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ABSTRACT: Energy harvesting sensor nodes (EHSNs) have stringent low-energy consump-
tion requirements, but they need to concurrently execute several types of tasks (processing,
sensing, actuation, etc.). Furthermore, no accurate models exist to predict the energy harvest-
ing income in order to adapt at run-time the executing set of prioritized tasks. In this article,
we propose a novel power-aware task scheduler for EHSNs, namely, HOLLOWS: Head-of-
Line Low-Overhead Wide-priority Service. HOLLOWS uses an energy-constrained prioritized
queue model to describe the residence time of tasks entering the system and dynamically
selects the set of tasks to execute, according to system accuracy requirements and expected
energy. Moreover, HOLLOWS includes a new energy harvesting prediction algorithm, that is,
weather-conditioned moving average (WCMA), which we have developed to estimate the solar
panel energy income. We have tested HOLLOWS using the real-life working conditions of
Shimmer, a sensor node for structural health monitoring. Our results indicate that
HOLLOWS accurately predicts the energy available in Shimmer to guarantee a certain
damage monitoring quality for long-term autonomous scenarios. Also, HOLLOWS is able
to adjust the use of the incoming energy harvesting to achieve high accuracy for rapid event
damage assessment (after earthquakes, fires, etc.).
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INTRODUCTION

B
ATTERY-POWERED embedded sensor nodes (Motes
(Crossbow, 2009); DuraNode (Park et al., 2005),

etc.) are a very promising technology to achieve wide
monitoring systems for environmental monitoring.
These sensor nodes are able to gather data and periodi-
cally transmit it wirelessly to enable autonomous super-
vision of large natural environments and surfaces (e.g.,
natural parks, tunnels, bridges, etc.). However, in order
to achieve a long-time operation with their limited bat-
tery sizes, they require very low power system solutions.
As a result, a large percentage of these embedded sensor
nodes tends to perform simple data collection (e.g., tem-
perature or humidity sensing) and try to minimize the
energy consumption due to communication, as this is the
largest contributor since the complex filtering has been
traditionally done in centralized hubs or intermediate
sensor nodes (Raghunathan et al., 2002).

However, in the recent years, a very important
progress towards ultra-low-power processing architec-
tures has been achieved and last generation of embedded
sensor nodes (Lin et al., 2005; Musiani et al., 2007) are
able to perform much more intensive in situ filtering and
signal processing computation. Thus, it is possible to
enhance their flexibility to execute multiple concurrent
algorithms and applications in the collected data from
the environment in order to achieve complete natural
environment evaluations and complex features extrac-
tion (e.g., average level of damage in bridges
surfaces, pollution analysis in large surfaces of the
forests, etc.).

These new processing capabilities and the need for
advanced environmental signal processing in embedded
sensor nodes have led to the development of a whole
new set of applications and multi-tasking system designs
that exploit these new node architectures, such as, NIMS
(Pon et al., 2005) or Robomote (Sibley et al., 2002).
Nonetheless, these systems require significant human
maintenance, because their batteries need to be replaced
regularly.
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As a consequence, a very recent and important line of
research in this area is the development of energy har-
vesting sensor nodes (EHSN). These new sensor nodes
envisage the idea of self-maintained sensing systems by
replacing traditional batteries with complex recharge-
able energy storage systems, using combinations of bat-
teries and supercapacitors, which are subsequently
connected to different types of energy harvesting units
(Raghunathan and Chou, 2006).
Many different types of energy harvesting technolo-

gies have been proposed nowadays, such as, solar, vibra-
tion, wind, piezoelectric, and thermoelectric. Among all
these harvesting technologies, solar energy harvesting is
currently showing the most promising energy versus
area income trade-off (i.e., power-per-square centi-
meter), as shown in Raghunathan et al. (2005) or
Musiani et al. (2007). However, even though solar
panels can provide a significant amount of energy in
specific natural working conditions (e.g., large intervals
of sunny days), they are also subjected to very high
variations of energy income due to variable weather
conditions, which creates a large uncertainty on the
expected quality and availability of the different
EHSN. As a consequence, it is key to deploy new tech-
nologies and algorithms that can dynamically adapt the
multi-tasking computation capabilities of each EHSN,
according to the expected energy provided by the solar
panel at each moment.
In this regard, we propose in this article a novel

power-aware task scheduler for energy harvesting-
based sensor nodes, namely, HOLLOWS: Head-of-
Line Low-Overhead Wide-priority Service. This new
scheduler for EHSNs includes an accurate and fast ana-
lytical solution based on prioritized queues for tasks
with different priorities, which makes it capable to pre-
dict at run-time the mean waiting and residence time for
different multi-level priority tasks in a wide range of
EHSN working conditions. To this end, HOLLOWS
only uses as input the expected execution time and
inter-arrival time for each type of task that needs to be
executed as well as the available energy in the node and
an estimation of the expected energy harvesting income
in the near future. As a consequence, we have also devel-
oped and incorporated in HOLLOWS a new energy
prediction algorithm for solar panels of EHSN designs,
that is, the weather-conditioned moving average
(WCMA) predictor.
We have validated HOLLOWS using real-life work-

ing setups of Shimmer (Musiani et al., 2007), a last-gen-
eration structural health monitoring EHSN. Our results
illustrate that our proposed scheduler solution for
EHSN, which combines multi-priority queuing theory
and weather-based energy prediction, maximizes the
use of the energy income of solar panels (adapting the
tasks to be executed to their variable energy incoming
patterns), and reaching an estimation error of tasks

waiting time of only 1%. Therefore, HOLLOWS is
able to obtain 3� better predictions for variable-weather
conditions than state-of-the-art energy prediction algo-
rithms proposed for EHSN, such as, the exponentially-
weighted moving average (EWMA) (Cox, 1961) energy
prediction method. Overall, HOLLOWS is able to guar-
antee a regular level of accuracy in autonomous opera-
tion of EHSN setups for long periods of time, thus,
maximizing the exploitation of energy harvesting
devices. Furthermore, HOLLOWS is highly versatile
and can react to very critical and unexpected natural
events (e.g., fires, earthquakes, etc.), such that it can
dynamically change (in few seconds) its operation
requirements in order to use the expected energy har-
vesting income to provide the highest possible instanta-
neous sensing accuracy in a desired time interval.

The rest of the article is organized as follows. First,
the section ‘Related work’ provides an overview of the
related work on energy prediction algorithms, EHSN
architectures and energy harvesting methods. Next, the
section ‘Architectures of Energy Harvesting Sensor
Nodes’ summarizes the main features of EHSN plat-
forms. Then, ‘Task Scheduling for Energy Harvesting
Sensor Nodes’ section introduces our proposed
HOLLOWS task scheduler for EHSN. Next, the section
‘Experimental Setups of EHSNs and Results’ presents
our experimental results for the real-life Shimmer plat-
form. Finally, in the last section, we draw the main
conclusions of this work.

RELATED WORK

There are many different types of EHSN architec-
tures. While all these architectures are designed to be
self-powered and must imply very limited maintenance,
their target application (environmental monitoring,
building surveillance, water pollution analysis, etc.)
implies different variations of signal processing applica-
tions and sensors to be used. Representative examples of
EHSN of their different scopes are Heliomote (Lin et al.,
2005), which is used for light, humidity, and environ-
ment temperature monitoring, the video surveillance
sensor node presented by Magno et al. (2008), and
Shimmer (Musiani et al., 2007). All these nodes rely
on solar panels to harvest energy from the environment
for normal operation. Furthermore, other EHSN plat-
form can use multiple energy sources as AmbiMax (Park
and Chou, 2006), which is able to harvest solar wind,
thermal, and vibrational energy.

