, they are 

incapable of handling arithmetic optimizations such as shown Example 1.  

In the previous work [34], MP3 audio decoder software available from the standards body [3] was 

manually optimized for the SmartBadge embedded system [2].  This work required the designer to first 
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implement a fixed-point library and then to replace all floating-point operations with fixed point.  Then, 

the designer needed to fully understand the details of the SmartBadge’s design, so that the critical 

arithmetic operations can be manually optimized with inline assembly code.  The manual optimization 

process lasted several days.  This experience is similar to the typical industrial settings, where the 

software needs to be ported and optimized to the newer versions of hardware.  

Our proposed methodology and tool flow uses profiling to identify the code sections that would 

benefit most from algebraic optimizations, and then automatically performs the optimizations using 

symbolic techniques.  Such symbolic techniques have been previously used in algorithmic level 

synthesis of data intensive circuits [28][29].  SymSoft uses the same principles previously used for high-

level component mapping of hardware and applies them to the software optimization problem.  The 

outcome of our mapping algorithm is software that runs faster and consumes less energy on the 

SmartBadgeIV [2] embedded system while compared to the output of the commercial StrongARM 

compiler.     

3. EXPERIMENTAL SETUP  

We used SymSoft to optimize a set of examples on the SmartBadgeIV [2].  SmartBadgeIV, as shown 

in Figure 1, is an embedded system powered by batteries through a DC-DC converter.  It consists of 

StrongARM SA-1110 processor with StrongARM SA-1111 companion chip, audio CODEC with 

microphone and speakers, Lucent’s WLAN card, sensors and three types of memory: SRAM, SDRAM 

and FLASH.  SmartBadgeIV currently runs eCos [16] and an embedded version of Linux operating 

system [17].  In this work we use Linux OS since the software library available to us is implemented for 

Linux.  SmartBadgeIV ’s Linux has the main parts of the OS, including a small file system, residing in 

SRAM.  The larger file system is remotely mounted from the server via the WLAN card.  In our 
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experiments, the program files and their input data reside in the directory structure on the server and are 

accessed via the wireless link on the SmartBadgeIV.    

All of the measurements were performed using National Instruments Data Acquisition (DAQ) 

measurement system capable of 1.25 Msamples/second.  We found a sampling speed of 1 kHz to be 

sufficient.  In our setup, we used one PC to measure system, processor, and WLAN currents via the 

DAQ interface, and the other PC to act as a remote file server for the SmartBadge IV.  The execution 

time of the code was measured by accessing StrongARM SA-1110 on-board timer.   
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Figure 1. Smar tBadgeIV Architecture 

4. SYMSOFT METHODOLOGY AND TOOL FLOW 

Ideally, the software designer would write an algorithmic-level description of the software and have a 

compiler-like tool optimize it for the given hardware platform.  However, optimum implementation of 

calculation intensive routines for the particular hardware design is not possible with traditional compiler 

optimizations alone.  Commonly, the designer does most of such optimizations by hand.  Automating 

even a portion of this process can save much design time.    

Here we present a methodology and a tool flow, SymSoft, which facilitates embedded system 

software optimization with automating library and complex instruction mapping for a given embedded 
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processor.  Figure 2 shows the SymSoft flow.  The mapping methodology consists of three main steps: 

library characterization, target code identification, and mapping.    

Pre-Optimized Library
elements and Complex

instructions

Symbolic Algebraic
Decomposition

Library
Characterization

Target Code
Indentification

Optimized C Code
with Library Calls

and Inline Assembly

Algorithmic-level C
Code

 

Figure 2. SymSoft Tool Flow  

 

The first step is to characterize the library elements.  The characterization not only includes 

performance and energy consumption of the complex element for a given hardware architecture, but also 

the expected input and output format, accuracy and a polynomial representation.   

The next step identifies the target code for optimization.  In this step, an initial check is performed to 

see whether data representation used in the algorithmic-level C code matches the target hardware.  Most 

embedded processors support only fixed point computation, but many multimedia algorithms utilize 

floating-point operations.  The profiler, described in Section 4.2.2, detects if data representation is an 

issue within several seconds.  Then, if needed, floating-point operations are replaced with fixed-point 

operations with the help of a floating-point to fixed-point converting tool [4][5].  The profiler also 

reports the performance and energy critical functions of the code.  The polynomial representations of the 

arithmetic sections of the critical routines are calculated with help of traditional compiler techniques 
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such as loop unrolling.  When necessary, polynomial approximation techniques are used.  Accuracy is 

checked at the end of the target code identification step to make sure that the code still meets the 

specifications, as some rounding occurs both during the data representation conversion and during the 

polynomial formulation.   

Finally, the target code represented by polynomials is automatically mapped into the library elements 

and complex processor instructions.  Our key contribution in SymSoft is a new method to map critical 

code segments into pre-optimized software library elements and complex assembly instructions using 

symbolic polynomial manipulation.  The mapping process selects the solution that offers best 

performance with sufficient accuracy.  Since our methodology is compliant with other software 

optimization techniques, additional benefits are gained by combining it with traditional complier 

optimization algorithms, such as constant and variable propagation, dead code elimination, and loop 

unrolling.  The next sections describe each part of the SymSoft flow in detail. 

4.1 L ibrary Character ization 

The target library consists of pre-optimized software libraries and complex arithmetic instructions 

available for the target processor.  Complex arithmetic instructions vary from the simple multiply-

accumulate (MAC) to more complex instructions, such as those developed by Tensilica tools [6].  Pre-

optimized software libraries include traditional embedded system libraries, such as the IEEE floating-

point mathematical library for Linux operating system [17], commercial libraries available for the 

particular processor, such as Intel’s integrated performance primitives (IPP) [14], and a set of in-house 

pre-optimized routines.  Table 1 shows a sample of elements of the IPP library.  Library characterization 

is done on element-by-element basis.  Each element is labeled with the type of inputs and outputs, 

performance, accuracy, energy consumption, and finally its polynomial representation.   
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Table 1.  Sample of IPP L ibrary Elements 

