
UNIVERSITY OF CALIFORNIA, SAN DIEGO

Low-Latency Techniques for Improving System Energy Efficiency

A dissertation submitted in partial satisfaction of the
requirements for the degree of Doctor of Philosophy

in

Computer Science (Computer Engineering)

by

Richard D. Strong

Committee in charge:

Tajana S. Rosing, Chair
Dean M. Tullsen, Co-Char
Clark C. Guest
Andrew B. Kahng
George Porter
Steven Swanson

2013

Copyright

Richard D. Strong, 2013

All rights reserved.

The Dissertation of Richard D. Strong is approved and is acceptable in

quality and form for publication on microfilm and electronically:

Co-Chair

Chair

University of California, San Diego

2013

iii

DEDICATION

To all those that keep on trying.

iv

EPIGRAPH

We are what we pretend to be,
so we must be careful what we pretend to be.

Kurt Vonnegut

v

TABLE OF CONTENTS

Signature Page . iii

Dedication . iv

Epigraph . v

Table of Contents . vi

List of Figures . ix

List of Tables . xii

Acknowledgements . xiv

Vita . xvii

Abstract of the Dissertation . xix

Chapter 1 Introduction . 1
1.1 Efficiency with Minimal Performance Impact . 1
1.2 Power Gating . 5
1.3 Fast Core Switching . 8
1.4 The Need for Efficient Network Bandwidth . 9

Chapter 2 Memory Access Power Gating . 14
2.1 Related Work . 17
2.2 Power Gating and Power Distribution Network . 20

2.2.1 Programmable Power Gating Switch (PPGS) Design 20
2.2.2 PDN Model for Power Estimation and Circuit Analysis 23
2.2.3 Safe Wake-Up Mode Analysis and Equation 26
2.2.4 Core Wake-Up Stagger . 28

2.3 System Design . 30
2.3.1 Centralized Wake-Up Controller (WUC) . 30
2.3.2 Distributed, Staggered Wake Up . 32
2.3.3 MAPG-Counter: Counter-Based Controller Design 34
2.3.4 TAP: Token-Based Adaptive Power Gating 36
2.3.5 Formal Analysis of In-Order Core Energy Savings 40
2.3.6 Core State Retention and Restoration . 42

2.4 Simulation Methodology . 44
2.5 Results . 47

2.5.1 EV6 vs IO Power Gating Energy Savings 48
2.5.2 Execution Time and Overheads . 53

vi

2.5.3 Energy Savings as a Function of Wake-up Latency 55
2.5.4 Adapting to Memory Contention . 57
2.5.5 Distributed, Staggered Wake Up . 59

2.6 Summary . 62
2.7 Acknowledgments . 63

Chapter 3 Very Fast Core Switching . 65
3.1 Related Work . 69

3.1.1 Thread Migration Techniques . 69
3.1.2 Scheduling for Heterogeneous Multicores 70

3.2 Software Approaches to Core Switching . 72
3.2.1 Modified System Calls . 73
3.2.2 V1: Linux’s Thread-Migration Mechanism 74
3.2.3 V2: Modified Scheduler . 75
3.2.4 V3: Scheduler Fast Paths . 76
3.2.5 V4: Addressing IPI Costs . 77
3.2.6 V5: Cross-Core Wake Up from Quiesce . 79

3.3 Simulation Environment and Workloads . 80
3.3.1 Modeling Core Power Up . 81
3.3.2 Workloads . 82
3.3.3 Organization of Experiments . 84

3.4 Microbenchmark Results . 84
3.4.1 Results on Real x86 Hardware . 85
3.4.2 Results on Simulated Hardware . 85

3.5 Effects of Architectural Parameters . 86
3.5.1 L1 Cache Sizes . 87
3.5.2 Core Wake-Up Delay . 88

3.6 Macrobenchmark Results . 89
3.6.1 Web Benchmark . 89
3.6.2 Database Benchmark . 92
3.6.3 Network Streaming Benchmarks . 95
3.6.4 Energy Efficiency . 97

3.7 Summary . 98

Chapter 4 Integrating Microsecond Circuit
Switching into the Data Center . 100

4.1 Related Work . 104
4.2 Motivation: Reducing Network Cost via Faster Switching 106

4.2.1 Multi-layer Switching Networks . 106
4.2.2 OCS Power Advantages . 108
4.2.3 OCS Model . 110

4.3 OCS Throughput and Latency . 111
4.3.1 Throughput . 112

vii

4.3.2 Latency . 112
4.4 Implementation . 115

4.4.1 Mordia Prototype . 116
4.4.2 Emulating TORs with Commodity Servers 121
4.4.3 All-to-All Traffic Generator . 138

4.5 Evaluation . 140
4.5.1 Emulated TOR Software . 140
4.5.2 Throughput . 142

4.6 Summary . 146
4.7 Acknowledgments . 146

Chapter 5 Summary . 148

Bibliography . 152

viii

LIST OF FIGURES

Figure 1.1. Data center server average power and energy efficiency as a func-
tion of CPU utilization from [16] . 2

Figure 1.2. Best job completion time for Hadoop sort as a function of greater
network oversubscription [121]. 10

Figure 2.1. Operation of the power-gating technique. 21

Figure 2.2. Wake-up current profiles with different wake-up controls. 21

Figure 2.3. PPGS design and inrush current profiles vs. wake-up modes 23

Figure 2.4. 16-core system power delivery network with power gating. 26

Figure 2.5. SPICE-calculated minimum wake-up latency for an EV6 16-core
CMP with various wake-up scenarios. 27

Figure 2.6. Wake-up latency coefficient, T0, as a function of PDN parameters. 29

Figure 2.7. Minimum wake-up latency as a function of wake-up stagger. 30

Figure 2.8. WUC and PPGS integration into a 4-core CMP. 31

Figure 2.9. WUC, Core-i PPGS, and Memory Subystem timing diagram. 31

Figure 2.10. Wake-up slot assignments with different number of slots (η). 33

Figure 2.11. A diagram of TAP’s power-gating behavior 38

Figure 2.12. Interface for power gating and data retention. 43

Figure 2.13. TAP and MAPG-Counter EV6 energy savings 49

Figure 2.14. TAP and MAPG-Counter in-order energy savings 50

Figure 2.15. Breakdown of simulation time for each benchmark running on an
EV6 core utilizing either MAPG-Counter or TAP to save energy. . 54

Figure 2.16. Energy savings for MAPG-Counter and TAP as core wake-up la-
tency varies from 2 ns to 16 ns . 56

Figure 2.17. TAP and MAPG-Counter adapting to increasing memory contention 58

Figure 2.18. Core wake-up latency improvement from stagger 61

ix

Figure 2.19. Core energy savings improvement from stagger 61

Figure 2.20. Distributed WUC’s impact on power-gated time 62

Figure 3.1. Example of a system call modified to support core switching 74

Figure 3.2. Timeline showing 2 core switches between a pair of cores, using
fast-path versions of schedule . 77

Figure 3.3. Abstract pseudo-code for modified versions of schedule() 78

Figure 4.1. A comparison of a scale-out FatTree network and a Hybrid electri-
cal/optical network . 102

Figure 4.2. Data center power reduction from the introduction of a core switch
OCS . 110

Figure 4.3. The effect of changing duty cycle on OCS bandwidth and RTT . . . 113

Figure 4.4. The effect of changing duty cycle and number of port sharers on
OCS RTT . 114

Figure 4.5. Logical diagram of the Mordia OCS prototype 116

Figure 4.6. The software implementation of a software TOR 123

Figure 4.7. Steps for a user program to transmit a packet. 124

Figure 4.8. Organization of day and night synchronization frames 128

Figure 4.9. A flow diagram depicting the MTOR Qdisc enqueue function . . . 130

Figure 4.10. Pseudo-code flow diagram for synchronization processing 131

Figure 4.11. A flow diagram depicting the MTOR Qdisc dequeue function . . . 132

Figure 4.12. The case for enhanced token management . 134

Figure 4.13. Actual OS code for how the enough tokens function stage in Fig-
ure 4.11 determines the number of tokens left 135

Figure 4.14. The impact of aging and pacing tokens on packet loss rate 136

Figure 4.15. Throughput comparison between a2a-syngen and netperf for vary-
ing MTU between two hosts . 139

x

Figure 4.16. Host 1’s Qdisc receiving UDP packets from Hosts 12–16 as it
cycles through circuits connecting it to 22 other hosts. 141

Figure 4.17. Host 1’s Qdisc transmitting UDP packets to Hosts 7–11 as it cycles
through circuits connecting it to 22 other hosts. 142