In all the previous architectures, a major role is played
by the existing energy harvesting technologies.
Nowadays, extensive research has been performed in
this area. Thus, different types of energy harvesting tech-
nologies have been proposed, such as, solar panels
(Raghunathan et al., 2005), vibrational systems
(Meninger et al., 2001), wind shells (Morais et al.,
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2008), and thermoelectric mechanisms (Mateu et al.,
2007). Nonetheless, all these energy harvesting technol-
ogies are unpredictable in many cases, which implies
that it is not possible to guarantee a maintained
energy level for EHSN solutions without extensive
power management and energy harvesting prediction
studies (Raghunathan and Chou, 2006; Morais et al.,
2008). In this regard, different estimation techniques
have been developed for solar energy, which is the
most predictable one, and can be modeled to predict
the expected availability at a given time within some
error margin (Kansal et al., 2007). Also, Esram and
Chapman (2007) propose the use of maximum power
point tracking (MPPT) techniques to effectively moni-
tored and harvest the maximum amount of energy pos-
sible by varying the orientation of the solar panel.
Hence, solar energy harvesting has proven to achieve
so far the most promising energy versus area income
trade-offs (i.e., power-per-square centimeter), as
proven by Raghunathan et al. (2005) or Musiani et al.
(2007). In any case, even though solar panels can pro-
vide a significant amount of energy in specific natural
working conditions (e.g., large intervals of sunny days),
they are also exposed to large variations of energy
income due to variable weather conditions, which cre-
ates a large uncertainty on the expected quality and
availability of the different EHSN. As a consequence,
it is key to deploy new technologies and algorithms spe-
cifically targeting the features (e.g., multi-tasking com-
putation complexity for EHSN, quality of service for
different EHSN working environments, etc.).
Due to the variable income of energy through energy

harvesting technologies, power and energy management
is a major research topic in EHSN at present. In parti-
cular, research in this area targets maximum lifetime of
the sensor nodes, while meeting the performance
demands of their high-level applications as well as
their wired or wireless connectivity (Marbach, 2007).
In fact, different power management techniques have
been studied to achieve trade-offs between performance
and power consumption, namely, as duty-cycle techni-
ques (Kansal et al., 2004), dynamic voltage and fre-
quency scaling (Yuan and Qu, 2007; Raghunathan
et al., 2001), task migration (Rong and Pedram, 2003),
or low-power operation modes (Benini et al., 2000).
Also, in the last few years, research starts being
performed to provide power management in EHSN
platforms that must include prioritization, as these
new platforms must execute multiple sensing and proces-
sing tasks with different priorities each. In fact,
Raghunathan et al. (2001) and Moser et al. (2006)
have shown the benefits of using adaptive scheduling
methods including priorities for power management.
Nonetheless, these systems need to precharacterize the
different working conditions of multiple sets of tasks,
which implies extensive experimental validation before

the power management strategy can be tuned correctly,
which is a very strong limitation. In contrast, we
propose in this article an adaptive, stochastic, and
multi-queuing task scheduler, which is able to define
the prioritization between tasks of multiple priorities
just by using a very limited design time information,
that is, the knowledge of the independent task features
(i.e., power and deadline requirements), and the defined
priority between them by the EHSN designer.

In addition, stochastic models for wireless sensor net-
works has been used in the literary to try to model the
wireless communication channel. In particular, Marbach
(2007) proposes a distributed scheduling and active
queue management mechanism for wireless networks.
This approach is based on a random access scheduler
where the transmission attempt probability depends on
the local backlog, and the performance of the resulting
protocol is modeled as an optimization problem, which
tries to maximize throughput and fair bandwidth alloca-
tion. Similarly, Shuman and Liu (2006) consider the
problem of conserving energy in a single node in a wire-
less sensor node by turning off the radio for fixed peri-
ods of time. This approach tries to achieve sleep control
management using a mixed cost function for both
energy consumption and performance penalty due to
retransmission costs for backlogged packets. Another
idea in this area is to exploit the theory of continuous-
time Markovian decision processes, as done by Rong
and Pedram (2003). In this case, it is proposed the use
of a stochastic model for dynamic power management,
which dynamically monitors the channel conditions and
the server behavior, and then defines a client-side power
management policy. However, in all these previous task
schedulers with power management considerations, the
prioritization concept is used only at the level of model-
ing the wireless channels, which requires significant
overhead due to the propagation of the status of the
sensor network, and it is not considering the internal
status of the node itself. In this article, HOLLOWS
includes a stochastic model not to describe the wireless
channel, but to describe the internal behavior of a single
node with multiple levels of priority between the types of
tasks that need to be executed, and adjust which ones
should be executed according to the desired level of
accuracy and the predicted level of energy harvesting
income.

Regarding energy management with performance
constraints in EHSN platforms, several energy predic-
tion algorithms have been developed up today. These
algorithms try to perform energy management by sche-
duling the workload not only taking into account the
actual level of energy stored in the node, but also the
incoming energy. On the one hand, off-line solar predic-
tion algorithms based on mean expected values have
been recently proposed. In Suehrcke and McCormick
(1992), it is shown that the average-daily solar system
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performance may be calculated from the product of
clear-sky solar performance and the average time frac-
tion of clear sky. This approximation greatly simplifies
the solar system performance prediction, but it does not
offer specific energy guarantees at certain daily intervals,
and is not suitable for short-term predictions. Also,
Iqdour and Zeroual (2007) introduce a new method
for modeling daily sun radiations, based on
Takagi�Sugeno fuzzy systems. This method uses a
non-linear technique, defined by a set of If�Then rules
with linear consequent parts, which establish a local
linear input�output relationship between the variables
of the model. Then, the parameters of the model are
identified using the fuzzy clustering combined to the
least square algorithm. While this model produces accu-
rate results, it demands very high computation and
power figures, making this algorithm not applicable to
EHSN systems, as we target in this work.
Finally, a very well-established and low-cost (in terms

of computation needs) energy prediction algorithm, sui-
table for run-time energy harvesting prediction, is the
EWMA algorithm (Cox, 1961; Hunter, 1986; Vigorito
et al., 2007; Kansal et al., 2007). The method has been
designed to exploit the diurnal cycle in solar energy and
to adapt to seasonal variations. To this end, EWMA
calculates the value of energy likely to be harvested at
a particular time as a weighted average of the energy
received at the same time over a set of previous days
(Cox, 1961). Although EWMA-based algorithms for
EHSN systems are accurate for consistent weather con-
ditions, when cloudy and sunny days are mixed, the high
prediction weight given to the recent days energy values
introduces significant prediction errors (see
‘Experimental Setups of EHSNs and Results’ section
for more details). Therefore, in order to prevent this
problem, we introduce in our task scheduler
(HOLLOWS), a new prediction algorithm, that is, the
WCMA energy harvesting predictor, which not only
takes into account the solar conditions at a certain
time of the day, but it also suitably self-adjusts the
energy intake estimation for fast changing weather con-
ditions during a single day.

ARCHITECTURES OF ENERGY HARVESTING

SENSOR NODES

Current EHSN architectures need to execute multiple
tasks, which include sensing multiple materials and
environmental reactions, executing complex signal pro-
cessing algorithms within the sampled data (e.g., filter-
ing, feature extraction, data compression, path
planning), wireless communications, solar panel energy
harvesting monitoring, and actuation in many cases.
Therefore, the common set of components of all these
EHSN architectures are a low-power digital signal

processing (DSP) microcontroller (Instruments, 2009),
which applies a certain energy management algorithm
and manages the energy harvesting components (e.g., a
solar panel), an energy storage unit (e.g., batteries or
supercapacitors; Simjee and Chou, 2006) and different
types of actuation devices, sensors, processing applica-
tions, and radio communication devices. Figure 1 shows
a general architecture of a typical EHSN. Various repre-
sentative examples of such an EHSN architecture are
Robomote (Sibley et al., 2002), Everlast (Simjee and
Chou, 2006), DuraNode (Park et al., 2005), Medusa
MK-2 (Savvides and Srivastava, 2002), and SHiMmer
(Musiani et al., 2007).

In particular, in the following paragraphs we describe
the Shimmer platform (Musiani et al., 2007), which is an
active sensing platform for structural health monitoring
or material damage identification, that will be used
during the rest of this work as real-life EHSN case
study in all the experimental results. The main compo-
nents and characteristics of Shimmer are:

� Wireless radio link: it uses a Maxstream XBee
module (Maxstream, 2009).

� High complexity computing capabilities: it includes
a TI TMS320C2811 DSP microcontroller
(Instruments, 2009).

� Actuating and sensing capabilities: it uses a matrix
of 16 lead-zirconate-titanate piezoelectric transdu-
cers (PZTs).

� Energy harvesting device: it includes a PowerFilm
solar panel (PowerFilm, 2009).

� Energy storage unit: it can use a supercapacitor, a
rechargeable battery or a combination of both.

Solar panel Energy storage unit

Low power microcontroller

Energy
harvesting

Actuate

Sense Radio

Process

Energy
management

Figure 1. Overview of representative EHSN architectures.
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� Multitask capabilities: it incorporates a real-time
operative system, that is, FreeRTOS (FreeRTOS,
2009).