L ibrary Elements Descr iption 

Exp Exponentiation 

Ln Natural logarithm 

DotProd Vector dot (inner) product 

Mean Vector arithmetic mean 

FIR Finite impulse response filter 

IIR Infinite impulse response filter 

Conv Convolution 

WinHamming Hamming window 

FFT Fast Fourier transforms 

HuffmanDecode Decodes Huffman symbols 

SubBandSynthesis Stage two of hybrid synthesis filter bank 

IMDCT Inverse modified discrete cosine transform 

 The format of library element inputs and outputs is determined from the library include files or 

documentation available with the library element.  Techniques discussed in Section 4.2.3 can be used to 

extract the polynomial representations from the source code if the code is available.  Otherwise, either 

the distributor needs to provide the equivalent polynomial representation or it might be obtained from 

the documentation.  Important part of library characterization is the determination of accuracy, 

performance and energy consumption.  This information is used to guide the selection process when 

more than one library element has same functionality.  Most embedded systems have OS timers that can 

be used for fine-granularity performance measurements on hardware.  However, often there is not an 

easy way to measure processor and memory power consumption.  Alternatively, a cycle-accurate energy 

consumption simulator [24] easily provides energy and performance estimates of library elements.  Note 

that the library characterization step is yet to be automated. 

Examples of two characterized complex library elements, SubBand Synthesis and IMDCT, are shown 

in Table 2.  The library has three different versions of each library element: the open-source floating 

point version from the MP3 standards library [3], fixed-point in-house pre-optimized routine, and a 
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version from Intel’s integrated performance primitive (IPP) library for StrongARM SA-1110 

processor [14].  For each library element, we have measured its performance on the SmartBadgeIV 

hardware.  All entries in Table 2 are represented using polynomials.  Since polynomials for complex 

library elements can be quite large, we show only a critical portion of IMDCT polynomial in Equation 1.  

Equation 1 shows how n/2 windowed samples, yk, are transformed into n xi samples.  Note that this is 

just a first order polynomial, since ))12)(
2
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Table 2.  Character ized Complex L ibrary Elements 

 

 

 

 

 

4.2 Target Code Identification  

The input to the target code identification step is the algorithmic-level C code of the embedded 

software.   The output of this step is a set of polynomial representations of the critical code segments that 

would benefit most from mapping to complex instruction and pre-optimized library elements.  Target 

code identification consists of three stages as shown in Figure 3.  First, the profiler checks to see whether 

floating point operations are on the critical path.  If needed the floating-point operations are transformed 
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(1) 

Library Element Execution time Input Type 

 float SubBandSyn 0.95 64 bit float 

 fixed SubBandSyn 0.01 32 bit fixed 

 IPP SubBandSyn 0.002 32 bit fixed 

 float IMDCT 0.39 64 bit float 

 fixed IMDCT 0.014 32 bit fixed 

 IPP IMDCT 0.0002 32 bit fixed 
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into fixed-point operations by data representation conversion.  Next, the energy and performance critical 

procedures are identified.  This step can be done either with simulation using the energy profiler [24], or 

by profiling directly on the hardware. Finally, when the power and performance critical procedures are 

identified, they are formulated as polynomials suitable for mapping into library elements.  In the next 

sections, we will take a closer look at each stage of the target code identification step. 

Algorithmic-level
C Code

Floating-point
Problem?

Data Representation
Conversion

Energy Profiling

Polynomial
Formulation

Accuracy
Problem

Yes

Yes

No

No

Polynomial Representations of
Critical Code Segments  

Figure 3. Target Code Identification 

4.2.1 Data Representation Conversion 

Signal processing algorithms are generally developed using ANSI-C with IEEE floating-point data 

types.  However, these algorithms are often implemented in embedded systems using fixed-point data 

types in order to meet the power, cost, and performance requirements.  In this stage, it is checked 

whether floating-point operations are capturing most of the execution time and power consumption of 

the algorithmic-level C code.  In that case, floating-point operations are considered critical and they must 

be converted to fixed-point operations.  Converting a floating-point algorithm to a fixed-point algorithm 
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is a time consuming and error prone task.  Facilitating and semi-automating this conversion has been the 

target of many research projects [4][5].  Such tools use interpolative analysis or analytic techniques to 

convert floating-point operations into appropriate fixed-point operations while reducing the manual 

work and the number of simulations required.  In our tool flow, we opt to use a tool like Fridge (a.k.a. 

CoCentric fixed-point designer) to automate this stage of optimization.  

4.2.2 Energy Profiling  

Code optimization requires extensive program execution analysis to identify performance and energy-

critical bottlenecks and to provide feedback on the impact of code transformations.  Profiling is typically 

used to relate performance to the source code for CPU and L1 cache [23]. Energy profiler enables easy 

identification of energy-critical procedures.  It also facilitates analysis of code transformations’  impact 

on the processor energy consumption, the memory hierarchy, and the system busses.  

 The profiler exploits a cycle-accurate energy consumption simulator [24] to relate the embedded 

system energy consumption and performance to the source code. Thus, it can be used for analysis  (i.e., 

to find energy-critical sections of the code), and for validation (i.e., to assess the impact of each code 

optimization).  The profiler architecture is shown in Figure 4.   

Source code is compiled using a compiler for a target processor.  The output of the compiler is the 

executable represented as assembly code and a map of locations of each procedure in the executable.  

The profiler of the cycle-accurate simulator periodically samples the simulation results (by user defined 

sampling interval) and maps the energy and performance to the function executed using information 

gathered at the compile time.  Sampling is used to improve profiling speed while maintaining accuracy.  

Once the simulation is complete, the energy consumption and execution time of each function are 

displayed.   
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    for ( i=0; i<30; i++)
   {

x[i] = y[i] + 2 *  x[i + 1];
z[i] -= x[i];
y[i]  = x[i] + z[i];

   }

LD R21, #30;
ADD  R21, R23,R27;
...

Energy
Consumption

Software Profile

    fun     energy
    -----------------
   getD    15%
    sort      10%
    init       2%
    ...

 

Figure 4. Profiler  Architecture 

 

With the profiler, SymSoft can obtain energy consumption breakdown by procedures in the source 

code and thus can quickly identify the sections of the source code whose optimization can provide the 

largest execution time and energy savings.  In addition, with the cycle-accurate simulator that is at the 

heart of the profiler, SymSoft can get detailed information about performance and energy consumption 

of smaller subsections of code.  The identified critical code segments are then passed as inputs to 

polynomial approximation and symbolic mapping tools that can optimally map the code section into 

complex library elements and assembly instructions in few minutes.  