Figure 4.18. Network throughput delivered over the OCS 143

Figure 4.19. Synchronization jitter as seen by our software TOR’s OS. 145

xi

LIST OF TABLES

Table 2.1. Estimated data for 32 nm HP, LOP and 22 nm HP, LOP in-order
cores. 24

Table 2.2. Average and maximum error on the modeled wake-up time for 4-,
6-, 8-, and 16-core cases (EV6, 32 nm HP). 28

Table 2.3. System configuration values . 45

Table 3.1. Summary of core-switching versions . 72

Table 3.2. A mapping from architectural configuration name to core types for
both the application and OS core . 80

Table 3.3. Fraction of CPU time spent in various modes. Measurements are
based on unmodified Linux on a simulated uniprocessor 83

Table 3.4. Microbenchmark results for gettid per-call delay with 1,000,000
samples per trial . 85

Table 3.5. Microbenchmark results with cross-core wake up 86

Table 3.6. Effect of L1 cache size on microbenchmark results, using the V5
core-switching mechanism . 87

Table 3.7. Effect of power-up delay on performance . 88

Table 3.8. Simulated Web results on dual-core CPUs for 1G and 10G NICs.
Values are KB transferred during 133 ms. 90

Table 3.9. Core-switch counts for 1 Web trial, dual-core X86 91

Table 3.10. Simulated Web results on quad-core CPUs. Values are KB trans-
ferred during 133 ms . 91

Table 3.11. Simulated throughput for ex tpcb. Values are transactions/sec. rates
(for 100 transactions). This trial used 16 KB L1 caches. 92

Table 3.12. Throughput for ex tpcb on dual-core X86 . 94

Table 3.13. Core-switch counts for 1 ex tpcb trial, dual-core X86. 94

Table 3.14. Simulated Netperf results for TCPstream. Values are KB transferred
during 167 ms. 94

xii

Table 3.15. Simulated Netperf results: TCPmaerts. Values are KB transferred
during 167 ms. 95

Table 3.16. Core-switch counts for 1 netperf trial, dual-core X86 96

Table 3.17. Energy efficiency comparison between the bound and V5 kernels
(KTrans/s/W or MB/s/W) . 97

Table 4.1. Power consumption of data center networking components 109

xiii

ACKNOWLEDGEMENTS

I would like to take this chance to acknowledge the people, who have been

instrumental in my getting a PhD. I thank my parents who instilled in me a sense of

importance for continuing my education. I thank my wife, who not only withstood my

nearly endless turmoils and would selflessly offer her help in my research, but who also

managed to take this road to a PhD at the same time. I also would like to thank my

advisors, my dissertation committee, my fellow researchers, my friends, and my family.

I thank the people at the following institutions based on chronological order: J. L. Pettis

VA Medical Center, UC Los Angeles, City of Hope, Uwink Inc., UC San Diego, MIPS

Technologies, and HP Labs. I am grateful to Ericsson, Google, Qualcomm, Oracle,

Cisco, Microsoft, CIAN, MuSyC, GSRC, and NSF grants CCF-0702349, EEC-0812072,

CNS-0923523, SHF-0916127, SHF-1218666, SHF-1116667, and CCF-1162085 for

supporting the research projects that contributed to my dissertation.

Chapter 2 contains material from “MAPG: Memory Access Power Gating”, by

Kwangok Jeong, Andrew B. Kahng, Seokhyeong Kang, Tajana S. Rosing, and Richard

Strong, which appears in Design, Automation & Test in Europe Conference & Exhibition,

2012. The dissertation author was a principle contributor and author of this paper.

Chapter 2 also contains material from “TAP: Token-Based Adaptive Power Gat-

ing”, by Andrew B. Kahng, Seokhyeong Kang, Tajana S. Rosing, and Richard Strong,

which appears in the ACM/IEEE International Symposium on Low Power Electronics

and Design, 2012. The dissertation author was a principle contributor and author of this

paper. This material is copyright c©2012 by the Association for Computing Machinery,

Inc. Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

xiv

must be honored. Abstracting with credit is permitted. To copy otherwise, to republish,

to post on servers, or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from Publications Dept., ACM, Inc., fax +1 (212) 869-0481, or

permissions@acm.org.

In addition, Chapter 2 contains material from “Many-Core Token-Based Adaptive

Power Gating”, by Andrew B. Kahng, Seokhyeong Kang, Tajana S. Rosing, and Richard

Strong, which will appear in in the IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems. The dissertation author was a principle contributor and

author of this paper.

Chapter 3 contains material from “Fast Switching of Threads Between Cores”,

by Richard Strong, Jayaram Mudigonda, Jeffrey C. Mogul, Nathan Binkert, and Dean

Tullsen, which appears in SIGOPS Operating Systems Review, Volume 43, Issue 2 on

April 2009. The dissertation author was the primary investigator and author of this paper.

This material is copyright c©2009 by the Association for Computing Machinery, Inc.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, to republish,

to post on servers, or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from Publications Dept., ACM, Inc., fax +1 (212) 869-0481, or

permissions@acm.org.

Chapter 4 contains material from “Integrating Microsecond Circuit Switching

into the Data Center”, by George Porter, Richard Strong, Nathan Farrington, Alex

Forencich, Pang-Chen Sun, Tajana S. Rosing, Yeshaiahu Fainman, George Papen, and

Amin Vahdat, which will appear in the proceedings of The Special Interest Group on

xv

Data Communications, 2013. The dissertation author was the secondary investigator and

author of this paper.

xvi

VITA

2003 Internship
J. L. Pettis VA Medical Center, Loma Linda, CA

2005 Internship
City of Hope, Duarte, CA

2006 B.S. of Computer Science and Engineering
University of California, Los Angeles

2006 Software Engineer
Uwink Inc.

2007 Internship
MIPS Technologies, Mountain View, CA

2008 Internship
HP Labs, Palo Alto, CA

2009 Teaching Assistant
University of California, San Diego

2009 M.S. of Computer Science
University of California, San Diego

2009 Teaching Assistant
University of California, San Diego

2009–2013 Research Assistant
University of California, San Diego

2013 PhD of Computer Science (Computer Engineering)
University of California, San Diego

PUBLICATIONS

G. Porter, R. Strong, N. Farrington, A. Forencich, P. Sun, T. Rosing, Y. Fainman, G.
Papen, and A. Vahdat. Integrating Microsecond Circuit Switching into the Data Center.
To appear in Proc. Special Interest Group on Data Communications, 2013.

A. B. Kahng, S. Kang, T. S. Rosing, and R. Strong. Many-Core Token-Based Adaptive
Power Gating. To appear in IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems.

xvii

A. B. Kahng, S. Kang, T. S. Rosing, and R. Strong. TAP: Token-Based Adaptive Power
Gating. In Proc. International Symposium on Low Power Electronics and Design, pages
203-208, 2012.

K. Jeong, A. B. Kahng, S. Kang, T. S. Rosing, and R. Strong. MAPG: Memory Access
Power Gating. In Proc. Design, Automation, & Test in Europe Conference & Exhibition,
pages 1054-1059, 2012.

R. Strong, J. Mudigonda, J. C. Mogul, N. Binkert, and D. Tullsen. Fast Switching of
Threads Between Cores. SIGOPS Operating Systems Review, 43(2):35-45, 2009.

A. K. Coskun, R. Strong, D. M. Tullsen, and T. S. Rosing. Evaluating the Impact of Job
Scheduling and Power Management on Processor Lifetime for Chip Multiprocessors. In
Proc. Conference on Measurement and Modeling of Computer Systems, pages 169-180,
2009.

S. Li, J. Ahn, R. Strong, J. B. Brockman, D. M. Tullsen, and N. P. Jouppi. McPAT: An
Integrated Power, Area, and Timing Modeling Framework for Multicore and Manycore
Architectures. In Proc. International Symposium on Microarchitecture, pages 469-480,
2009.

xviii

ABSTRACT OF THE DISSERTATION

Low-Latency Techniques for Improving System Energy Efficiency

by

Richard D. Strong

Doctor of Philosophy in Computer Science (Computer Engineering)

University of California, San Diego, 2013

Tajana S. Rosing, Chair
Dean M. Tullsen, Co-Char

U.S. data center energy consumption is expected to rise past 100 billion kWh in

2013. Approximately 50% of this energy usage can be attributed to servers, networks,

and storage, and the other half goes to power and cooling infrastructures in their support.

Servers are so non-energy efficient that they consume 65% of a fully utilized server’s

power when only 30% utilized. Even when 100% utilized, the server may not be running

efficiently.