Structural damage can be defined as any geometric
or material change introduced into a system that
negatively impacts its current or future performance
(Farrar and Worden, 2007). Thus, the PZTs included
in Shimmer are used to generate sensing signals that
perform the role of both an actuator and a sensor.
Indeed, since the electrical impedance of a PZT is
directly related to the structure’s mechanical impedance,
this impedance-based method uses high-frequency vibra-
tions to monitor the structure’s mechanical impedance
in order to detect and locate damage in a structure
(Park et al., 2003).
Then, structural health monitoring can be separated

into two basic categories, namely, periodic lifetime mon-
itoring and rapid event assessment. While periodic life-
time monitoring seeks to identify damage that
accumulates over a long period of time, rapid event
assessment addresses the need to obtain data from a
structure immediately following a significant event,
such as an earthquake, a fire, an accident, etc. In both
types of categories of structural health monitoring appli-
cations, it is required the knowledge of the undamaged
state of the structure and a continuous comparison of
periodic measurements. To this end, data is first
collected from the system using sensors. Then, normal-
ization and cleansing of the data is performed to distin-
guish the damage due to external and environmental
factors. Next, feature selection and information
condensation is performed to reduce the overall
amount of structural data to be handled. A feature is
a specific property of the monitored system that can be
used to identify damage and can be extracted from the
sensed data. Finally, statistical model development for
feature discrimination is applied, which involves the eva-
luation of the found features to quantify the damage.
In particular, statistical modeling can refer to three
types of algorithms: group classification, regression ana-
lysis, and outlier detection.
All those tasks are very computational intensive and

require a significant amount of energy in EHSN plat-
forms. Morever, it is not possible to globally optimize
their multi-task execution pattern, as these tasks can be
executed using many different configurations to achieve
different accuracy levels in the structural health moni-
toring process. For instance, using three types of tasks,
that is, actuation/sample (A), processing (P), and trans-
mission (T), some of the possible real-life task execution
patterns in Shimmer are:

� Actuate/Sample-Process-Send: This is the most
general (and energy demanding) pattern, which
sequentially performs: A P T A P T A P T . . .

� Actuate/Sample-Send: If the consumption of the
radio is lower than the processing, then the pattern:
A T A T A T A T. . . may be used. This pattern can
be very useful when the Shimmer node must pro-
vide real-time data streaming, but a significant part
of energy is consumed in the wireless
communication.

� Multiple Actuate/Sample: The pattern: A A A A P
T. . . can be used to actuate multiple times before
processing. This pattern is relevant because it
enables considering multiple sets of samples
together before transmitting an overall damage
result (i.e., the average damage value from multiple
PZTs).

� Event Triggering Sending: In some systems, the
wireless communication may not always be avail-
able (e.g., the radio is momentarily in sleep mode).
Hence, the pattern: A P A P A P can be applied
while the radio operation is resumed, which is when
the transmit task (T) will be applied.

In the aforementioned EHSN architecture of the
Shimmer node, where multiple tasks need to be executed
(e.g., actuate, sense, process, radio sending, etc.) and
multiple possible task-execution patterns can be applied
in different working conditions, even the most effective
energy harvesting mechanisms nowadays (i.e., solar
panels) are not able to provide enough energy to execute
all the necessary tasks to achieve always a 100% damage
estimation precision. Hence, the definition of an appro-
priate power-aware task scheduler is a must. This sche-
duler needs to deploy suitable energy management
algorithms, targeting the working conditions of EHSN,
and must efficiently use both the stored energy and the
energy entering the system through the included energy
harvesting device.

TASK SCHEDULING FOR ENERGY HARVESTING

SENSOR NODES

To be able to suitably define the pattern of tasks to be
executed in EHSN platforms, according to the
demanded precision at each moment in time and the
available energy in the system, the task scheduler of
each EHSN needs to incorporate an accurate system
behavior model for a multi-task execution environment.
Thus, in this section we present HOLLOWS, a power-
aware task scheduler targeting specifically EHSN
working environments. This new scheduler provides an
efficient way to dynamically explore the trade-offs
between the accuracy of the measurements of the
sensor node and its consumed energy, based on the
tasks characteristics. HOLLOWS has the structure
shown in Figure 2. As this figure shows, HOLLOWS
includes two fundamental parts. First, it consists of an
integral EHSN behavior model, based on prioritized
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queues for multiple types of tasks. Second, it includes a
new energy income prediction algorithm for EHSNs.
As shown in Figure 2, HOLLOWS requires to operate

the following inputs of optimization strategies and spe-
cifications of the tasks to be executed in each EHSN:

� Specification of execution time and energy con-
sumption: every task has to be characterized by a
typical execution time and energy consumption
value. Furthermore, HOLLOWS can also operate
with multiple values and variations over the mean
(for energy and execution time).

� Priority of each task: all the tasks in the system
must have an associated priority, otherwise the
minimum priority is automatically assigned to
that task.

� Definition of the number of queues in the system or
grouping strategy of similar tasks with the same
priorities: the EHSN designer must indicate general
rules that define in which queue of the node a new
task, which arrives into the system, must be placed.

� Selection of optimization strategy: an optimization
metric and policy must be defined by the node
designer. This strategy can be as simple as specify-
ing the fixed deadline of the tasks that will be exe-
cuted or the desired residence (or waiting) time of
the tasks in each queue, or as complex as a multi-
objective optimization strategy like the guaranteed
amount of energy that the system must kept in its
internal storage unit in case of an emergency to be
served with a certain accuracy level. Furthermore,
HOLLOWS allows to modify at run-time the opti-
mization strategy and the tasks characteristics,
according to the dynamic user’s requirements.

Using the previous system characterization,
HOLLOWS uses an energy-constrained prioritized
queue model to compute the residence time of the dif-
ferent tasks that enter the system. In addition, to analyze
the available energy in the system in the near future, it
also includes a new energy harvesting prediction algo-
rithm, that is, the WCMA predictor.

In the following sections we detail the different com-
ponents of HOLLOWS, namely, the head-of-line prior-
ity service with energy constraints that estimates the task
execution delay and the modeled multi-priority system
execution model for EHSNs, and the proposed WCMA
energy harvesting predictor.

Delay in Energy Harvesting Systems

As the microcontrollers used in EHSN architectures
are capable of executing concurrently multiple tasks
with different priorities, in order to maximize the per-
formance of the node under tight performance con-
straints, a priority scheduling system needs to be
applied to model the overall node behavior and to give
more resources to specific tasks. Thus, we first analyti-
cally describe the mean residence time for EHSN sys-
tems, with the priority service discipline presented in
Figure 3. This figure shows a general task (Tk) that
has a higher priority than Tkþ1, that is, T1 and Tn are
the highest and lowest priority tasks, respectively.

HOLLOWS uses separate queues for different prior-
ity tasks and implements a non-preemptive tasks execu-
tion discipline. Thus, when the node becomes available,
it selects a new task to be executed from the highest non-
empty queue. This discipline is referred as head-of-line
priority service (Leon-Garcia, 2008).

In systems without energy constraints, when the node
becomes available, the head-of-line priority service mode
guarantees that it is always possible to execute a new task.
However, in energy harvesting nodes with a finite energy
storage unit, even if the node is free to execute a task, it is
possible that not enough energy is available to do so.
Thus, the energy availability value must be taken into
account when studying the residence time for the differ-
ent tasks that need to be executed into the node.

As a result, HOLLOWS extends the head-of-line
priority service basic discipline to include the EHSNs
energy constraints in the computation of the residence
time. Consequently, we first define E[Ek] as the total
estimated energy needed to execute a new task Tk that
enters the system. Then, this amount of energy is

•Battery level
•Optimization strategy

Task scheduler

Priority queue
model

•Tasks description

•Energy income

Energy
predictor

Figure 2. Overview of the proposed HOLLOWS power-aware sche-
duler for EHSN.

Task 1 l1

l2

ln

Task 2

Node

Task n

Figure 3. Multi-task EHSN execution model.
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calculated as the sum of the needed energy to execute all
the tasks of higher or equal priority that are waiting in
the system (E½JWk �), all the higher priority tasks that
arrive during the waiting time (E½JAk �), the energy
needed to execute the task (E[Jk]), and the residual
energy needed to finish the task currently in service
(E[RJ]):

E Ek½ � ¼ E JWk
� �

þ E JAk
� �
þ E Jk½ � þ E RJ

� �
ð1Þ

Therefore, using this new equation of the total energy
consumption for each task, we can introduce a novel
priority-queue model (cf. section ‘Delay in Priority
Queue Systems’) that provides us the necessary informa-
tion to compute this total energy. Thus, given the total
energy needed to execute a new task (E[Ek]),
HOLLOWS can predict if a new task that arrives into
the system can be executed when its turn comes or if it
must wait until enough energy is harvested.