4.2.3 Polynomial Formulation 

Our goal is to automatically map the critical code segments selected by the profiler into pre-optimized 

library elements or complex assembly instructions such that optimum execution time and power 

consumption are achieved.  The symbolic mapping algorithm, described in Section 4.3, takes as input the 
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polynomial representations of the critical code segments and the polynomial equivalence of complex 

arithmetic assembly instructions and pre-optimized library elements.  The polynomial formulation step 

prepares the first set of inputs required by the symbolic mapping algorithm by calculating the polynomial 

representations of the critical code segments.  The second set of inputs is calculated in the library 

characterization step as described in Section 4.1.   

The polynomial representation of a basic block can be directly extracted from the C code if the basic 

block calculates a polynomial function.  If the basic block performs a series of bit manipulations or 

Boolean functions, interpolation-based algorithms [31][32] can be used to formulate the equivalent 

polynomial representation.  When the basic block implements a transcendental function, we use an 

approximation, such as the Taylor or Chebyshev series expansion, as its polynomial.  The chosen 

polynomial approximation has to be verified by simulation to ensure that the software constraints, such 

as audio quality, are satisfied.  A good approximation can result in large performance and power 

improvements for multimedia applications, since these applications can tolerate a slight degradation in 

the output. For example, to verify the accuracy of the MP3 decoder we have used the compliance test 

provided by the MPEG standard where the range of RMS error between the samples defines the 

compliance level [25].  If the approximation is not sufficient to satisfy the accuracy constraints, the 

quality of approximation is changed and verified again through simulation.   

The objective of this step is to formulate polynomials that cover as much of the source code as 

possible.  Consecutively, the likelihood of finding a more complex library element that matches at least a 

portion of the formulated polynomial increases.  This objective can be accomplished by using code 

transformation techniques such as loop unrolling, constant and variable propagation to form larger basic 

blocks.  
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4.3 Symbolic Mapping Algor ithm  

 The symbolic mapping algorithm requires two sets of inputs: a set of polynomial representing the 

critical code segments and another set of polynomials representing the pre-optimized library elements 

and complex instructions.  The former has been generated in the target code identification step and the 

latter is the output of the library characterization step.  The goal of the symbolic mapping algorithm is to 

decompose the polynomial representations of the critical code segments (CCS) into the polynomial 

representations of the target library such that execution time and power consumption are minimized.  

The power consumption and execution time of each library element are provided to the mapping 

algorithm as constants by the library characterization step as described in Section 4.1.  As opposed to 

tree covering based algorithms, in our algorithm, mapping is performed simultaneously with algebraic 

manipulations.   

Symbolic computer algebra is a set of algorithms capable of algebraic manipulation of expressions 

containing undetermined values (symbols), such as variable x  in  ( x+1) * ( x- 1) .  Several commercial 

symbolic computer algebra softwares are available on the market; Maple [26] and Mathematica [27] are 

most widely used.  The algebraic object to be symbolically manipulated is a set of multivariate 

polynomials that represent a critical basic block identified in the profiling step.  Most interesting 

symbolic polynomial manipulations are based on Gröbner bases [30].  Gröbner bases also solve variable 

elimination in a set of polynomials and ideal membership problems, which is the core of the 

simplification modulo set of polynomials [30].  We use the following set of symbolic techniques: 

factorization, expansion, Horner transform, multivariate polynomial substitution, and variable 

elimination.  We have described the complex underlying theory in the contest of hardware design 
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elsewhere [29][28].  In this section, we show the power of symbolic algebra by means of few of the 

routines applied to simple examples. 

Example 2: Factor and expand are inverse operations.  Consider using Maple to factor and expand 

the following polynomial: 

›  S : = x^ 2* ( x^ 14+x^ 15+1) ;  

›  P : = expand( S) ;  

P : = x^ 16+x^ 17+x^ 2 

›  f act or ( P) ;  

x^ 2* ( x^ 14+x^ 15+1)              
�

 

Example 3: Horner form of a polynomial is a nested normal form with minimal number of 

multiplications and additions.  Any polynomial can be rewritten in Horner, or nested, form.  An 

example of Horner form polynomial for multiple variables is shown below: 

›  S: = y^ 2* x+y* x^ 2+4* x* y+x^ 2+2* x;  

›  conver t ( S,  ’ hor ner ’ ,  [ x , y] ) ;  

( 2+( 4+y) * y+( y+1) * x) * x            
�

 

Example 4: Simplify implements substitution and variable elimination for multivariate polynomials:  

›  S: = x  + x^ 3* y^ 2 –2* x* y^ 3;  

›  s i mpl i f y( S,  { p = x^ 2–2* y} ,  [ x , y, p] ) ;  

x+y^ 2* x* p              
�

 

The core of the library-mapping algorithm is the simplification modulo set of polynomials (simplify) 

routine.  The polynomial representations of critical code blocks are simplified modulo a subset of 

polynomials representing the library elements called the side relation set.  Choosing the side relation set 

is a non-trivial and important task, especially since different side relation sets results in different 

solutions.  In previous work [28], an algorithm was introduced to select the side relation set such that the 
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hardware implementation of a (portion of) data path with a given component library has minimal critical 

path delay.  In this paper, we use the algorithm to optimize execution time of the critical code segments 

of software by mapping to pre-optimized library elements and complex assembly instructions.  Since 

evaluating all subsets of the library is exponentially expensive, the library-mapping algorithm uses the 

branch-and-bound method with execution time and energy consumption as bounding functions to prune 

the search space. All previously described symbolic manipulations except simplify are used as guidelines 

in formulating different side relation sets to speed up the mapping algorithm.   