This dissertation improves the energy efficiency of data center systems in three

ways. The first method improves server energy efficiency by turning off CPU cores during

xix

long-latency memory accesses with no performance penalty to data center applications.

This technique leverages peak rush current from on-chip power distribution networks to

quickly charge core capacitance, and allows the core to resume execution in as little as

8.06 ns. Core state is saved through careful use of slave latches and source biasing.

A key means to increasing effective CPU utilization and energy efficiency of

servers, is to leverage virtual machine and thread migration at minimal performance

overhead. Our second technique speeds up software thread migration by up to 2.5×

compared to Linux, with latencies as small as 933 ns. We leverage this technique to

quickly migrate operating system code between asymmetric cores to reduce application

energy consumption.

The techniques introduced so far assume that I/O devices have sufficient band-

width to keep the server processor busy. In contrast to this assumption, many data centers

oversubscribe their networks to reduce cost and power consumption, sometimes at the ex-

pense of overall data center efficiency. Our last contribution is a software top-of-the-rack

switch capable of offloading unmodified TCP/IP traffic onto a prototype, microsecond

optical circuit switch within a microsecond. We demonstrate that servers can utilize up to

95.4% of optical circuit bandwidth even when switch reconfiguration latency is reduced

by three orders of magnitude to 11.5 µs, supporting the introduction of low-latency optics

into the data center to radically reduce cost and power consumption of full bisection

bandwidth networks.

xx

Chapter 1

Introduction

U.S. data center energy consumption has risen steadily since the year 2000, and is

expected to reach more than 100 billion kWh in 2013, costing $7.4 billion each year [5].

Further, individual data centers have increased their power demand to as much as 100

MW [34]. Data centers are expected to grow in size and number, due to demand for

cloud services from mobile devices, tablets, and big data. The U.S. EPA found that 50%

of data center energy usage can be attributed to servers, networks, and storage with each

part accounting for 40%, 5%, and 5%, respectively [5]. Hence pressure exists to improve

the energy efficiency of data centers, and such efforts must consider the contributions

of servers, networks, and disks. Further, the remaining 50% of power consumption is

attributed the power and cooling infrastructure that supports servers, networks and disks,

and so their energy efficiency in inherently intertwined.

1.1 Efficiency with Minimal Performance Impact

Servers are one of the largest contributors to data center power. However, two

disturbing trends exist in today’s data center servers. First, they spend a majority of their

time at 30% utilization or less [16]. This happens because data center operators over

provision their data center to meet peak demands due to strict quality of service (QoS)

guarantees, and reliability requirements.

1

2

For an example of strict QoS guarantees, Google search found that users who

were subjected to a random delay between 100 ms to 400 ms, reduce their total number

of searches by up to 0.76% [24]. Google also found that longer exposures to delay,

causes an increasing reduction in searches, implying a worrisome correlation between

service delay and profitability. Inside the data center, the acceptance for delay is less.

Services like Memcached [46] and RAMCloud [97] can be queried numerous times by

other servers to satisfy a single request, leading to sensitivity on a microsecond time scale.

In addition, some services are more sensitive to the tail latency of requests, meaning that

overall speed does not matter so much as the worst case. As a result, data center operators

over provision their systems to avoid costly regions of operation and disgruntled users.

Figure 1.1. Data center server average power and energy efficiency as a function of CPU
utilization from [16]

Over provisioning data center servers comes at a price since servers are not

energy proportional (see Figure 1.1). An ideal energy proportional server should use

power in proportion to the amount of resources it uses. However, a 30% utilized server

3

consumes 65% of the power of a fully utilized server [16]. Even worse, a data center that

accomplishes no interesting work still consumes half as much server power as a fully

utilized data center.

The lack of energy proportionality of servers is worse than the result reported in

[16]. The study reports only CPU utilization, under the assumption that server utilization

is proportional to CPU utilization. However, even when a server is fully utilized as

measured by CPU utilization, the server many have many subcomponents, including the

CPU, that are not fully utilized. For instance, the CPU may experience a long-latency

memory access that misses in the cache hierarchy, causing it to stall. If the CPU executes

operating system code with significant instructional dependencies, both the CPU and

memory subsystem will be underutilized. Alternatively, if a network application uses the

poll system call or non-blocking sockets to check for incoming data, but is bottlenecked

by the network, then the CPU and memory will once again be underutilized. In all of

these cases, the operating system would report CPU utilization at 100%. Ergo, the second

disturbing trend is that a server at 100% CPU utilization may not necessarily be operating

efficiently.

Moore’s Law [92] may improve data center energy efficiency via smaller tran-

sistors that offer both performance improvements and power reduction. However, a

transistor-based device in the data center consumes power in two forms: dynamic and

leakage. Dynamic power represents the power of switching transistors while they perform

useful work, while leakage power is consumed even when the device is idle. Distressingly,

constraints that limit scaling of device threshold voltages, reduce device supply voltages,

and improve transistor switching speed lead to leakage power becoming an increasingly

dominate component of system power consumption. For example, leakage power con-

tributes to 41% of overall server processor power to run the Spec2006 application suite

on a processor built in the 22 nm technology node [78]. Transistor leakage is significant

4

for not only the server processor, but for many other data center devices such as memory,

NICs, controllers, switches, and others.

Given that technology scaling alone will likely not solve the problem, and the

critical interactions between data center software and hardware, solutions should come

in the forms of both hardware and software changes. In the domain of hardware-only

changes, there have been several exciting proposals. These techniques range from

automatically generating custom ASICs to efficiently execute common applications [113]

and advanced dynamic voltage frequency scaling (DVFS) techniques [35, 38, 63], to

introducing network switches that dynamically adapt links rates to improve network

energy proportionality [10]. Such hardware changes can avoid software control, allowing

very fine-grained decisions for a subsystem of the data center. For the case of hardware

techniques, it is important to remember that the improvement of a subsystem can have

important implications for the entire data center since data centers often reuse the same

components throughout their infrastructure. For example, a technique that improves the

energy efficiency for a single core may be applied across millions of cores in the data

center. This dissertation contributes to this area of research by investigating the use of

low-overhead power gating to improve the energy efficiency of server processors.

However, software is critically involved in the interaction of data center servers.

Although software can be an order of magnitude slower than hardware-only solutions,

it often allows coarser-grain decisions that affect the efficiency of several data center

subsystems. For instance, some publications focus on the interaction of disks, memory,

and software to improve the performance of processing big data [102, 119], while others

may use binary translation to more efficiently use processor resources [120]. Software

changes can also yield benefits at the data center scale, as data center operators like

Amazon, Rackspace, Google, and Red Hat use a virtualized infrastructure that shares

hypervisors, operating systems, and services across tens of thousands of servers. A

5

technique that speeds up thread migration between cores, or allows virtual machines

(VM) to migrate faster between servers can often be leveraged at data center scale. This

dissertation develops a fast core-switching technique that can quickly migrate threads

between cores on a multicore processor to enable energy efficiency opportunities that

rely on constant thread migration.

The interaction of software and hardware is not limited to servers as the network

is often involved in the efficiency of both. Software designs can use different software

techniques, protocols (i.e. TCP and UDP), and operating system calls (e.g., poll and

select), which can all change the behavior of data center network demand. Even for a

fixed software configuration, the topology and offered link rates of the interconnecting

switches can have dramatic impacts on the availability of bandwidth between two servers.

Techniques that address these concerns range from software control of the network via

OpenFlow [86] and Open vSwitch [99], to techniques that provide full bisection network

bandwidth from commodity switches [12, 93]. This dissertation uses software control of

the network to demonstrate the viability of integrating a prototype microsecond optical

circuit switch into the data center. Optical switches offer the promise of providing full

bisection bandwidth and a three orders of magnitude reduction in energy consumption.

The next sections provide greater detail about the actual techniques that this dissertation

proposes.

1.2 Power Gating

Up to this point, we introduce research that makes a case that servers are not

energy proportional, and that transistor scaling alone will not solve the problem. Further,

transistor scaling exasperates the problem due to an increased contribution of leakage

power to total power. A useful example of this problem exists for server processors,

which usually account for the largest contribution of server power [40]. During every

6

cycle that a server processor core is on, even when stalled, leakage power is consumed

via gate leakage, gate-induced drain leakage, junction leakage, and subthreshold leakage.