DELAY IN PRIORITY QUEUE SYSTEMS
Using the Shimmer node as case study, we have

characterized the arrival patterns of different tasks to
be executed in EHSN systems. To this end, we have
used the high performance wireless research and educa-
tion network or HPWREN Network (HPWREN, 2009),
where the Shimmer node has been deployed (Musiani
et al., 2007). The HPWREN network aggregates the
results of several sensor nodes deployed in the field
to gathers data from multiple sensing sources and
forwards this data to the HPWREN backbone.
Several node traces obtained from HPWREN have
been studied to characterize the task inter-arrival time
of different Shimmer nodes. Figure 4 represents the
inter-arrival time of one sensor node.1 Thus, Figure 5
illustrates how we have performed an exponential fit of
the experimental data of the tasks arrival trace,
obtaining a mean of 1/�¼ 1.358ms with a 95%
confidence interval of the parameter estimate
of 1.343ms and 1.373ms, which is very close to the
mean value.
As a result, the overall execution system in Shimmer

nodes can be modeled as an extended version of the
general M/G/1 queue (Leon-Garcia, 2008). This is a
single-server queue where the tasks arrive according to
a Poisson process of rate �, and so the inter-arrival times
follow an independent identically distributed exponen-
tial random variable with mean 1/�k. Then, the service
time follows a general independent identically distribu-
ted random variable distribution and it has an expected
execution time E[�k]. In addition, the inter-arrival and
service times are independent and the queues can

accommodate an infinite number of elements. The
model uses separate queues for different priority tasks
and uses non-preemptive schedule. As a result, we define
the server utilization of a task Tk as:

�k ¼ �kE½�k�: ð2Þ

The estimated waiting time in a queue for the most
priority task (T1) can be computed as (see Leon-Garcia
(2008) for more details):

E½W1� ¼ E½RT� þ E½Nq1�E½�1� ¼
E½RT�

1� �1
; ð3Þ

where E[RT] is the residual service time of a task found
in service, and E[Nq1] is the expected number of tasks of
type 1 found in the queue. T2 has less priority than T1;
thus, to calculate the computation of the queue waiting
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Figure 4. HPWREN node inter-arrival requests.
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Figure 5. HPWREN node requests trace exponential fit.

1The original tasks arrival request trace can be consulted on-line at HPWREN
(2009).
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time for T2, we take into account the number of ele-
ments in the T1 queue and the expected T1 arrivals
during the waiting time. Therefore, the queue waiting
time can be defined as follows:

E½W2� ¼ E½RT� þ E½Nq1�E½�1�

þ E½Nq2�E½�2� þ E½M1�E½�1�,
ð4Þ

where E[Nq2] is the expected number of T2 tasks found
in the queue and E[M1] is the number of expected arri-
vals of T1 during the waiting time. Hence, it can be
proven (Leon-Garcia, 2008) that the queue waiting
time is equal to:

E½W2� ¼
E½RT�

ð1� �1Þð1� �1 � �2Þ
: ð5Þ

Furthermore, in general, for a task Tk, it is equal
to:

E½Wk� ¼
E½RT�

ð1� �1 � � � � � �k�1Þð1� �1 � � � � � �kÞ
ð6Þ

The task found in service by an arriving task can be of
any type, so E[RT] is the residual service time of tasks of
all types:

E RT
� �

¼ 1=2
Xn
i¼1

�iE �2i
� �

, ð7Þ

where E½�2i � is the second moment of the service
time of Ti.
Using this model, provided the inter-arrival time of

the different tasks (1/�k), the expected execution time
(E[�k]), and the second moment of the expected execu-
tion time (E½�2i �), it is possible to compute the total
expected waiting time, that is, the time spent in a
queue plus the execution time, as follows:

E½Tk� ¼ E½Wk� þ E½�k�: ð8Þ

In order to illustrate how this queuing model is used
in HOLLOWS for EHSN systems, Figure 6 shows a
real-life working setup of the Shimmer node including
three types of tasks: Sense, Process and Transmit, with
the Sense and Transmit, as the highest and lowest prior-
ity task, respectively.
If we consider that the execution time follows

an exponential random variable, according to the
inter-arrival request pattern characterized in the section
‘Delay in Energy Harvesting Systems’, the system can be

described as an M/M/1 queuing model. In this case, the
second moment of the execution time, as proven by
Leon-Garcia (2008), is E½�2k� ¼ 2� E½�k�

2. Hence, the
residual service time using the Table 1 values for the
tasks is:

E½RT� ¼
X
i

�iE½�i�
2
¼ 182:3ms: ð9Þ

Next, using Equation (6) we can compute in
HOLLOWS the estimated queuing time for a new
Transmit task that arrives into the EHSN system as:

E½WT� ¼
E½RT�

ð1� �S � �PÞð1� �S � �P � �TÞ
¼ 444:3ms:

ð10Þ

Finally, the mean residence time in the system
for a new Transmit task is the queuing waiting
time plus the execution time, which is 491.4ms. A simi-
lar study can be done for the Sense and Process tasks,
obtaining an estimated waiting time of E[WS]¼ 182.3ms
and E[WP]¼ 283.6ms, and residence time of E[TS]¼
183.4ms and E[TP]¼ 793.6ms, respectively.

This kind of study illustrates how important system
behavior characteristics are in EHSNs, which are not
obvious at all in their real-life working conditions. In
particular, this example shows the large impact the resi-
dual time has in the residence time of the highest priority
task (TS). Indeed, when a high-priority task arrives to
the system, the microcontroller can be fully occupied by
low-priority tasks, and the new high-priority task has to
wait until the microcontroller becomes free, which can
cause serious problems of accuracy in the damage esti-
mation done be Shimmer if there is no energy harvested

Sense ls

lp

lt

Proc. Execute

Trans.

Figure 6. Residence time example.

Table 1. Priority task execution example data.

� (req/s) E[�] (ms) P (mW)

Sense 0.1 1.1 1027
Process 0.7 510 680
Transmit 0.1 47.1 165
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to execute the new task after the low-priority ones have
finished. Thus, reducing the time that low-priority tasks
occupy the microcontroller, as HOLLOWS targets, sub-
sequently reduces the residence time of high-priority
tasks.

IMPACT OF THE ENERGY HARVESTING UNIT
Once we have all the needed information to compute

the total estimated energy needed to execute a new
task Tk that enters the system, E[Ek] of Equation (1),
the needed energy to execute all the tasks of
higher or equal priority waiting in the system can be
calculated as:

E JWk
� �

¼
Xk
i¼1

E Ji½ �E Nqi

� �
¼
Xk
i¼1

E Ji½ ��iE Wi½ �, ð11Þ

where E[Ji] is the expected energy consumption of a
task of type i and E[Nqi] is the number of tasks of type
i already waiting to be executed in the queue. Then, the
number of tasks waiting in the system can be calculated
in real time, or estimated a priori by applying Little’s
formula (Leon-Garcia, 2008), E[Nqi]¼ �iE[Wi].
The number of higher priority tasks that arrive during

the waiting time E½JAk �) can be computed as:

E JAk
� �
¼
Xk�1
i¼1

E Ji½ �E Mi½ � ¼
Xk�1
i¼1

E Ji½ ��iE Wk½ �, ð12Þ

where E[Mi] is the expected arrival of tasks of higher
priority, that is E[Mi]¼ �iE[Wk].
Finally, the residual energy needed to finish the task

found in service can be calculated as:

E RJ
� �
¼ 1=2

Xn
i¼1

�iE J2i
� �

: ð13Þ

At this point, we are able to compute E[Ek] only
knowing the expected queue waiting time, the arrival
rate of the different types of tasks and the expected
energy consumption of T1 to Tn.
Returning to the previous example of a Shimmer

setup, described in Table 1, we can now calculate the
expected amount of necessary energy to finish executing
a new task. Using Equations (11), (12) and the waiting
time computed for this example, that is, E[Wk]¼ (182.3,
283.6, 444.3)ms, we obtain E½JWk � ¼ (20.6, 68.9� 103,
69.2� 103) mJ and E½JAk � ¼ (0, 32, 107.9� 103) mJ. Then,
using the modeling of the execution time as an exponen-
tial random variable (see section ‘Delay in Priority
Queue Systems’), we obtain E[RJ]¼ 123.8mJ. Finally,
the total energy needed will be E[Ek]¼ (125, 539.5,
308.7)mJ.