Polynomial Representation of Critical Code Segment

THR Expand HornerFactor

Select Side
Relation Set

Polynomial
Representation of
Library Elements

Simplify
Add to Side
Relation Set

Best Solution

Mapped?
No

Yes

Main Loop

 

Figure 5.  Overview of the L ibrary M apping Algor ithm 

Figure 5 gives an overview of the mapping algorithm.  Inputs to the algorithm are the polynomial 

representations of the critical code segments (CCS) and the polynomial representations of the target 

library elements.  Initially, tree-height reduction, factorization, expansion, and Horner-based transform 

are applied to the polynomial representation of the CCS resulting in several different polynomials 

representing the same code segment.  Each of the different polynomial representations is used to select a 

side relation from the target library.  These guidelines are used to increase the speed of finding the 
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desirable mapping.  The polynomial representation of the CCS is simplified modulo the selected side 

relation sets in parallel.  If the result of simplify matches a library element then the CCS is mapped.  

Otherwise, we need to continue to add to the side relation set until the CCS is fully mapped to our 

library.  The iterative part of the algorithm, denoted in Figure 5 as main loop, is implemented using 

branch-and-bound algorithms. 

Table 3 shows the pseudo-code of the library-mapping algorithm.  Inputs to this algorithm are the 

polynomial representation of the critical code section (CCS) and the polynomial representations of the 

library elements (L).  The bounding function is defined as the best execution time for CCS seen so far.  

The lower bound computed at each decision branch is the execution time of the library elements in the 

side relation set in view of data dependencies.  If this lower bound is greater than the best execution time 

seen so far, the corresponding decision branch is pruned.  Decision tree (decision_tree) implements the 

branch-and-bound algorithm.  The algorithm starts by initializing the root of decision_tree to the 

polynomial representation of CCS and calculating an initial bound.  The bounding variable is initialized 

to the execution time of calculating the CCS polynomial solely with add and multiply instructions, the 

lexicographical mapping (LexMap).  Nodes are added to this tree in breadth-first manner.  These nodes 

store the polynomial result of simplify of their parent node and the chosen side relation set.  When a 

simplification result corresponds to a polynomial representation of a library element, a possible solution 

is found and the corresponding tree node is marked accordingly.  If the execution time of the solution is 

less than previously encountered solutions, we set the bounding variable to the current value.  In case the 

simplification result stored in a tree node does not correspond to any library elements, we apply the same 

steps to the new tree node until either a solution is found or the corresponding branch is pruned.  Since 

CCS is a polynomial and add and multiply instructions are always available in our library, we are 



 21

guaranteed to have a solution.  However, our mapping algorithm searches for a solution that best 

exploits the given software library. 

Table 3. Pseudo Code of the L ibrary M apping Algor ithm 

 

 

 

 

 

 

 

 

 

 

The branch-and-bound algorithm in Table 3 is applicable to most practical problems and its runtime is 

in the matter of minutes.  But, as for all branch-and-bound algorithms, the worst-case complexity 

remains exponential.  The speed of this algorithm depends on the initial polynomial and the initial side 

relation set.  Here, we use a set of library independent symbolic manipulations on the original CCS 

polynomial to help with the selection of initial side relation element.  These manipulations improve the 

execution time without hampering the quality of the solution.  First, we apply tree-height reduction, 

function Decompose (exp_tree, boundVal, L) {  
   // initialize the decision tree 
   decision_tree ← tree (exp_tree) 
   Depth ← 0 
   Bound ← boundVal 

   for  all n ∈ decision_tree with depth == Depth  do{  

        if Depth == 0   
               choose sr ∈ L to preserve the exp_tree structure 

         else for  all sr ∈ L {  
               result = simplify (n, sr); 
               AddChild (n, result)  // make result a child of node n 

               if result ∈ L   // solution is found 
                   Bound = Min(cost of node result, Bound);  
         }  
          if no more n ∈ decision_tree with depth == Depth  
              Depth ← Depth + 1 
  }  

  return the best solution  

end Decompose 

procedure main (CCS,L) 

   exp_tree [1 .. NoManipulations] = AllM anipulations (CCS); 

   for  i = 1 to NoManipulations {  
       boundVal[i]=LexM ap(exp_tree[i]); 
       solution[i] = Decompose(exp_tree[i],boundVal[i]) }  

   return the best solution in solutions[i] 

end main 
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factorization, expansion, and Horner-based transform to CCS in the AllManipulations function.  As a 

result, we have several different polynomials (exp_tree) representing the same code section.  Each of 

these representations can result in the desirable implementation based on the available library elements.   

To select the initial member of side relation sets, we start with the primary inputs and cover the 

expression tree with the library elements.  We choose all library elements that cover the primary inputs 

and a portion of the expression tree as initial elements of the different side relation sets used to simplify 

the root of the decision_tree.  If the result of simplify is not a library element, we add more elements to 

the side relation set without further guidance from the expression tree and decompose the result.  Note 

that in selecting the side relations from the library, all different permutations of the variables with the 

same data-type are considered.  This algorithm is implemented in C with calls to Maple V for the 

symbolic manipulations. 

Example 5:  In order to demonstrate the power of our library mapping algorithm, consider a basic 

block implementing Equation 2: 
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Equation 2 is approximated using Pade approximation to the polynomials shown in Equation 3 in the 

previous step of the SymSoft flow as described in Section 4.2.3. 
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The simplification modulo set of polynomials routine can be used to map the numerator and 

denominator of Equation 3 to the available instruction set.  Let dn be the numerator of Equation 3 
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with a, b, and c  the constants of the polynomial.  In addition, we define si der el s  as a subset of 

the available instructions with renamed variables.  We have:   

> dn: =1+a* x^ 2+b* x^ 4+c* x^ 6:    

 s i der el s: ={ w=x^ 2,  y=b+c* w,  z=a+y* w}  

> si mpl i f y( dn,  s i der el s, [ x, w, y, z] ) ;  

   1+z* w 

Note that the first element of the side relation set (w=x^ 2) corresponds to the square or multiply 

instruction and the other two elements of the set (y=b+c* w,  z=a+y* w) and the result of simplify 

(1+z* w) correspond to the MAC instruction.  The side relation set can be any subset of the available 

instruction set with proper renaming of the variables.  Different side relation sets result in finding 

other possible solutions for the specification.  The above implies: 

dn=1+a* x^ 2+b* x^ 4+c* x^ 6=1+z* w 

=1+( a+y* x^ 2) * x^ 2=1+( a+( b+c* x^ 2) * x^ 2) * x^ 2 

Therefore, the numerator of Equation 3 can be mapped to one square and three MACs instructions.  