Power gating is a technique that drastically reduces leakage power by cutting

off the current path from supply to ground through introduction of a transistor switch

between them. Better yet, it does not suffer from the inability to scale device threshold

voltages in the face of aggressive supply voltage scaling that plagues DVFS.1 At one

end of the spectrum, functional unit power gating reduces power consumption of unused

core functional units [116] with wake-up latencies of several nanoseconds. At the other

end, entire cores may be power gated and woken up, with latencies of several tens of

microseconds to account for saving and restoring all core state from memory [103].

Power gating cuts all supply voltage to logical cells, causing them to lose state.

The techniques to address this problem differ by cell type: complex, sequential, and

SRAM. Complex cells implement gate logic, and after power gating, they merely require

time to power up and for their input signals to be valid. Sequential cells maintain state,

and after power gating, they must power up, be reset, and restore their logical state. The

fact that sequential cells must restore their logical state, means that they must save it in

a modified cell that is able to survive supply voltage collapse, or that their value may

be restored through an interaction of other sequential cells and complex logic. Saving

sequential cells comes at roughly a 20% overhead in leakage power and area per cell [67],

so the minimal subset of sequential cells should be able to retain state when power gated.

Last, if SRAM were power-gated, then it too would lose state, which could potentially

cause large performance penalties. Alternatively, source biasing may be used in which

supply voltage is reduced by half, so that SRAM leakage is reduced, but logical state is

maintained. This technique requires a separate voltage domain to supply SRAM, which

1DVFS is one of the most common techniques for reducing server processor power consumption in
servers today

7

results is less leakage power savings, but also minimizes performance overhead.

Once we can power gate each cell, the next problem is when to power gate, and

when to wake up from a power-gated state. Waking up from a power-gated state takes

time and energy to supply all cells with the necessary charge from the supply voltage line.

If the device does not remain in the power-gated state for long enough, it is quite possible

that wake-up energy would exceed the energy savings from reductions in leakage power.

Even if power gating can reduce leakage power consumption over power-gated intervals,

if the delay to wake the device is too long, the contribution of other system components

can easily increase energy consumption overall.

The goal is to power gate underutilized cores, avoid performance impact, and

to improve overall server energy efficiency. Chapter 2 proposes a low-latency, power-

gating technique to turn off cores stalled on a long-latency, memory access. When a core

accesses a memory address that is not cached, the memory request must propagate through

the cache hierarchy, chip interconnect, and get scheduled by the memory controller. If the

core stalls due to the memory dependency, a controller saves the core’s architectural state

and then power gates the core. To avoid performance and energy overhead, the controller

maintains a lower bound on each memory request’s latency, and only power gates the core

if sufficient time remains. This technique allows cores to make power-gating decisions

at a 10 ns time scale without any measured performance impact. Simulations show

up to 22.4% core energy savings on a memory bound benchmark. Further, avoiding

performance impact allows this technique to be deployed in data center servers without

impact on a service’s QoS.

Power gating is best suited to address the energy efficiency of servers executing

memory bound applications, but it does little to improve the efficiency of applications

that experience short stalls or underutilized subcomponents in the processor. Further, the

technique requires modifications to hardware which will not benefit existing servers.

8

1.3 Fast Core Switching

Today’s servers continue to receive the benefits of the multicore era, in which a

single 1 U server can support up to 64 cores [8]. As a result, the communication costs

between cores have been reduced by an order of magnitude. If we consider that data

centers can have tens of thousands of servers, each server has tens of cores, and that these

cores are mostly underutilized, then there are, currently, millions of underutilized cores

in the data center. One way to exploit this vast resource is through low-latency thread

migration.

Thread migration may be used to distribute single-threaded computation between

many cores to see parallel-like speedups and energy reduction due to an increase in cache

capacity from many cores [66]. Low-latency thread migration can also speedup load-

balancing operations to allow cores to more quickly balance the assignment of threads

between symmetric cores in which maximizing simultaneous operations on a server

and improving its energy efficiency [82]. For asymmetric core architectures, dynamic,

fine-grained load-balancing of threads between cores can outperform static assignment

between 20% and 40% on average [18]. When a server executes a system call and enters

the operating system, it is possible to improve energy efficiency by switching to a simpler

core due to many instructional dependencies and large working sets of operating system

code [89]. Many existing servers support changing the voltage and frequency of different

cores or sockets, which allows the transformation of the vast idle core resource into an

asymmetric core resource.

In all of these cases, the latency of thread migration between cores is critical.

Chapter 3 considers a dimension of this problem by developing a low-latency, software-

based, core-switching technique that can be used to migrate applications between asym-

metric cores. Asymmetric cores may be chosen to posses those resources most critical for

9

efficient execution of each application, enabling energy savings even when the core does

not stall long enough to power gate. Specifically, the technique migrates operating system

(OS) code to a simpler, energy efficient core that still offers good performance. If the OS

and hardware are co-designed, then further efficiency may be achieved. Simulation and

server experiments indicate that the new technique can migrate Linux OS code between

cores up to 2.5× faster than previous software techniques with latencies as small as 933

ns. Use of core switching with asymmetric cores can improve server processor energy

efficiency by up to 6.16× for OS intensive codes. Data center servers may leverage

this low-latency technique to improve the efficiency of load-balancing VMs2, thermal

management, and computation spreading with minimal impact to QoS agreements that

demand responses from critical servers within 10s of microseconds or less.

1.4 The Need for Efficient Network Bandwidth

Both power gating and fast core switching can offer improvements in server

energy efficiency through hardware-only and software/hardware co-design. However,

they both operate under the assumption that servers have access to the data they need to

process locally, or that their I/O devices have sufficient bandwidth to keep the processor

busy. In contrast to this assumption, sometimes a server or VM spends its time waiting

for I/O, especially from the network due to oversubscription.

Data centers commonly oversubscribe their network at the higher levels of the

switching fabric in order to manage cost, complexity, and power consumption of the

network. As a result, should two or more servers need to communicate through the

higher levels of the network, they may only receive a fraction of their requisite bandwidth

demand called the oversubscription ratio. The Cisco design manual suggests that an

oversubscription ratio between 2.5:1 and 8:1 is common in large cluster designs [1].

2A VM is often a thread of some operating system

10

300#
400#
500#
600#
700#
800#
900#
1000#

0#200#400#600#800#1000#

Ex
ec
u&

on
)T
im

e)
)(s
ec
s)
)

Available)Bandwidth)(Mb/s))

Hadoop)Sort)@)Best)Job)Comple&on)Time)

Figure 1.2. Best job completion time for Hadoop sort as a function of greater network
oversubscription [121].

Other data center centers claim to suffer from an oversubscription ratio of 240:1 for 1

Gb/s servers [49]. Such oversubscribed networks may account for only 5% of data

center power, but they can dramatically slow down virtualized services and nearly double

server energy consumption to complete the same amount of work [121] (see Figure 1.2).

At the extreme, some services like Hadoop [4] kill and retry parallel computations across

hundreds of servers if a sufficient number of servers suffer from poor network behavior,

resulting in high energy and performance overhead.

Many commodity servers often come integrated with 10 Gb/s network devices,

and 40 Gb/s adapters compatible with PCI Express are available for $260. Servers can

offer these high-bandwidth network devices data from memory buffers at a data rate

limited by either memory bandwidth3 or PCI Express4. Today, some big data applications

use server memory as a distributed parallel cache to save recently generated data for map

reduce like jobs that require several iterations over that data, yielding order of magnitude

improvements in performance over a disk only solution [119]. RAMCloud uses DRAM

379.55 GB/s for an 8-core, 2.9 GHz, Intel E5-2690 server running STREAM [84]
4PCI Express v4.0 can offer 31.51 GB/s bandwidth across 16 lanes [25]

11

as a drop in replacement for disk to offer up to three orders of magnitude improvement in

storage performance [97].

Even the underlying storage for the data center is poised to greatly increase in

speed. Today, data centers use spinning disk technologies that have been around for

decades, and operate near 7,200 RPM. Flash-based SSDs are commodity, scale linearly

in performance in RAID arrays, and can offer sequential bandwidths of up to 569 MB/s.

Phase change memory could potentially offer an order of magnitude improvement in

sequential throughput at 2.932 GB/s [26]. Such an increase in raw storage bandwidth for

a distributed file system may put significant pressure on the network. Taking these factors

into account, network bandwidth demand will likely continue to rise in the foreseeble

future.