At this point, we are able to compute how the energy
harvesting unit of the EHSN (e.g., a solar panel in of
Shimmer) affects the execution waiting time of the tasks
in the system. The waiting time for a task Tk, entering
the system at time t, should not be affected by the har-
vesting unit if the energy needed to execute Tk (E[Ek], see
Equation (1)), is less than the energy already present in
the system when Tk arrives (Et), plus the energy the
system is able to store during the waiting time:

E½Ek� � Et þ E½Tk�ð�Eenter � EleakÞ, ð14Þ

where � is the storage efficiency of the energy harvesting
unit, Eenter is the expected energy entering the system in
the near future and Eleak is the energy leakage of the
node. If this inequality is true for all Tk entering the
system, the mean waiting time is only dependent on
the arrival rate and mean execution time.

However, there is not always enough energy to exe-
cute a new task that arrives into the system. Thus, the
waiting time of an incoming task will be affected by the
harvesting system, as the task will remain in the system
until enough energy is harvested from the solar panel.
Hence, this waiting time can be computed using
Equation (14), as follows:

E½Tk� ¼
E½Ek� � Et

�Eenter � Eleak
: ð15Þ

Finally, according to our working setup of Shimmer,
defined in the previous section, we need to execute a
Transmit task a total energy (E[ET]) of 308.7mJ.
Hence, supposing that there is at a certain moment in
time only Et¼ 100mJ (i.e., less than 3% of the energy in
the Shimmer storage unit (Musiani et al., 2007)), and
assuming that the store efficient is �¼ 0.7 and �leak is
null, the expected waiting time will fully depend on the
harvesting unit. Hence, if the power entering the system
in the near future is �SP¼ 230mW (i.e., a typical energy
income at noon for a cloudy day), then the expected
residence time will be E[TT]¼ 1296.3ms, which is 2.6�
larger than the residence time computed in the case that
enough energy exists in the system (see section ‘Delay in
Priority Queue Systems’). Hence, it is a must to have
efficient algorithms to suitably estimate the forthcoming
energy harvesting income, so that the queuing model can
accordingly schedule the tasks to be executed in EHSNs.

As a consequence, in the next section we introduce a
new energy harvesting prediction algorithm targeted for
EHSN architectures, which can estimate the short- and
long-term energy availability in the nodes and, as a
result, the HOLLOWS scheduler can perform a accurate
estimation of the worst waiting time of queued tasks of
different priorities to be executed in the future.
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Weather-conditioned Moving Average Energy Prediction

The WCMA energy harvesting prediction algorithm
estimates the energy entering the system based on sam-
pling the power delivered by the solar panel. WCMA
has its foundations on the EWMA (Cox, 1961).
EWMA characterizes the seasonal changes by adapting
both the change in the hour of sunrise and sunset as well
as the difference in solar power income between seasons.
However, in contrast with EWMA, the new WCMA
algorithm takes also into account sudden weather
changes with minimal overhead and prediction error.
In EWMA, the day is divided in slots and a vector

of estimated values for each slot i is stored, that is, X(i).
This equation is used to update the slots, as follows:

XðiÞ ¼ � � Xði� 1Þ þ ð1� �Þ � xðiÞ, ð16Þ

where x(i) denotes the value of real power observed at
the end of the slot i and � is a weighting factor.
Figure 7 shows the actual power input from the

Shimmer solar panel and the predicted value in five
consecutive days, with a mix of sunny and cloudy con-
ditions, for an optimized value of �¼ 0.5 (Kansal et al.,
2007). In this case, when the sunny and cloudy days
alternate, the EWMA produces a significant error in
its prediction, due to the high impact of the solar con-
ditions of previous day in the predicted value. To avoid
this effect, our new prediction algorithm takes into
account not only the solar conditions at a specific time
of the day, but also the weather conditions in the current
day. This is especially important in frequently changing
weather conditions, for example, as it has been observed
in typical solar traces (Raghunathan et al., 2005), the
energy harvested during cloudy days can be less than
half of the value gathered during sunny days.

Our WCMA algorithm uses a P matrix of size D�N
that stores N sampled input power values per day from
the solar panel for each D past days. Hence, P(d, n) is
the stored power in the matrix that corresponds with the
input measured power within the d-th day, at the begin-
ning of the n-th time slot. Then, the predicted constant
input power for the n-th time slot of the current day
PPred(n) is related to the previous power samples in the
same day and the mean value of the past samples (at the
same hour of the day):

PPredðnÞ ¼ � � Pðd,nÞ þ GAPK � ð1� �Þ �MDðnþ 1Þ,

ð17Þ

where � is a weighting factor similar to the EWMA
algorithm, and MD(nþ 1) is the mean of D past days
at the nþ 1 sample of the day:

MDðnÞ ¼

PD
i¼1 Pði,nÞ

D
: ð18Þ

The main innovation in our algorithm is the inclusion
of the GAPK factor. This factor measures the solar con-
ditions within the current day with respect to the pre-
vious days. To compute the GAPK factor, we first define
a vector V¼ [v1, v2, . . . , vK] with K elements. V contains
the quotient of the past K samples and the average solar
power available during the previous D days for those
samples. Therefore, a value greater than one means
that today’s values are larger than the mean, which con-
sequently represents a sunny day and, similarly, values
smaller than one represent cloudy days:

vk ¼
Pðd,n� Kþ kÞ

MDðn� Kþ kÞ
: ð19Þ

Then, in order to give more importance to the closest
values on time, we weight these values with the distance
to the actual point in time using vector P¼ [p1, p2, . . . ,
pK], as follows:

pk ¼
k

K
: ð20Þ

Finally, the weighting factor, GAPK, is computed:

GAPK ¼
V � PTP

P
: ð21Þ

Using the real-life working conditions and character-
istics of the solar panel included in the Shimmer node
(Musiani et al., 2007), Table 2 shows an example of how
WCMA computes the GAPK factor to compute the
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Figure 7. EWMA power prediction algorithm.
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input power prediction for the n-th time slot of the cur-
rent day PPred(n) with D¼ 4, K¼ 3. The MD vector con-
tains the mean value of the previous 4 days, V has the
quotient of the elements in row d divided by the MD

vector (element by element), and P is the weighting
factor for V. Finally, the GAPk value is computed as
follows:

GAPk ¼
ð1:12,0:83,0:75Þ � ð0:33,0:67,1:00ÞTP

ð0:33,0:67,1Þ
: ð22Þ

And the predicted value with �¼ 0.7 is:

PPredðd,nÞ ¼ 0:7 � 230þ 0:84ð1� 0:7Þ � 313 ¼ 206: ð23Þ

WCMA’S PARAMETERS OPTIMIZATION
To optimize all the needed parameters in WCMA,

that is, the size of the E matrix (D�N), the � factor
and number of past samples to weight (K), we must
define the error function to evaluate relevant con-
straints. To optimize these values we have recorded the
available power from the solar panel (PowerFilm, 2009)
of the Shimmer node every minute during 45 consecutive
days. As we would like to predict the Sun evolution, the
night values are discarded in the computation of the
error. Thus, we consider as night values all the samples
with less than 10% of the maximum figure. Then, the
error function for a record of N points is given at the
percentage:

Err ¼
1

N

XN
i¼1

abs 1�
EReal

EPred

� �
, ð24Þ

where EReal denotes the real energy value during the
time slot, obtained by integration of the recorded
power values, and EPred is therefore the estimated value.
To optimize the WCMA predictor performance,

we do not only focus on minimizing the error, but we
also explore possible trade-offs between accuracy and

duty cycles. Indeed, when more samples are collected
per day, the following energy harvesting estimate is
more precise, but more frequent sensor node wake-ups
are needed, which can lead to a negative impact on the
overall energy consumption. On the other hand, a very
low sampling rate may not give the sufficient tuning data
to our WCMA predictor. Thus, it will not be able to
estimate the energy harvesting rate, which would make
the sensor node calibration difficult. In this regard,
based on our performed experiments on Shimmer and
other solar-panel-based real sensor nodes (Musiani
et al., 2007), a sample period of 30min (i.e., 48 sam-
ples/day) gives a reasonably accurate prediction with a
low duty cycle and a small memory footprint. In this
regard, Figure 8 shows the estimated error of the pre-
diction as a function of the weighting factor and the
number of days (D), for a fixed and small number of
past values (K¼ 6) and samples per day (N¼ 48), which
implies a very limited power consumption to tune our
WCMA predictor for the HOLLOWS scheduler.
Selecting a weighting factor (�) of 0.7 gives a minimal
error, independently of the number of past days stored
in the matrix. Hence, we have used this value in our
optimization process of the WCMA predictor, running
as part of our HOLLOWS task scheduler for EHSNs.