Assuming R1, R2, R3, R4, and R5 hold 1, a, b, c , and x , respectively, the resulting assembly code 

is: 

MULT R6,  R5,  R5 

MAC  R7,  R3,  R4,  R6 

MAC  R8,  R2,  R7,  R6 

MAC  R7,  R1,  R8,  R6 

 In the MP3 decoder program, the basic block evaluating Equation 2 uses floating-point and takes 

2384 cycles to run on the StrongARM SA-1110 processor.  The approximation represented in 

Equation 3 calculates x  using floating-point and d using fixed-point arithmetic and nested MACs as 
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suggested by the symbolic optimization.  This approximation executes in 1257 cycles.  Thus, we 

have achieved an improvement of 47% for this simple example.              �  

5. Results 

We have tested the effectiveness of SymSoft using the experimental embedded system SmartBadgeIV 

and a wide range of code examples used in communication, digital signal processing, and streaming 

media.  The SmartBadgeIV system and our experimental setup for hardware execution time and energy 

consumption measurement were described in Section 3.  

The first six software examples are obtained from a DSP software benchmark suite [33].  The first 

two examples are software programs that perform common digital signal processing computations; 

discrete convolution and dot (inner) product.  Convolution is the linear operator can compute the output 

of a linear time-invariant (LTI) system in response to an input sequence given the system impulse 

response sequence.  The dot (inner) product of two vectors is the summation of the products of the two 

input sequences; i.e. � ⋅=
i

iyixz ][][ .   

The next four examples are different digital filters used in digital signal processing and 

communication applications.  The first filter is a finite impulse response (FIR) filter.  The next two 

filters are biquad infinite impulse response (IIR) filters.  A single IIR filter of arbitrary order is often 

decomposed into equivalent cascades of 2nd-order IIR sections known as biquads.  Although the biquad 

cascade is analytically identical to the single filter of higher order, the biquad filter realization is more 

stable and less sensitive to quantization errors.  The last filter is least-mean-square (LMS) FIR adaptive 

filter. The LMS filter is a time-varying linear system for which the filter coefficients are adjusted at each 

time step to minimize the error between the actual output and a given desired output.   
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Finally, the last example is a full MPEG Layer III (MP3) audio decoder implementation that streams 

MP3 encoded files from a server to a client (SmartBadgeIV). 

Table 4. Results of SymSoft optimization on a set of examples 

  Execution time in microsecs 

Examples Or iginal SymSoft improvement (%) 

Convolution 667 627 6.01 

Dot product 358 267 25.42 

FIR filter 2418 1170 51.61 

IIR filter (4 biquads) 5079 4355 14.25 

IIR filter (1 biquad) 1396 1250 10.46 

Least Mean Square 1200 1000 16.67 

MP3 decoder 54700 14300 73.86 

Table 4 summarizes the results of applying SymSoft tool flow to the set of examples discussed above.  

In each case, we start with the fixed-point implementation of the algorithm and use profiling to select the 

critical code sections.  Optimizing a critical code section results in a noticeable improvement on any 

given example.  Next, the critical code sections are automatically mapped to the instruction set available 

on the StrongARM SA-1110 processor and Intel’s integrated performance primitives (IPP) library for 

StrongARM SA-1110 processor [14].  Table 4 shows the execution time of each example before and 

after the optimization with SymSoft.  Note that the original execution time includes all optimizations 

that are possible with using the ARM compiler.   

The improvements demonstrated in Table 4 indicate that by using SymSoft we can obtain significant 

execution time improvement for a range of applications over commercial compilers.  The amount of 

improvement achieved is dependent on the number of critical blocks that are optimized and the library 

implementations available for the given block.  Examples in Table 4 show improvements in the range of 

6% to 73% with an average of 28% improvement. 
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In the next section, we will go through all the steps of the SymSoft flow using the MP3 decoder 

software as an example.  

5.1 The MP3 Optimization Results  

We start with an algorithmic level description of the MPEG Layer III (MP3) audio decoder obtained 

from the International Organization for Standardization (ISO) [3].  Our design goal is to accelerate the 

MP3 decoder and lower its energy consumption while keeping full compliance with the MPEG standard.  

The first step in decoding the MP3 stream is synchronizing the incoming bitstream and the decoder.  

Huffman decoding of the SubBand coefficients is performed before requantization.  Stereo processing, if 

applicable, occurs before the inverse mapping which consists of an inverse modified discrete cosine 

transform (IMDCT) followed by a polyphase synthesis filterbank.  During the optimization process, we 

used instructions available on the StrongARM SA-1110 processor, a mathematical library available 

with Linux OS [17], Intel’s integrated performance primitives (IPP) library for StrongARM SA-1110 

processor [14], and a library populated with in-house pre-optimized routines.  The library elements 

ranged from simple mathematical functions such as MAC to as complex elements as I MDCT routine.   

The SymSoft flow, as described in Section 4, consists of library characterization, target code 

identification, and the final library mapping step.  The library characterization step uses hardware 

measurements for performance and simulations for energy consumption [24].  The polynomial 

representation is obtained either from the source code (Linux mathematical and in-house libraries), or 

from documentation (IPP library).  

The target code identification consists of three important steps: data type conversion, code profiling, 

and formulating polynomials to be mapped.  The first step is to check if floating-point data types are 

suitable for the given platform.  Since SmartBadgeIV ’s processor, StrongARM SA-1110, can only 
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emulate the floating-point operations, there is a need for data representation transformation.  The code 

was converted to use fixed-point arithmetic.  It was verified through simulation that 27-bit precision 

fixed-point data-types are sufficient to meet the compliance test provided by MPEG standard [25].  

Automating floating-point to fixed-point data type conversion has been targeted by the tool Fridge [4].  

Profiling the original source code highlights the critical code segments.  Table 5 shows the results of 

profiling original MP3 decoder software we obtained from the standards body.  All profiling reported in 

Table 5 is using hardware measurements.  The results are shown for one frame and represent only the 

most significant functions in terms of their performance impact.  Next, we formulate equivalent 

polynomial representation of each of the critical functions shown in Table 5.  We use polynomial 

approximations for the non-linear calculations in the critical basic blocks.  Once more, we validate that 

these approximations satisfy the MPEG compliance test [25].  The output of the target code 

identification step is a set of polynomials representing the critical sections of the code. 