To prevent the negative consequences of oversubscription and increasing network

bandwidth demand, data centers can introduce a scaled-out network that offers full

bisection bandwidth between any two hosts [12, 93]. However, such a network needs

to be provisioned for the worst case communication pattern, leading to as many as nine

layers in the largest networks. In general, an N-level scaled-out network built from

k-radix switches can support kN/2N−1 servers, with each layer of switching requiring

kN−1/2N−2 switches (though layer N itself requires half this amount). The implication

is that higher level switches become less likely to be utilized and waste energy, as they

also are not energy proportional [10]. Further, a full bisection network would consume

as much power as the servers, if the servers became energy proportional and were 15%

utilized on average [10].

In summary, today’s data center networks contribute to only 5% of data center

power, but offer bandwidth at an oversubscription ratio, which can adversely affect

the energy efficiency of large distributed applications. Underlying storage technology,

and software techniques that utilize memory for storage are poised to increase network

12

bandwidth demand of commodity servers. Left unchecked, the network, especially near

the core switch level, acts as a bottleneck against improving data center energy efficiency.

Current techniques to provide networks with full bisection bandwidth can remove this

bottleneck, but their complexity and power consumption may offset any gains seen from

energy proportional servers. Thus, improvements in server energy proportionality should

be followed by improvements in network energy consumption and offered bandwidth.

Electrical packet switch (EPS) networks have long been a cornerstone in data

center networks, because of their improvements in offered bandwidth and ability to

schedule each switch on a per packet basis. Today, 10 Gb/s Ethernet, high-radix switches

with up to 96 ports are commodity. However, port switches with 40 Gb/s often have much

lower port counts in the range of 16 to 24 ports, which adds complexity to the design of

the data center network. Should the port counts of a 40 Gb/s and 100 Gb/s EPS continue

to scale, then the limits of skin effect and Ethernet cable input power for practical data

center distances will likely impede efforts to offer bandwidth in excess of 100 Gb/s [87].

In contrast, an optical fiber suffers loss of only 2∗10−4 dB/m [87], separating

the concern of transmission rate from distance for today’s data center sizes. Each fiber

of an optical network can use wave division multiplexing to transmit between 44 - 177

channels (depending on channel spacing) at 20 Gb/s [71] per channel yielding between

880 - 3540 Gb/s. Optical circuit switches (OCS) based on 3D-MEMS Glimmerglass can

offer switches that scale at 240 mW/port, agnostic to data rate compared to an electrical

packet switch that consumes as much as 14.1 W/port at 10 Gb/s [43]. Such an OCS is

also a space switch capable of each port delivering all frequencies to a specific output

port.

There are at least two major challenges in integrating an OCS into the data center.

First, an OCS port does not process each individual packet to determine a destination

port. Instead, a circuit is setup between a source and destination port, which means that

13

network control resides closer to the server. Second, in order to switch between circuits,

a reconfiguration time is necessary. During this time, mirrors move into position, stop,

vibrate, and no data may transit through the OCS port. A reconfiguration time imposes a

duty cycle on the offered bandwidth of the switch, and also increases the average delay of

packet through the switch if it shares a source or destination port with some other circuit.

Therefore, EPS networks face several challenges in terms of scaling up in band-

width, while still offering full bisection bandwidth between hosts. Optics offers an

opportunity to increase bandwidth per port by an order magnitude or more, while also

allowing a two orders of magnitude reduction in power per port. However, an OCS offers

its bandwidth in the form a circuit which could affect latency of packets through the

network.

Chapter 4 explores the introduction of a microsecond optical switch (OCS) into

the data center, with the focus on reducing the monetary cost and power consumption

of providing full bisection network bandwidth between all servers. Specifically, this

chapter designs a software top-of-the-rack switch (TOR) capable of delivering unmodified

TCP/IP network traffic to a prototype OCS that can establish new circuits in as little as

11.5 µs. The TOR is composed from a modified, network card device driver and OS

that mutually schedule each other at a microsecond granularity. This technique enables

OCS experiments with commodity servers and unmodified applications. Experiments

with a small server cluster indicate that today’s systems can utilize up to 95.4% of OCS

bandwidth, giving rise to data center networks with full bisection bandwidth at a 24.7%

reduction in data center power compared to an electrical technology. Consequently, data

center servers that do not suffer network bottlenecks run more efficiently, and are more

likely to meet their QoS requirements.

Chapter 2

Memory Access Power Gating

Chapter 1 explains that servers contribute to 40% of the power consumption of

data centers, the processor is often the largest contributor to this consumption, and that

even a 100% utilized processor may not be executing efficiently. Indeed, during every

cycle that a server processor core is on, even when stalled, leakage power is consumed

via gate leakage, gate-induced drain leakage, junction leakage, and subthreshold leakage.

A core may stall quite often if it is intensely accessing the memory subsystem, as every

time a thread makes a memory request that misses in the L1 cache, the core is subjected

to a variable access latency. This variable latency often translates into a core stall during

which no forward thread progress occurs and energy is wasted. For a 32nm out-of-order

EV6 core, stall energy can be up to 39.1% of total energy consumption for the Spec2006

benchmarks [78]. Further, many data center applications spend significant time in the

OS, executing system calls and interrupts, which suffer from a large working set and

memory bound behavior.1

Previous work has reduced core energy waste by lowering core frequency and volt-

age (DVFS) for memory-intensive threads when directed by L2-cache misses [37, 38, 63].

Some schemes can even direct core DVFS behavior based on signals from the L2-cache

and estimates of instruction-level parallelism [77]. A slower core frequency results in

1For more details, refer to Chapter 3, Table 3.3

14

15

fewer cycles waiting for the memory subsystem. Scaling down both frequency and voltage

results in an estimated cubic dynamic power and quadratic leakage power savings [62].

However, the inability to scale device threshold voltages, coupled with aggressive scaling

of supply voltages (subject to overdrive and performance requirements), means that cores

have little room to reduce voltage during DVFS [105]. The net effect is decreased energy

savings from DVFS, which motivates the development of new techniques to reduce core

energy consumption while waiting for the memory subsystem.

Power gating is a technique that drastically reduces leakage power by cutting off

the current path from supply to ground through introduction of a transistor switch between

them. At fine granularity, functional unit power gating reduces power consumption of

unused core functional units [116] with wake-up latencies of several nanoseconds. At

coarse granularity, entire cores may be power gated and woken up, with latencies of

several tens of microseconds to account for saving and restoring all core state from

memory [103]. An intermediate mechanism that we design provides the ability to power

gate an entire core, wake up a power-gated core in about 10 ns, and maintain the core’s

architectural and cache state. It uses a combination of a programmable power gating

switch (PPGS), state retention cells, and source biasing to enable the core to efficiently

enter and exit a power-gated state.

In this chapter, we compare two architectural techniques for directing the PPGS’s

behavior: Memory Access Power Gating Counter (MAPG-Counter) and Token-Based

Adaptive Power Gating (TAP). MAPG-Counter directs core power gating by tracking

the duration of core-stall periods with a counter for those stall periods that last longer

than a last-level cache miss. It uses core-stall history to predict future stall periods. With

these predictions, MAPG-Counter can predict the duration of stall periods, and direct

the PPGS when to power gate a core with minimal performance hit. The benefit of

this technique is in both its simplicity and its significant energy savings for in-order

16

cores. However, without detailed knowledge of all core memory requests, out-of-order

execution and hard-to-predict stalls become a significant barrier to the use of this power

gating mechanism.

TAP deterministically applies power gating during core stalls which are caused by

the variable latency of requests to the memory subsystem. TAP achieves this by providing

the capability to track every ongoing memory request and the expected response time for

each memory access that misses in the L1 cache. An expected lower bound on latency is

sent to each core’s PPGS by modifying the cache controllers to send a token on any miss

where the token includes an estimate of the access latency of a next-level memory hit.

The result is that TAP can support power gating with no measured performance loss.2

To summarize, this chapter makes the following contributions:

• We compare two practical techniques, MAPG-Counter and TAP, to direct the PPGS

controller on unmodified applications. We show that TAP can offer 2.58× the

average energy savings of MAPG-Counter for out-of-order cores.

• We show that MAPG-Counter can achieve slightly higher energy savings on

average than TAP for an in-order core.3

• We show that TAP has no measurable impact on application performance or QoS.

• We formally analyze TAP’s energy savings for in-order cores to achieve predictions

of energy savings for an arbitrary memory hierarchy and application, with 0.82%

and 9.75% average and maximum error.

• We compute the time at which a power-gating action breaks even with the wake-up

energy to be 8.53 ns and 17.17 ns for in-order and out-of-order cores, respectively.
2Our technique could cause a performance hit if a token got lost on the on-chip interconnect, or if a

token got significantly delayed. However, our simulations do not observe this behavior.
3The HP Moonshot System released in 2013 contains 45 hot pluggable servers, that are based on the

Intel Atom S1260, a in-order core at 2 GHz.