Then, we have tuned the rest of the parameters in the
WCMA predictor according to the experimental data
for our Shimmer case study (other EHSN platforms
would follow a similar optimization process, which
only requires few minutes of simulations). Figure 9
shows the prediction error versus D and K, with fixed
� and N. Our experiments indicate that, if the number of
past samples K is above 5, then the error quickly
increases because it takes into account too many sam-
ples of the weather pattern of each day. Since the
number of past days does not influence the error as
much as the number of past samples K for a particular
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Figure 8. Estimated error for N¼48 and K¼6.

Table 2. Solar power prediction example.

Solar panel power evolution in mW
n� 2 n�1 n nþ1

d¼ 4 277 272 221 263
d¼ 3 350 353 347 347
d¼ 2 345 346 349 353
d¼ 1 249 255 314 289
d¼ 0 342 256 230
Mean 305 306 307 313

V 1.12 0.84 0.75
P 0.33 0.67 1.00

HOLLOWS: A Power-aware Task Scheduler for EHSN 1327



day, then we can use fewer days for the estimate, which
lowers the computational cost of WCMA without a sig-
nificant accuracy loss. As a result of our analysis, the
WCMA predictor used as part of the HOLLOWS task
scheduler has the following parameters to minimize its
prediction error: D¼ 4 days, N¼ 48 samples/day, K¼ 3
past samples, and �¼ 0.7.

ENERGY HARVESTING PREDICTION
COMPARISON OF WCMA VERSUS EWMA
Once we have tuned both the WCMA and the EWMA

energy harvesting predictors, we have compared the
energy prediction accuracy of both of them in various
real-life working conditions of the Shimmer node.
Figure 10 shows five consecutive days of different
weather conditions and the predicted values using both
algorithms. The 27th and 29th days correspond to
cloudy conditions and the rest of the days are sunny.
Since EWMA only uses values from previous days at
the exact same time period, if the weather conditions
change from one day to another, this method has a
large error in prediction (i.e., close to 50%, as shown
in the 30th day). On the other hand, WCMA produces a
much better prediction because it uses the values from
the same hour over a number of previous days and the
past values from the same day, which help to calibrate
the estimation against the actual weather conditions.
Overall, EWMA gives an average error of 28.6% com-
pared to 9.8% obtained by our new algorithm WCMA
(i.e., 3� less average prediction error for our algorithm),
over the complete set of 45 days of the collected solar
panel data in the Shimmer node.

EXPERIMENTAL SETUPS OF EHSNS AND

RESULTS

We have assessed the quality of our power-aware task
scheduler, HOLLOWS, in different working scenarios of

the Shimmer EHSN case study (described on the section
‘Architectures of Energy Harvesting Sensor Nodes’). To
this end, we have created a Matlab model and a com-
plete EHSN multi-queuing simulator for HOLLOWS
running in the Shimmer node. Furthermore, this valida-
tion and simulation environment can be applied to other
EHSN architectures by just modifying the HOLLOWS
input specifications of the final working conditions of
the target node/s (see section ‘Architectures of Energy
Harvesting Sensor Nodes’).

In particular, the scenario that will be used to illus-
trate the benefits of the HOLLOWS scheduler is the
following:

� The mean execution time and energy consumption
for the Actuate/Sample (A), Process (P) and
Transmit (T) tasks are fixed, as indicated in
Table 1, based on those of Shimmer (Musiani
et al., 2007), and identifying Actuation &
Acquisition with a single task A.

� Three tasks priorities are defined in the system,
namely, the highest priority task is actuate (A),
the medium priority task is process (P) and the
low priority one is transmit (T).

� The optimization strategy performs the structural
health monitoring process trying to achieve the
highest possible accuracy, according to the avail-
able energy and the predicted energy harvesting
income.

Regarding the level of damage estimation accuracy in
structural health monitoring, as we have already men-
tioned in the section ‘Architectures of Energy
Harvesting Sensor Nodes’, to accurately locate and iden-
tify the severity of any structural damage, multiple sen-
sing, filtering, and identification algorithms must be
executed in the Shimmer node using different signals
to excite the PZTs. Each of the different types of
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statistical modeling algorithms (i.e., group classification,
regression analysis and outlier detection) have their
advantages and disadvantages, but to maximize the
accuracy of the results, in all the cases it is needed to
increase the microcontroller processing time to filter,
cleansing, and perform feature evaluation. This increase
in processing time results in an increase of accuracy of
the damage detection (as long as the microcontroller
processing workload does not go beyond 100% utiliza-
tion) (Farrar and Worden, 2007; Bradely Steck and
Rosing, 2009). Then, regarding data acquisition, the
Actuate/Sample process for Shimmer consists of gener-
ating and sensing vibrations along the structure, and due
to the nature of the process, it can be affected by differ-
ent factors (e.g., wind gusts, vehicles crossing a bridge,
elevators in a building, etc.). Therefore, to increase the
accuracy of the damage detection process, multiple pro-
cessing (P) tasks can be executed in the same path to
reduce these interference factors and increase the signal-
to-noise ratio.
A single P task can be identified with the microcon-

troller processing time needed to compute a fast fourier
transform (FFT) of the complete data recorded during a
single A task. In fact, Musiani et al. (2007) identify a
complete microcontroller processing analysis of one
path with seven P tasks, each of them represents the
energy needed to execute an FFT. An extra P task has
been included in our tasks execution setup for structural
health monitoring to average the sensed data. Finally,
the Send task can be identified with the energy consump-
tion of sending the filtered values obtained from sensing
one path, which is 10� less than the raw sensed data.
Therefore, in order to analyze the impact of multiple
tasks executions of each type in the accuracy results,
we have defined a general computation factor (Cf).
This factor relates the accuracy of the results with the
energy used in the A and P tasks (Figure 11), and it is an

abstraction that associates a certain level of accuracy
with a computation effort. Thus, we have identified Cf

as the number of A and P tasks executed for each path.
In general, the more energy and CPU time a node uses
for structural damage detection, the higher the achieved
precision is, but up to a maximum level associated to
each applied detection technique. Based on typical
experimental setups of the Shimmer node, we have
chosen an inverse exponential function to model the
scenario in which an initial small increase in the
energy used for the damage detection, causes a signifi-
cant increase in precision. For example, shifting form
Cf¼ 1 to Cf¼ 2, the precision figure doubles (from
10% to 20%). However, beyond a certain saturation
point, increasing Cf has almost no impact in terms of
accuracy increase, for example from Cf¼ 8 to Cf¼ 10
the damage precision increase is almost negligible (less
than 5%), but causes a large increase on spent time and
energy during the process (25% more for both).

As mentioned before, structural health monitoring
can be separated into two basic categories: periodic life-
time monitoring and rapid event assessment. Therefore,
the periodic lifetime monitoring that identifies accumu-
lative damage over a long period of time will be used in
the following section to validate HOLLOWS simulator
for the Shimmer node. Then, the rapid event assessment
context, which is needed to obtain data from a structure
immediately following a significant event (earthquakes,
fires, accidents, etc.) will be used as a case study to
explore the capabilities of HOLLOWS to achieve differ-
ent punctual trade-offs between energy, time and accu-
racy in real-life Shimmer working conditions.

Assessment of the HOLLOWS Task Scheduler for

Periodic Lifetime Monitoring

To validate the HOLLOWS scheduler, a periodic life-
time scenario of structural health monitoring has been
studied using the HOLLOWS multi-queue simulator
and a Matlab analytical model with the equations of
the section ‘Task Scheduling for Energy Harvesting
Sensor Nodes’, both using the Shimmer node setup
described in the previous section.