Table 5.  Profiling the Or iginal M P3 Code 

Function name Execution time (s) % 

 III_dequantize_sample 1.1754 45.33 

 SubBandSynthesis 0.9481 36.56 

 Inv_mdctL 0.3872 14.93 

 III_hybrid 0.0670 2.58 

 III_antialias 0.0131 0.51 

 III_stereo 0.0010 0.04 

 III_hufman_decode  0.0007 0.03 

 III_reorder 0.0005 0.02 

 Total for one frame  2.5931 100.00 

In the first phase of optimization, the polynomial representations of the critical code sections of the 

first three function shown in Table 5 are mapped into the StrongARM assembly instructions by 

algorithm described in Section 4.3.  It is important to note that StrongARM compiler was not capable of 

using the MAC instruction effectively.  However, our symbolic algorithm was able to use this instruction 
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efficiently.  Automatically generated inline assembly was inserted in the C code as the result of the 

decomposing algorithm.  The results of optimizing critical functions of the MP3 code by SymSoft are 

compared with the original results from straightforward compilation in Table 6.  The numbers reported 

in Table 6 are obtained using the cycle accurate energy simulator described in Section 4.2.2.  As we can 

see, 12-70% improvement has been achieved using the SymSoft methodology.  Such improvement was 

previously possible only thorough manual optimization with inline assembly.  The automation 

introduced by SymSoft drastically reduces the embedded software optimization cycle.   

Table 6. Compar ison Between SymSoft Instruction M apping and Commercial Compiler  

 

 

 

 

 

Next, we profile the MP3 decoder that results from this phase of optimization on the hardware and 

measure the execution time of each function while decoding one frame of the MP3 stream.  The 

resulting performance profile is shown in Table 7.  Although the execution time per frame is drastically 

reduced (by two orders of magnitude compared to Table 5), we can see that still almost 85% of the 

execution time is spent in the IMDCT and SubBand synthesis functions. 

 Execution time (#cycles) Energy Consumption (mWhr) 

Function or iginal optimized %imp or iginal optimized %imp 

MDCTCoeff 1454550 957051 34.2 1.051 0.922 12.2 

FilterS 5263831 4196853 20.3 3.630 3.319 8.6 

Power3/4 14135 5380 61.9 0.040 0.009 76.6 

Dequant 650894 421976 35.2 0.940 0.747 20.5 

SubBandSyn 155204 70633 54.5 1.015 0.306 69.8 

MDCT 63583 31954 49.7 0.101 0.051 49.6 
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Table 7.  M P3 Profile After  First Phase of Optimization  

 

 

 

 

 

 

In the second phase of optimization, the code is mapped to Intel’s IPP library using the SymSoft 

methodology.  Here we find two primitives that match the two critical procedures shown in Table 7.  

The resulting performance profile is shown in Table 8.  Our method automatically uses two of the IPP 

routines.  While the new profile shows that SubBand synthesis still takes roughly 35% of the execution 

time for each frame, we see that MDCT is no longer a critical portion of the code.  Notice that the 

execution of the IPP SubBand synthesis routine is one order of magnitude faster than the previous 

version and the total time for decoding one frame is reduced by a factor of 5.   

Table 8.  M P3 Profile After  Second Phase of Optimization 

 

 

 

Function name Execution time (s) % 

 Inv_mdctL 0.0144 49.54 

 SubBandSynthesis 0.0103 35.30 

 III_dequantize_sample 0.0013 4.33 

 III_stereo 0.0008 2.83 

 III_reorder 0.0007 2.28 

 III_antialias 0.0006 2.15 

 III_hufman_decode  0.0007 2.48 

 III_hybrid 0.0003 1.10 

 Total for one frame  0.0291 100.00 

Function name Execution time (s) % 

 ippsSynthPQMF_MP3_32s16s 0.00176 35.242 

 III_dequantize_sample 0.00124 24.79 

 III_stereo 0.00082 16.46 

 III_hufman_decode 0.00067 13.416 

 IppsMDCTInv_MP3_32s 0.00047 9.4113 

 III_get_scale_factors 3.4E-05 0.6808 

 Total time for one frame  0.00499 100.00 
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Table 9 summarizes the performance and the energy results of the overall optimization process we 

described in this section.  All measurements are performed on the SmartBadgeIV while running at 

maximum processing speed and voltage.  We start from the original source code obtained from the 

standards web site that runs roughly two orders of magnitude slower than real-time playback.  The next 

two rows show the results of mapping only into Intel’s IPP library; more specifically, we are able to 

automatically use IPP’s SubBand Synthesis and IMDCT in the original code.  However, the rest of the 

code remains intact and still operates on floating-point data.  StrongARM SA-1110 cannot perform 

floating-point operations natively.  As a result, the execution time of the code is still far from real-time 

playback.  

Table 9.  Execution time and Energy of Different Versions of the M P3 Decoder  

 

 

 

 

 

The fourth row corresponds to the result of the first phase of optimization using SymSoft 

methodology (without using the Intel library).  In this phase, the target libraries used in the mapping step 

consist of the assembly instructions available on the StrongARM and a set of in-house fixed-point 

routines.  As shown, we have achieved an improvement of two orders of magnitude in both performance 

and energy for this mapping.  The improvement is because of effective use of the MAC instruction 

Code version 
Execution 

time (s) 
Improvement 

factor  
Energy (mWhr) 

Improvement 
factor  

 Original 503.92 1.0 509.6 1.0 

 Original + IPP SubBand 301.43 1.7 292.5 1.7 

 Original + IPP SubBand & IMDCT 211.27 2.4 199.1 2.6 

 SymSoft first phase (FPh) optimization 5.47 92.1 4.47 114.2 

 FPh + IPP SubBand 3.33 151.4 2.78 182.3 

 SymSoft final optimization  
(FPh + IPP SubBand & IMDCT) 

1.43 352.4 1.17 435.2 

 IPP MP3 (Best possible) 0.41 1240.8 0.31 1626 
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available on StrongARM and conversion of most floating-point operations to fixed point.  Fixed-point 

accuracy is verified through simulation.   