17

• We decompose MAPG-Counter and TAP behavior into time spent power gating,

waking up the core, restoring core state, and overhead to show that core wake-up

and restore time averages 1.9% of execution time.

• We demonstrate that both MAPG-Counter and TAP can adapt to an increase in

memory contention by increasing power-gated time by 2.02× and 3.69×, respec-

tively, as the number of threads increases from 1 to 32.

• We design and implement a staggered wake-up scheme capable of reducing wake-

up latency up to 58.2%; this results in a 3.14% increase in energy savings for

TAP.

2.1 Related Work

Power gating has been studied at both architectural and circuit levels. Microarchi-

tectural works typically examine the questions related to use of different power-gating

modes, what to power gate, predicting when to power gate, and control algorithms to

avoid energy penalties from poor power-gating decisions. Circuit-level papers typically

analyze different circuit techniques aimed at reducing wake-up latency, efficiently retain-

ing logic states, minimizing ground bounce, and achieving resilience to process variation.

The following briefly reviews representative works in these two areas.

Hu et al. [58] propose power gating as a technique to reduce functional unit

leakage power when applications underutilize their functional units. Specifically, they

power gate the floating-point and fixed-point units according to three different predictors

which are respectively ideal, time-based, and branch-misprediction-guided. The best

technique (branch-misprediction-guided) is able to put functional units to sleep for up to

40% of total cycles with only 2% performance loss. The authors of [58] also develop

equations to estimate the break-even points for power gating an out-of-order superscalar

18

processor. However, although they build a power consumption model with precise

analysis of virtual supply voltage during power gating, they do not consider the wake-up

energy required to restore circuit nodes.

Lungu et al. [83] show that in many cases, the predictor of [58] can lead to

increased energy consumption. A monitor that controls the use of power gating is

introduced to bound the performance and energy penalty for misbehaved applications.

Madan et al. [14] extend the idea of Lungu et al. to the core level, and propose a “guard

mechanism” that reduces harmful use of power gating.

Power-gating technology is also readily visible in leading commercial products.

The recent Nehalem architecture employs power gating at the core level to reduce leakage

power on idle cores, but 100 ms is required to wake up a core [73, 76]. AMD [103]

has improved this power-gating technique by optimizing the wake-up sequence to skip

built-in self tests (BIST) and restoration of cache state; this results in wake-up times as

short as 75 µs. In today’s systems, the OS typically power gates the cores in the idle

loop, missing out on power gating long memory accesses.

In the realm of circuit innovation, the pioneering work of Horiguchi et al. [56]

has been followed by many works on fundamental circuit design issues related to power

gating, including switch-cell sizing, data-retention methods, physical-implementation

methodologies, and mode-transition noise analysis and reduction. The recent survey of

Shin et al. [106] gives an excellent summary of the history and highlights of power-gating

techniques.

We propose a multi-mode power-gating technique that allows multiple wake-up

modes to minimize wake-up latency. Configurable power gating has been used in the

past to mitigate process variation, reduce ground bounce noise, and minimize wake-up

time. Agarwal et al. [11] and Singh et al. [107] examine multiple sleep modes that

feature different wake-up overheads and leakage power savings. Use of multiple sleep

19

modes achieves an extra 17% reduction in leakage power compared to a single power-

gating mode. Also, one of the sleep modes can reduce leakage power by 19% while

preserving circuit state. However, these energy savings are based on static traces of bus

activity and do not address the runtime problem of predicting when to power gate. In

addition, the reported results are likely optimistic since wake-up noise and the overhead

of implementing low-voltage sleep control signal distribution are not considered.

To minimize ground bounce during mode transition, Kim et al. [69] control

turn-on voltage (VGS), which makes sleep transistors turn on in a non-uniform stepwise

manner. Kim et al. [70] propose a tri-mode power-gating structure in which a PMOS

switch is combined in parallel with traditional NMOS power-gating switches. The

additional PMOS transistor supports intermediate power-saving state-retaining modes at

low-supply voltage, and reduces ground bounce noise during transitions between normal

and power-gated modes. Chowdhury et al. [32] propose a similar tri-mode (i.e., RUN,

HOLD, CUT-OFF) power-gating technique using PMOS switches in parallel with NMOS

footer switches, combined with additional NMOS switches in parallel with PMOS header

switches. Kim et al. [68] propose a programmable-width power-gating switch that adjusts

the widths of power-gating switches to compensate for core-to-core process variation

occurring in multicore systems. Finally, Zhang et al. [122] propose a multi-mode power-

gating technique using three NMOS switches with different sizes and threshold voltages.

Using various combinations of the three switches, they can provide multiple power-gating

modes with different leakage savings. They also note that their method is tolerant to

process variation.

The most similar work to this chapter, Memory Access Aware Power Gating for

MPSoCs [81], examines the potential to power gate an in-order core while monitoring

a single memory bus and estimating memory latencies. A controller that sits at the

memory bus sends explicit commands to each core to power gate and to wake up from

20

a power-gated state. The controller estimates memory latencies by tracking whether

each memory request is a row buffer hit or miss. However, this work does not consider

out-of-order execution, and is limited in scalability to a system with a single memory bus,

which precludes understanding of its application to data-center servers. In addition, it

does not consider the importance of core location and state information for determining

safe wake-up modes, the possibility of using staggered wake-up to reduce the latency of

core wake-up from a power-gated state, or the scalability of their designs. By contrast,

this chapter addresses these issues, is applicable to out-of-order cores, formally analyzes

the energy savings for in-order cores, considers the importance of core location and

wake-up stagger, and considers the scalability of the design to many-core processors.

2.2 Power Gating and Power Distribution Network

This section provides a low-level analysis of our power-gating methodology and

its impact on the power distribution network. Section 2.2.1 gives the details of the

programmable power-gating switch, Section 2.2.2 describes our models for capacitance

of a core and voltage noise in the power distribution network, Section 2.2.3 explains how

we model core wake-up mode constraints and the benefit of a staggered wake-up.

2.2.1 Programmable Power Gating Switch (PPGS) Design

As noted above, power gating cuts off leakage current paths between supply

(V dd core) and ground (V ss) by using switch transistors (often, high-Vth or long-channel

devices). A typical power-gating methodology with header switches is illustrated in

Figure 2.1. When the pg enable signal goes low, the header switches turn off and

leakage current is reduced. While in the power-gated state, all logic gates connected to

the virtual supply (V dd int) lose their logical states. Setting the pg enable signal to high

resumes circuit operation after a delay that corresponds to charging circuit capacitive

21

idle
active

Logic
block

Vdd_int

Vss

Vdd_core

active idle active

pg_enable

Voltage

Current

Vdd_int
Vss

Vdd_core

wake
up

Without power gating

sleep

With power gating

Figure 2.1. Operation of the power-gating technique.

Ilimit

R
us
h
cu
rr
en
t

time

Ilimit
R
us
h
cu
rr
en
t

time

enable_rest

enable_few

enable_rest

enable

(b) Two-stage wake-up(a) Simultaneous wake-up

Figure 2.2. Wake-up current profiles with different wake-up controls.

loads, resetting memory elements, and restoring state from retention flip-flops connected

to V dd core.

The delay to charge circuit capacitive elements is a function of total design charge

(Q) and peak charging current (Ilimit). If all header switches turn on simultaneously, a

large “inrush” current charges internal nodes in minimal time. To satisfy inrush current

upper limits (too-large IR drop can affect functionality of neighboring active blocks),

header switches are partially turned on in sequence, which increases charging time to

at least Tcharge = Q/Ilimit . Minimal charging time is achieved with a rectangular current

22

profile, but such a profile requires very fine-grained control of header switches. To avoid

this design complexity, we use a two-stage wake-up control [51] where the first stage

(enable few signal) turns on header switches to allow Ilimit charge current. The remaining

header switches are turned on in the second stage (enable rest signal) once the circuit

nodes are nearly charged, resulting in a triangular charging current profile (see Figure

2.2b). This increases the wake-up latency to at least twice the minimum square wake-up

profile, but simplifies signal connections.

To maximize opportunities for power gating subject to wake-up inrush current

and supply noise constraints, we seek to enable multiple wake-up modes, with a range of

wake-up latencies, per core. Figure 2.3 shows our programmable power-gating switch

(PPGS) for a core, along with the wake-up current profile for different wake-up modes.