HOLLOWS OPERATION WITHOUT ENERGY
CONSTRAINTS

In our first set of experiments, we have compared
(Figure 12) the residence time E[Tk] values obtained by
the HOLLOWS simulator and with the analytical values
derived from the analysis presented in the section using
an infinite energy scenario. The system has been config-
ured to operate at 90% of structural damage estimation
accuracy (Cf¼ 8). Since we do not set any energy con-
straints, we can explore the Shimmer node operation
capabilities. In this context, the node is able to perform
a complete scan of the surface every 50min, using three
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Figure 11. Relative accuracy for Actuate/Sample and Processing
tasks relative to Computation Factor in structural health monitoring.
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different feature extraction algorithms per path, one of
each kind of the three statistical modeling types (i.e.,
group classification, regression analysis and outlier
detection).
In addition, as depicted in Figure 12, the region above

75% of DSP microcontroller utilization is labeled as a
Queues Saturation zone. A queues saturation scenario
occurs when the residence time of low priority tasks
increases exponentially with respect to the microcontrol-
ler utilization due to the queue waiting time, that is, a
Sense task has to wait 1.55 h in its queue to be executed
on a 99.5% microcontroller utilization scenario. Also,
high-priority tasks have a large increase of residence
time due to the residual service time, namely, from 20
to 500ms (Equation (7)), because most of the time the
microcontroller is busy and HOLLOWS uses a non-pre-
emptive scheduling in the Shimmer node. Thus, the cur-
rent task being executed cannot be removed from the
microcontroller until its execution has finished.
The difference between the analytical and the simula-

tion framework of the HOLLOWS scheduler, with
respect to the residence time using the Shimmer setup,
is less than 1% in mean value for the three tasks in the
whole sweep of microcontroller utilization. Thus, these
experimental results prove the correct analytical founda-
tions of using multi-queuing theory for the design of our
HOLLOWS task scheduler targetting EHSNs.

HOLLOWS SCHEDULING UNDER ENERGY
HARVESTING INCOME CONSTRAINTS
To introduce the energy constraints of an energy har-

vesting device into the Shimmer setup where
HOLLOWS is executed, we have employed a record of
the energy delivered by its solar panel during 45 conse-
cutive days. In general, the Shimmer solar panel is
150 cm2 and can deliver up to 360mW (PowerFilm,
2009). Then, Figure 13 shows a sample of this solar

panel data record with a mix of sunny and cloudy
days, which has a mean value of 76mW.

In order to guarantee long-time sustainable operation,
Kansal et al. (2004) propose a simple model for EHSN
that ensures energy neutral operation (ENO). ENO is a
state where the node does not consume more energy
than what is able to harvest, and consequently it is
able to operate forever. Using this model in Shimmer
with the considered solar panel record, the storage unit
of the Shimmer node has to be at least 22 kJ, with an
initial amount of 11 kJ, and the mean energy consump-
tion being equal or less than 53mW2.

In this regard, Figure 14 shows the system energy
evolution in a situation in which a complete structure
scan has to be done every 10 h using three different fea-
ture extraction algorithms per path. In the first case, the
computation factor (Cf) requested to the HOLLOWS
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2All these values assume an energy storage efficiency of 70%, average figure in
today’s storage units of EHSNs, and leakage figures can be neglected.

1330 J. RECAS PIORNO ET AL.



scheduler has been fixed to 7, corresponding to a
required accuracy level of 88%. In this situation, the
mean energy usage is less than 100% of the harvested
energy, thus, the battery level reaches the maximum
capacity (22 kJ), which implies that the system wastes
energy but this situation does not affect the tasks execu-
tion delay. In the second case, Cf has been set to 8, that
is, a 90% required accuracy level is requested to our
HOLLOWS scheduler. However, in this situation the
energy usage is about 105% of the harvested energy.
Thus, if HOLLOWS cannot modify dynamically the
requested accuracy to adapt the task execution order
to the incoming energy harvesting level, the system will
run out of energy and the level of accuracy cannot be
guaranteed. In fact, this is what would occur with state-
of-the-art EHSNs fixed-priority schedulers (Lin et al.,
2005; Magno et al., 2008), which would make the
mean residence time of tasks in the EHSNs increase
exponentially. However, HOLLOWS has been designed
specifically to dynamically adapt the order of the execu-
tion of the tasks to avoid this situation. This adaptation
is based on its multiple-priority queues and precise
WCMA prediction model for energy harvesting
income. Thus, within this working setup of Shimmer,
as shown in the last case of Figure 14, HOLLOWS
reduces slightly at run-time the actual returned damage
estimation precision of the node by rejecting a very
reduced amount of certain incoming tasks (i.e., rejecting
less than 2% of tasks for each type), which reduces less
than 4% the overall damage accuracy estimate but, at
the same time, HOLLOWS is able to reach the desired
ENO state for the Shimmer node. Hence, the node is
able to operate continuously during the whole period
of 45 days only with a small reduction with respect to
the originally desired accuracy (which cannot be reached
in any case with the actual energy harvesting income
level in the 45 days).
This adaptation of damage accuracy level is per-

formed by HOLLOWS as introduced in the section
‘Delay in Energy Harvesting Systems’, namely, before
adding a new task to the queue, HOLLOWS compares
the actual energy with the expected energy needed to
execute the task in the multi-priority queuing model,
without harvesting delay, and rejects adding a new
task if there is not enough energy after considering
also the estimation of the WCMA prediction model

for the energy harvesting income. Moreover, if the
number of rejected tasks reaches a certain configurable
tolerance value, HOLLOWS can dynamically reconfi-
gure the computation factor (Cf) to meet the energy
constraints. Thus, it can achieve the maximum possible
accuracy according to the predicted energy harvesting
income. Indeed, Table 3 shows that HOLLOWS incurs
very low residence time estimation mean errors, which
proves the accuracy of the overall approach to guarantee
ENO operation in real-life working setups of EHSNs.

In addition, by exploiting the adaptation capabilities
of HOLLOWS we can guarantee a minimum quality
level in the results provided each day, based on the mini-
mum energy income during a cloudy day. Furthermore,
HOLLOWS will dynamically adapt this minimum
requested level each day using the WCMA energy esti-
mator to increase the precision for sunny conditions. To
this end, HOLLOWS starts operating with the assump-
tion that all the days are cloudy and, in case of a better
situation, the excess of energy income from the energy
harvesting devices is used to dynamically increase the
quality of the results. In this context, Figure 15 shows
the precision per day of the structural health monitoring
process using the application of the periodic checks of
the WCMA predictor included in HOLLOWS. As this
figure illustrates, a minimum precision of 70% is guar-
anteed by HOLLOWS for the defined Shimmer setup,
which corresponds to days 27 and 29, and up to 93%
will be dynamically obtained during very sunny condi-
tions, which occur, for instance, in days 28, 37, or 41.

Assessment of the HOLLOWS Task Scheduler for Rapid

Event Assessment

Rapid event assessment operation in structural health
monitoring is needed to obtain data from a structure
immediately after a potentially catastrophic event (e.g.,
earthquake, fire, accident on the monitored structured,
etc.). Since this is a very special situation, high precision
damage estimation is required in a certain instant of
time, rather than continuous (and regular) monitoring,
as in the case of periodic lifetime structural health mon-
itoring. For instance, in the rapid event assessment
mode, instead of ensuring ENO, a Shimmer node may
be requested to use all its available energy and predicted
energy harvesting income to perform a complete

Table 3. HOLLOWS tasks execution results in the periodic lifetime scenario.

Accuracy

Analytical Simulation Error Rej.

A P T A P T E[Tk] tasks

88% (Cf¼ 7) 38 ms 549 ms 89 ms 37 ms 548 ms 90 ms 0.9% 0%
Energy 90%

90% (Cf¼ 8) 43 ms 556 ms 97 ms 404 s 273 min 51 h Exp. 0%
Energy 105% 41 ms 613 ms 97 ms 4.5% 2%
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structural test with the highest possible accuracy.
Nonetheless, the number of tasks that can be executed
during a certain interval must respect the constraint of
not going beyond 100% utilization of the microcontrol-
ler workload capabilities, as indicated in the following
equation:

UCPU ¼
X
k

�k ¼
X
k

�kE½�k� � 1: ð25Þ

Furthermore, also tasks delays have to be considered,
which can become a serious issue. Indeed, Figure 12
shows how the residence time increases exponentially if
the microprocessor utilization is close to 100%, that is,
more than 1 h of residence time is estimated for the
Sense task. Evidently, these large residence time values
are not acceptable in this rapid event assessment sce-
nario and our proposed HOLLOWS task scheduler
can be used to exploit dynamically the existing trade-
offs between tasks delay, energy consumption, and accu-
racy to avoid this situation.
As a result, in this set of experiments we focus on

optimizing the energy parameter in the Shimmer node
using HOLLOWS. In this regard, HOLLOWS relies
once again in the novel WCMA energy harvesting esti-
mator algorithm, which is able to accurately predict the
time window in which the system will harvest the biggest
amount of energy as well as estimating its total amount.
Thus, using this value and the available energy in the
storage unit, HOLLOWS will schedule the execution of
the queued tasks that maximize the accuracy of the
structural damage estimation, estimating at the same
time which will be the waiting time for the chosen
tasks to be executed. To this end, HOLLOWS can be
configured for a certain worst response time in case of
an emergency situation by defining a maximum task
waiting time. Then, HOLLOWS will accordingly
decide the set of queued tasks that can be
executed at the precise moment of each emergency.