Additional saving of a factor of four is obtained by further optimizing the code and adding Intel’s IPP 

library to the target libraries in the mapping step.  The improvement of factor of four is solely due to 

automatic use of complex library elements that have been pre-optimized for the given processor.  Full 

compliance to the standard of each version of MP3 code is ensured by checking the accuracy at each 

mapping step with MP3 compliance test [25].  Note that even larger energy savings are possible by using 

processor frequency and voltage scaling, since the final MP3 code optimized by SymSoft runs almost 

four times faster than real-time playback.   

The last row in the table, IPP MP3, represents fully hand-optimized MP3 code for StrongARM 

available from Intel. The final optimized version by SymSoft is a factor of 3.5-3.7 times worse than the 

IPP MP3.  The lower bound on execution time (IPP MP3) is achieved by full manual optimization, 

which is an error-prone and tedious task.  Our methodology reduces the manual intervention of software 

designers in the optimization process and its results are still faster than real-time playback.  Such 

improvements were previously only possible by skilled designers, familiar with the hardware and 

software, hand optimizing the code for a given embedded system platform.  

 As it can be observed from Table 9, the reported optimization space for the MP3 decoder spans over 

three orders of magnitude.  The major contribution of this work is to provide a semi-automated 

optimization flow that closely approaches the lower bound of the optimization space within the 

limitations of polynomial representation for code sections.  Our approach is particularly suitable for data 

intensive algorithms such as DSP and multi-media applications, since large portions of these software 

codes can be easily represented by polynomials.   
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6. CONCLUSION 

The contribution of this paper is a tool flow, SymSoft, for energy and performance optimization of 

algorithmic level software code to execute on a given embedded processor.  There are three main steps 

in our methodology: library characterization, target code identification, and library mapping.  Library 

characterization step finds a polynomial to represent the functionality of each library element and 

associates a set of parameters such as execution time, energy consumption, and input/output type with 

each library element.  In the target code optimization step, our tool uses execution time and energy 

profiling to automatically identify need of automated data representation conversion and the critical 

sections of the code that would benefit most from optimization.  For transcendental arithmetic functions, 

approximation into a polynomial representation is needed in order to enable symbolic algebra 

techniques.  Finally, the library-mapping step uses symbolic computer algebra to automatically 

decompose the polynomial representations of the critical code sections into a set of library elements 

available for the embedded processor.     

We demonstrated application of our tool, SymSoft, to the optimization of several examples on the 

SmartBadgeIV [2] embedded system.  Using SymSoft for source code optimization, we have been able 

to increase performance and energy consumption of these examples dramatically while satisfying the 

output accuracy requirements.  These improvements are achieved by the use of pre-optimized software 

library functions, conversion of critical floating-point operations to fixed point, and reducing the number 

of memory accesses and instructions executed in critical code segments.  The technique presented in this 

paper can be easily used in conjunction with other compiler optimization techniques [7]. 
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Response to the Associate Editor  

Only a few minor changes were requested.  I will check them myself when you resubmit the new 
version.  

 

Response to Review Number  1 

Most of the concerns of the original paper have been taken into account. A few comments still 
remain: 

- the fact that some transformations are semi-automatic or even manual is mentioned in the response 
to the reviewers comments, but the same clarity is missing in the paper itself. I would expect such a 
clarification, for example, at the end of section 4.1. 

A sentence has been added to the second paragraph of Section 4.1 to address this concern. 

 

- the request for more experiments has not been taken into account as expected. In their response, 
the authors mention 6 new experiments. However, these “ experiments”  are just additional results 
from the MPEG example and not really referring to the symbolic algebra mapping.  I would have 
expected results from a different application, showing the power of symbolic algebra mapping 

The new experiments are not additional results from the MPEG example.  As described in the second 
paragraph of Section 5, they are from a DSP benchmark suite (DSPstone).  A reference has been 
added to avoid this confusion. 

 

- the English could still be improved by adding some articles here and there (for example, the 4th 
line in section 4.1 should read 

....  include traditional software librarIES, such as THE IEEE floating point .....  

Same for 4th line of 5.1, add THE in front of MP3 

Corrected. 

 

- the 6th row of table 9 should explicitly include "IMDCT" in column 1, since the use of that function 
seems to be the main change, compared to row 5. 

Added. 
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Response to Review Number  3 

I think this is a largely improved version of the paper. However, I would recommend that more 
polishing be done. 

- In the Introduction you say “ Our methodology automates the process of identifying the code 
sections that benefit from complex library mapping” , but in fact this process seems only semi-
automated. I would clarify that statement. 

The identification and mapping processes are automated as mentioned in the response to the previous 
version of the paper.  Therefore, the sentence was not changed. 

 

- In the related work section you say "In the previous work, MP3 audio...". 

  Which previous work? Is this documented? Was it part of your work? 

A reference was added for clarification. 

 

- How does your methodology compare to [9]  and [10] ? 

Previous works use traditional graph covering methods for code generation.  Our methodology uses 
algorithms from symbolic algebra that are capable of mapping and algebraic manipulations 
simultaneously.  Graph covering techniques do not have knowledge of laws of algebra. 

 

- The introductory text of section 4 can be shortened considerably. One paragraph should be enough 
to introduce the section, and another to describe the flow in general (e.g. three lines per step); this 
could avoid some redundancy with the later detailed sub-sections. 

This section is summarizing the flow for readers who may not be interested in all the details. 

 

- The result of the optimization depends on the characterization of the library elements.  What kinds 
of input sequences are used for profiling? 

We have used the same input to the MP3 decoder for all profiling and characterization purposes. 

 

- The architecture of the profiler detailed in Figure 4 is not explained. 

Tajana can you take care of this, or should we refer him to the publication? 
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- It's clear that you need to profile the library elements for performance and energy.  But why do you 
need to profile the source code during the code identification process? Why don't you simply apply 
your polynomial formulation everywhere in the code and then optimize?  Or is the information 
gathered by the profiler used in any way by the mapping process? 

We use the profiling information to select sections of the code that benefit most from further 
optimization.  In most cases, only few sections of the code benefit from the mapping process and 
profiling helps select these sections. 