We configure the number of first-stage wake-up switches to control the inrush current as

shown in Figure 2.3b. With the dynamic configuration of the PPGS, we can minimize

the wake-up time according to the core configurations — e.g., the number or location of

active cores relative to the waking-up cores. To power gate a core, all mode selection

signals m[0−9] are set to one, which turns off all switches at the same time.4

Core wake-up time and inrush current are determined by the mode selection. For

example, Mode 1, which has the longest wake-up time and smallest inrush current, is set

by m[0] = 0 and m[1−9] = 1. Thus, m[0] is enabled by signal enable few and m[1−9]

is enabled by signal enable rest. Mode 2 is set by m[0−1] = 0 and m[2−9] = 1; inrush

current increases with the number of first-stage switches, while wake-up time decreases,

as shown in Figure 2.3b. The other modes can be set similarly.

4Due to the large resistance of off-state switches, inrush current from simultaneous turn off is negligibly
small compared to wake-up inrush current.

23

enable_few

m[0]

0‐
9]

mout[0]

mout[1]
m[1]

m
[0

mout[1]

enable rest

m[9]
mout[9]

PPGS

enable_rest

(a)
IC

PPGS

DC

mout[0]…mout[9]

enable_rest

R
us

h
cu

rr
en

t

time

Ilimit

2Ilimit

5Ilimit

10Ilimit

t1 0.2 t1 0.1 t1

Mode 1

Mode 9

Mode 10

Mode 6

0.5 t1

(b)

Figure 2.3. PPGS design and inrush current profiles vs. wake-up modes

2.2.2 PDN Model for Power Estimation and Circuit Analysis

Table 2.1 shows estimated design parameters, power-gating results and PDN-

model parameters for 32 nm and 22 nm in-order cores with high performance (HP)

and low-operating power (LOP) devices. To study wake-up latency and inrush current,

we estimate the total charge for core logic and interconnect capacitance as Qcore =(
Clogic +Cint

)
V dd core, where Qcore, Clogic, and Cint represent total charge, device

capacitance, and interconnect capacitance for a single core without caches. We estimate a

core’s total transistor count using [78] to determine the core’s area and average transistor

density. Based on this transistor count and parameters from the 2009-2010 International

Technology Roadmap for Semiconductors (ITRS) [6], we estimate Clogic and Cint . The

inrush current limit (Ilimit) and on-current (Iactive) are estimated from McPAT data for

peak power and average power, respectively.

From the calculated charge (Qcore), the minimum wake-up latency with a rect-

angular form current profile is Tmin−charge = Qcore/Ilimit , and the minimum two-stage

wake-up latency (Figure 2.2b) is 2×Tmin−charge.

We estimate leakage power consumption during power gating of the core logic

24

Table 2.1. Estimated data for 32 nm HP, LOP and 22 nm HP, LOP in-order cores.

Estimated Data
32 nm 32 nm 22 nm 22 nm

HP LOP HP LOP
Design Data
V dd core (V) 1.00 0.77 1.00 0.77
core area (mm2) 4.593 4.608 2.701 3.657
logic area (mm2) 2.891 2.863 1.635 1.636
Ccore (F) 7.53E-9 7.48E-9 4.58E-9 4.58E-9
total charge (C) 7.53E-9 5.76E-9 4.26E-9 3.30E-9
core leakage (W) 0.355 0.042 0.147 0.019
Iactive (A) 0.725 0.374 0.371 0.233
Ilimit (A) 1.298 0.674 0.701 0.632
Power Gating and Wake-up
Tmin−charge (ns) 5.08 7.36 6.40 6.55
wake-up energy (pJ) 3.30E+3 1.91E+3 2.24E+3 1.60E+3
head switches 9,664 6,222 5,516 5,127
leakage in PG state (W) 8.03E-3 7.14E-4 3.37E-3 3.59E-4
leakage reduction in PG 97.74% 98.29% 97.71% 98.12%
PDN Model
bump 45 45 95 95
Rshared (Ω) 0.01 0.01 0.01 0.01
Lpkg−core (nH) 7.69E-4 7.76E-4 6.44E-4 6.44E-4
Rpkg−core (Ω) 1.54E-5 1.55E-5 1.29E-5 1.29E-5
Cdecap (F) 1.51E-9 1.50E-9 9.16E-10 9.16E-10
RPDN (Ω) 0.07 0.10 0.12 0.15

and SRAM, as follows. For the core logic, leakage from retention registers and header

switches must be taken into consideration. We assume that (live-slave type) retention

flip-flops have 20% more leakage power than normal flip-flops during power gating [67].

For SRAM, we assume that the (separate) SRAM supply voltage is scaled using source

biasing, and we estimate leakage based on [101].

Following the methodology of previous works [51, 59, 69], we construct a detailed

PDN model that includes package parasitics to enable realistic noise analysis under

various wake-up scenarios. Power is delivered from an external voltage regulator module

25

(VRM) through a printed circuit board (PCB), a package ball, package interconnect,

microbumps, on-die redistribution layers, the on-chip PDN, and power-gating switches.

We model the entire power delivery network including power-gating switches as a

simplified RLC circuit as shown in Figure 2.4. Package inductance and series resistance

from VRM to bumps for a core are lumped as in-series inductance and resistance.5 The

PDN in package shared by multiple cores is represented as a resistance mesh with a

branch resistance of Rshared . There are three variant models depending on the state of the

core — core in active mode, core being woken up, and core in sleep mode (see Figure

2.4). On-chip decoupling capacitance Cdecap is assumed to be 20% of Ccore as in Huang

et al. [59].

PDN parameter values in Table 2.1 are from personal communication with indus-

try experts [39] and reflect production designs at the 28 nm foundry half-node. Bump

density is assumed to be 45 bumps per mm2, and the number of bumps is then calculated

from logic area (I/O signals are peripherally located in the SoC die plan). The package in-

ductance and resistance to a bump are respectively assumed to be 0.05nH and 1mΩ based

on empirical data. The lumped package inductance Lpkg−core and resistance Rpkg−core

for a single core are respectively calculated as Lpkg/Nbump and Rpkg/Nbump, where Nbump

is the number of bumps.

We measure the V dd core and V dd int voltages of all cores using HSPICE. We

vary the number of cores being woken up, and search over all configurations of woken-up

and active cores. For each configuration, we find the minimum wake-up latency that

satisfies two IR drop constraints: (a) V dd int of active cores should drop by no more

than 5% and (b) V dd core of standby cores should drop by no more than 40% so as to

retain data in retention circuits [39].
5 Note that we do not model inductance of the on-chip power mesh. High-frequency effects are not

relevant to the wake-up current analysis, and wire dimensions are such that resistive impedance dominates.
To our knowledge, our approach matches that used in advanced SoC signoff methodologies today.

26

Cext

Lpkg-core

Rpkg-core Rshared Rshared Rshared

CORE
11

CORE
12

CORE
13

CORE
14

CORE
21

CORE
22

CORE
23

CORE
24

CORE
31

CORE
32

CORE
33

CORE
34

CORE
41

CORE
42

CORE
43

CORE
44

Rshared Rshared Rshared Rshared

Rshared Rshared Rshared

Rshared Rshared Rshared Rshared

Rshared Rshared Rshared

Rshared Rshared Rshared Rshared

Rshared Rshared Rshared

Cdecap

Cdecap

CORE in sleep mode

VRM

Ccore

Iactive

RPDN

CORE in active mode

nv

Cdecap
Irush

RPDN

CORE being woken up

nv

Figure 2.4. 16-core system power delivery network with power gating.

2.2.3 Safe Wake-Up Mode Analysis and Equation

It is possible to select PPGS wake-up modes based on the worst-case wake-up

time for each number of idle cores. However, the worst-case wake-up time assumption

limits the benefit of power gating. A core’s minimum wake-up time is constrained by

the voltage noise seen by neighboring active cores – in particular, some critical active

neighbor core where the voltage noise constraint is first violated. The voltage noise

of an active core is mainly affected by adjacent woken-up cores and the latencies (i.e.,

associated inrush currents) with which they wake up. In other words, we may exploit

knowledge of core locations to reduce pessimism. We have developed a model that

determines the minimum wake-up time based on the number and location of active and

woken-up cores. To simplify the model, we assume that all woken-up cores have the

same (uniform) wake-up latency, but in principle our methodology easily extends to

non-uniform cores and wake-up latencies.