Finally, HOLLOWS can also be used to guarantee a
minimum energy level that needs to be saved in order
to be used only during emergency situations, such that
we can ensure a minimum quality of the structural check
within the emergency context.

To illustrate these principles, we consider the case of
an emergency event (e.g., an earthquake). Since
Shimmer has a total of 16 PZTs (i.e., a total of 240
different paths can be sensed), if we define a total time
window of 30min to send all the possible results in an
event assessment, HOLLOWS takes multiple decisions
to optimize the quality of these results. Figure 16 shows
the energy and microcontroller utilization usage versus
the estimated damage detection precision performed by
HOLLOWS for three different cases, namely, a one-,
two- or three-feature extraction algorithm used for
each path. As this figure depicts, HOLLOWS will not
increase the accuracy beyond a certain level (no matter if
a higher quality has been requested to the Shimmer
node), if the microcontroller utilization is already
100%, so that a guaranteed execution delay for all the
tasks can be estimated. Moreover, HOLLOWS will
warn the user if the scheduled tasks tries to operate
the Shimmer beyond 75% microcontroller utilization,
since it will detect the saturation level of the queues
using its internal estimated waiting time, based on the
multiple priorities queues model (see section ‘Task
Scheduling for Energy Harvesting Sensor Nodes’ for
more details) and report the high residence time of the
tasks.

In addition, Figure 16 shows the three curves, using
the 1�3 feature extraction procedures, which illustrate
how HOLLOWS will choose at run-time between the
execution of the three different algorithms per path,
according to the requested damage detection precision
and the expected energy harvesting income predicted by
its internal WCMA predictor. In the first case,
HOLLOWS is able to provide a good compromise
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between energy, time, and accuracy, by using a Cf of 4,
which implies an accuracy of 70% with a total energy
consumption of 1 kJ approximately. As a result, the
system works on the border of a queue saturation
mode, and the residence time for the Transmit task is
14 s, which can be admissible in this 30-min emergency
scenario. In the second case, if the WCMA energy har-
vesting predictor included in HOLLOWS estimates an
energy income in the 30-min period that (combined with
the currently available energy stored in Shimmer) allows
to consume up to than 1.2 kJ of energy, then
HOLLOWS would schedule the execution of two-fea-
ture extraction algorithms, so that the Shimmer node
can achieve a higher precision (83% or Cf¼ 6). As in
the previous case, the system would work on queue
saturation mode, and very close to the 100% microcon-
troller workload limit, but still with a residence time for
the Transmit task of 13 s, which is still acceptable in a
30-min worst response time scenario. In the third case,
in case the highest possible accuracy is requested and no
constraint in the task waiting time is set, HOLLOWS
would execute one feature extraction per path, which
will need only 0.9 kJ to execute the algorithm with an
accuracy of 96% (Cf¼ 11), which would be again pla-
cing the working point of Shimmer in low queue satura-
tion mode. However, in this situation (since the
residence time was not defined to any real constraint
but a very high value), the Transmit task would have a
waiting time of 92ms. Furthermore, HOLLOWS would
not choose any higher accuracy point because very small
gains in accuracy would be achieved, while the task wait-
ing time would increase exponentially.
Finally, in the last set of experiments we have assessed

the importance of having an accurate energy harvesting
estimator in EHSNs (such as our proposed WCMA pre-
dictor of section ‘Weather-conditioned Moving Average
Energy Prediction’) for the design of our power-aware
tasks scheduler, that is, HOLLOWS. In this regard,
Table 4 shows the estimated energy using either
EWMA or WCMA in HOLLOWS versus the real
amount of available energy to harvest during a time
window of 30min at noon for four consecutive mixed
days. As this table shows, the accurate energy harvesting
prediction algorithm we have included in HOLLOWS is

crucial for EHSN systems, in order to optimally exploit
the energy income in real working conditions of multi-
priority task sensor nodes. In fact, as Table 4 depicts,
WCMA has a maximum energy prediction error of
merely 10%, while EWMA can have errors of up to
90%. Hence, the large EWMA energy estimation error
can seriously damage the obtained accuracy level of the
structural health monitoring process due to incorrect
energy management decisions applied in Shimmer. In
particular, if we consider days 7 and 9 in Figure 15,
both WCMA and EWMA achieve similar (excellent)
prediction results, because the energy income estimation
and the achievable maximum accuracy level are
matched. However, in day 8, on the one hand, the
WCMA algorithm included in HOLLOWS correctly
estimates the energy income and the right set of
queued multi-priority tasks to be executed is selected.
Thus, Shimmer can execute one feature extraction algo-
rithm with a 25% of accuracy or two with 45%, as
shown in Figure 16, just using the energy income from
the solar panel. On the contrary, EWMA overestimates
the energy income in day 8 by almost 0.26 kJ, which
leads the HOLLOWS scheduler to incorrectly increase
the target accuracy value of the executed feature extrac-
tion algorithms. Thus, the Shimmer node would run out
of energy in the middle of the process and no guarantee
of the accuracy of the predicted damage can be given.
Similarly, during day 10, HOLLOWS correctly esti-
mates the maximum accuracy achievable using our
included WCMA algorithm (i.e., one feature extraction
process with 45% accuracy level, two with 60% or three
with 88%), while EWMA underestimates the energy
income and drastically reduces the accuracy to only
one feature extraction with 25% accuracy or two
damage analyses with 45%. Thus, these results indicate
the benefit of the proposed combination in our
HOLLOWS task scheduler of the novel WCMA predic-
tion algorithm and the prioritized task multi-queuing
system in EHSN platforms, in order to achieve an excel-
lent overall energy harvesting management (i.e., more
accurate results of the monitored environment for the
same energy harvesting income pattern).

CONCLUSIONS

EHSN are a promising technology for autonomous
monitoring of environmental events. However, their
very low-energy consumption requirements pose great
challenges to design EHSNs that must concurrently
run multiple types of tasks (signal processing, commu-
nication, actuation, etc.), as no accurate models exists to
adjust their workloads to variable weather conditions
and dynamic set of tasks (with different priorities). In
this article we have proposed HOLLOWS, a new power-
aware task scheduler for energy harvesting-based sensor
nodes. It includes an accurate and fast analytical

Table 4. Solar energy prediction results.

Day Ereal(J) Algorithm E(J) Err%

7 571.72 WCMA 550.44 3.72
EWMA 535.50 6.34

8 284.63 WCMA 255.60 10.20
EWMA 543.60 �90.99

9 400.61 WCMA 360.00 10.14
EWMA 423.00 �5.59

10 609.50 WCMA 597.60 1.95
EWMA 406.80 33.26
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solution based on prioritized queues to predict at run-
time the mean waiting and residence time for different
multi-level priority tasks in EHSNs. Our proposed task
scheduler only requires as input the inter-arrival time
and expected execution time for each task, the available
energy in the node and an estimation of the expected
energy income in the future. In this regard,
HOLLOWS incorporates a new solar prediction algo-
rithm, WCMA, specifically targeting solar-panel-based
EHSN. Our experimental results in real-life working
setups of the Shimmer node, a last-generation structural
health monitoring EHSN, have shown that HOLLOWS
is able to maximize the use of the dynamically varying
solar panel power income with an estimation error of
tasks waiting time of 1%. As a consequence, the
accuracy of the energy harvesting prediction
achieved by HOLLOWS is up to 3� better than sta-
te-of-the-art energy prediction algorithms for EHSNs,
such as, EWMA.
In addition, our proposed power-aware scheduler is

able to operate in a scenario in which the energy
demanded by the initially requested tasks by the user
monitoring the system is higher than the energy entering
the system. In this case, HOLLOWS informs the user
and rejects only the minimum number of tasks to ensure
the expected residence time and to guarantee a minimum
level of accuracy for the available and expected har-
vested energy. Finally, HOLLOWS can also be used to
schedule tasks using dynamic thresholds for the target
residence time and energy constraints, enabling run-time
adaptation of the Shimmer node case study (in the order
of seconds) for unexpected emergency conditions (e.g.,
high-precision damage assessment in case of earth-
quakes, flooding, etc.)
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