 

- At the end of section 4.2.3, you say that you look for "large" polynomials.  What exactly is a 
"large" polynomial?  Does it mean that it covers more of the source code?  Why does a large 
polynomial increase the likelihood of finding a more complex library element? 

The sentence has been reworded and clarified. 

 

- In Section 4.3 you say that the mapping algorithm introduced in [28]  could find implementations 
with the minimal critical path delay.  Is there a similar property in the new context?  Why is this also 
appropriate for software?  Could optimizing a different metric provide better results in your case? 

Yes, the similar property is execution time.  The sentence following the one quoted here has been 
reworded for clarification.  Software execution time is directly proportional to the energy consumed 
by system executing the given software.  Other metrics could also be used in the branch and bound 
algorithm.  However, for our example system, execution time of the software is the only controllable 
parameter. 

 

- On page 19 you say: “ The goal of the symbolic algebra mapping…” .  I would move this sentence 
and the one that follows to the beginning of section 4.3 so that it is immediately clear what the goal 
of this step is. These two sentences also make it clear what the inputs and the outputs are, so that the 
current first paragraph of the section can be removed.  On page 19 you are actually discussing the 
*conditioning*  of the input to the procedure. 

The two sentences have been moved. 

 

- On page 21-22, starting from “ The speed of this algorithm…” . Here you discuss again the 
operations that you apply to the input that you discussed on page 19-20.  I would make only one 
discussion of this on page 19-20, perhaps with more details (see below). 

 



 38

- Speaking about the initial operations applied to the input.  Could you hint at how the different 
operations influence the choice of the side relation set? 

This has been explained in the paragraph before Example 5. 

 

- Why is your algorithm breadth-first and not depth-first?  Is one better than the other? 

It is more likely that the best solution uses few number of library elements to calculate a critical basic 
block.  Therefore, breadth first would potentially find the best solution faster. 

 

- On page 23, “ In order to comply with Maple terminology...” .  You've been already using the terms 
“ simplify”  and “ side relations”  many times, it's odd that you say it only now that you call them that 
way. 

Sentence was removed. 

 

- How do you get the side relations in the example on page 23?  Why isn't, for example, y = x^2 
included in the set? (since you say you consider all permutations of the variables...). 

We have shown an instance of what siderel can be.  In another instance, siderel would include y=x^2 
as well. 

 

- In the example at the top of page 24, how much of the improvement is due to the use of fixed-point 
arithmetic, and how much is due to a smarter mapping? 

I don’ t have this info! 

 

- Section 5, the beginning: you don't test the "efficiency" of SymSoft, but rather its "effectiveness", or 
alternatively the "efficiency of the resulting code". 

Corrected. 

 

- Page 25: the audio decoder “ steams”  the encoded file. Perhaps it's “ streams” ? 

Corrected. 
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- I can't find a match between the data on the MP3 decoder in Table 4 and the data on any version of 
the MP3 decoder in Table 9. Have you used different input streams? 

Yes. 

 

- Is the data reported in Table 5 before or after the conversion from floating-point to fixed-point?  Is 
it before of after the approximation to polynomial?  I ask because the fixed-point conversion comes 
earlier in the flow, but you say that you profile the “ original”  code. 

The results are from the original floating point software. 

 

- What is the relationship between the entries in Table 5 and the entries in Table 6? 

The first sentence of the paragraph following Table 5 was changed to clarify the relation. 

 

- Similar to before, it is unclear to me whether the entry labeled “ Original”  in Table 9 is before or 
after the conversion to fixed-point and/or the conversion to polynomial representation. In other 
words, suppose you take the code from the standard body, perform the fixed-point conversion, then 
the approximation to polynomial representation, and finally compile with the standard ARM 
compiler.  What do you get?  How does it compare with your mapping algorithm?  This comparison 
would isolate the contribution of the mapping alone.  This might be exactly what you have done, but 
I don't find it very clear from the text. 

The original line the code obtained from the standards web site.  That was added to the text for 
clarification.  The number he is asking for should be in Tajana’s previous paper.  

 

- It would be nice in the conclusions to have your perspective on possible different applications of 
your algorithm and on avenues of future research.  For example, would it have been possible to map 
the whole MP3 decoder directly to Intel's manually optimized procedure?  Then, if you add that 
element to the library, your mapping would find the best solution! 

The granularity of the library functions currently available is less that the suggestion proposed. 

 

- I find that the paper is well written. However, the use of articles should be improved.  Every time 
you refer to an object in particular you should use an article. There are too many instances to report 
them individually. 
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Response to Review Number  4 

In my previous comments/questions: 

(A) 

(2) The algorithm in Table 3 (p.21) is unclear: 
 - How about the case when "solution is not found" for all nodes in the tree ? 
You answered: 
“ Since we start with a polynomial and we always have ADD and MULT instruction on our 
processor, we are guaranteed a solution” . 
It is not a proof. How about other instructions, e.g. DIV or SHIFT, if they exist in an 
application?  Please discuss more formally and clearly in the paper. 

As mentioned in the previous response, we are starting with a polynomial.  A polynomial by 
definition does not include division or shift operation.  A polynomial contains only add and 
multiply operations.   

 

(B) 
(3)  The paper did not show a mathematical proof of 
(a) Existence of a polynomial approximation (with a given accuracy) for any basic block of the C 
code ? 
(b) Existence of a library's element (in mapping process) for any polynomial ? 
You answered: 
"Our target applications are multimedia and DSP …”  
This is should be seen in the title of the paper. For example, the title maybe: "Complex 
Instruction and Software Library Mapping for Multimedia and/or DSP Embedded Software 
Using Symbolic Algebra”  
Then you discuss on the restrictions of the domain applications, etc. 
 
We have decided to keep the title intact, since only Reviewer 4 suggested a title revision.  On the 
other had, we are willing to change the title if the associate editor finds it necessary.  The 
application domain of the work has been emphasized in the introduction and abstract of the 
paper.  

 

(C 

5 

(j) Please re-arrange the references according to the publisher's rule. Writing of Ref. 8, 12, 13 
needs further revisions. 

Corrected. 
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Congratulation on your successes! 

Best, 

Reviewer #3 