Figure 2.5 shows the minimum wake-up time according to the location and status

of cores for an example case of an EV6 16-core CMP. In the figures, A denotes the critical

27

Wa Wa Wa

A Wa A Wa A Wa Wa A Wa Wa A Wa

Wa Wa Wa Wa Wd

Wa A Wd

A Wa A A A

Wd Wn

(f) 8.3ns (g) 8.3ns (h) 4.3ns (i) 3.9ns (j) 3.4ns

(a) 7.8ns (b) 11.1ns (c) 13.8ns (d) 16.1ns (e) 16.5ns

Figure 2.5. SPICE-calculated minimum wake-up latency for an EV6 16-core CMP with
various wake-up scenarios.

active core, Wa are adjacent woken-up cores, Wd are diagonally adjacent woken-up cores,

Wn are non-adjacent woken-up cores, and blank squares are idle or non-critical active

cores. The wake-up latency increases approximately as the square root of the number of

adjacent woken-up cores (Figure 2.5 (a) - (e)). Woken-up cores in the diagonal adjacent

(Wd) or non-adjacent positions impact wake-up latency less than adjacent woken-up cores

(Figure 2.5 (f) and (g)). Cores located at an edge position (Figure 2.5 (h)) experience

increased minimum wake-up latency.

From such observations, we model the minimum wake-up latency based on the

core status at each location as:

T = T0(w+β · x+ γ · y+δ · z)α (2.1)

where T0, α , β , γ and δ are fitting coefficients, w is the number of adjacent woken-up

cores, x is the number of diagonally adjacent woken-up cores, y is the number of other

(non-adjacent) woken-up cores, and z is the number of active or adjacent woken-up cores

located at the edge.

28

Table 2.2. Average and maximum error on the modeled wake-up time for 4-, 6-, 8-, and
16-core cases (EV6, 32 nm HP).

core
coefficient error

T0 α β γ δ average (%) maximum (ns)
4-core 7.9 0.50 0.35 0.15 0.15 2.64 0.37
6-core 7.9 0.50 0.35 0.15 0.13 1.93 1.10
8-core 7.9 0.50 0.30 0.15 0.13 2.31 1.65
16-core 7.9 0.50 0.20 0.10 0.10 1.57 1.40

We have verified our model with SPICE and model the wake-up times for 4-, 6-,

8-, and 16-core CMPs for all location permutations. Table 2.2 shows the results. Our

model has an average error of 2.64%, 1.93%, 2.31% and 1.57% for 4-, 6-, 8-, and 16-core

CMP cases, respectively.

The results of the SPICE simulation have varying degrees of sensitivity to power

distribution network (PDN) parameters - the number of bumps, package inductance

(Lpkg), package resistance (Rpkg), PDN mesh resistance (Rshared), supply voltage and

core capacitance. We have assessed the minimum wake-up time sensitivity to variations

in the PDN model. Figure 2.6 shows the change in the T0 coefficient when each PDN

parameter is scaled from 0.1× to 2× (a 20× range!) with respect to our default values,

which are obtained from personal communication with industry experts. Since the actual

wake-up latency depends on PDN variations, the T0 coefficient will be determined by

testing the actual packaged chip. It is important to note that our conclusions regarding

energy savings and overheads remain qualitatively the same across the range of PDN

parameter values – i.e., our conclusions are quite robust to the PDN design choices.

2.2.4 Core Wake-Up Stagger

In the above wake-up analysis, we assume that all cores could wake up simultane-

ously which is the worst case. However, wake-up latency is significantly reduced when

29

number of power bumps 259
package inductance (L pkg) 0.05nH
package resistance (R pkg) 0.001Ω

PDN mesh resistance (Rshared) 0.01Ω
supply voltage (Vdd) 1.0V

core capacitance (C core) 30.7nF

default value

0.00

5.00

10.00

15.00

20.00

25.00

30.00

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9

T 0
(n
s)

Scale factor on PDN parameters

#Bumps

Lpkg

Rpkg

Rshared

Vdd

Ccore

Figure 2.6. Wake-up latency coefficient, T0, as a function of PDN parameters.

we stagger the wake-up sequence so that two cores wake up at slightly different times

(e.g., offset by 1 ns). We design the wake-up controller to insert stagger between waking

cores to reduce wake-up latency. Figure 2.7 shows minimum wake-up latency for an EV6

16-core CMP when we add stagger between woken-up cores. The minimum wake-up

time (y-axis) is reported for the worst case for each number of woken-up cores (x-axis).

When stagger is zero, wake-up time increases according to the number of woken-up cores.

However, if we avoid simultaneous wake-up, minimum wake-up time reduces greatly.

When two, three and four cores are waking up within an interval of three cycles (0.9

ns), we obtain 18.8%, 31.9% and 40.3% wake-up latency reductions, respectively, over

simultaneous wake-up. From SPICE results in Figure 2.7, we can see that the minimum

wake-up time does not increase with staggered wake up when the number of woken-up

cores is larger than four. We model the minimum wake-up time with Equation (2.1) for

up to three woken-up cores by changing the parameter α from Table 2.2. The dotted lines

in Figure 2.7 show the modeled wake-up latency from Equation (2.1) and its error with

respect to SPICE simulation. Our measurements of model accuracy show an average

(maximum) error of 2.66% (7.62%), 1.89% (6.61%), 0.93% (3.59%) and 2.51% (3.08%)

for the 4-, 6-, 8-, and 16-core CMP cases, respectively.

30

7

9

11

13

15

17

19

21

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

m
in
im

u
m
 w
ak
e
‐u
p
 t
im

e
 (
n
s)

number of woken‐up cores

delta = 0

delta = 1T

delta = 2T

delta = 3T

delta = 0

delta = 1T

delta = 2T

delta = 3T

T: clock cycle
(0.3ns)

SPICE simulation

modeling with
Equation (1)

(= 0.4, 0.25 and 0.2
for delta = 1T, 2T and 3T)

Figure 2.7. Minimum wake-up latency as a function of wake-up stagger.

2.3 System Design

We now present our architectural modifications used to control power gating

for each core. A memory access power-gating controller must provide three functions.

First, the controller ensures that each core’s PPGS uses a wake-up mode that does not

violate supply voltage noise constraints of the system when waking up a core. Second,

the controller should be able to predict the expected duration of core stalls. Last, the

controller must retain essential core architectural and performance related state. Together,

these functions allow for energy savings and minimal performance hit without violating

voltage noise constraints. The rest of this section describes how TAP and MAPG-Counter

provide these three functions.

2.3.1 Centralized Wake-Up Controller (WUC)

The WUC is a centrally located wake-up controller (see Figure 2.8) that listens

in on the cache interconnect and orchestrates the assignment of wake-up modes to core

PPGSs. The WUC maintains a lookup table that maps the possible values of variables w,

x, y and z from Equation (2.1) to safe wake-up modes. For the 16-core case, the WUC

requires 12*1000 bits of (SRAM) registers to hold all entries. In addition, the WUC

maintains the status of each core (idle, active, power gated, or waking-up) to determine

31

IC

DCPPGS

CORE
L2 L2

IC

DC PPGS

CORE

L3

DC

IC

PPGS

CORE
L2 L2

DC

IC

PPGS

CORE

WUC

PPGS
CORE

PPGS

CORE

WUC

PPGS
CORE

PPGS

CORE

PPGS
CORE

WUC

PPGS
CORE

PPGS
CORE

PPGS

CORE

WUC

PPGS
CORE

WUC

PPGS

PPGS

PPGS

PPGS PPGS PPGS PPGS

Figure 2.8. WUC and PPGS integration into a 4-core CMP.

Recv.&Wake*
up&Mode&Req.&

0& 20& 40& 60& 80& 100& 120&
Core%i'
PPGS'

WUC'

Memory'
Subsystem'

Core&
Idle&

Core&
Wakes&
Up&

Core&
Ac>ve&

Power&
Gate&
Core&

Resched.&
Wake*
up&

Memory&
Response&

Recv.&Wake*up&
Mode&Req.&

L1&
Miss&

L2&
Miss&

L3&
Miss&

MC&Send&
Resp.&

Core&
Stalls&

Memory&
Access&

Core&
Wakes&Up&

ns

Figure 2.9. WUC, Core-i PPGS, and Memory Subystem timing diagram.

32

the entry to lookup for a new request.

Figure 2.9 shows how a core wakes from an idle state, power gates during a stall,

and then wakes up again via communication with the WUC. At time 0 ns, the core is idle

and power-gated off. The core wakes up by its PPGS requesting a worst-case wake-up

mode that it may assume is always safe to use (provided it notifies the WUC). At 5 ns,

the WUC receives a request, looks up a safe wake-up mode in its table based on the

system state, and returns that mode to the core PPGS. The PPGS wakes up the core

and the core executes code. At time 35.5 ns, the core attempts to access the memory

subsystem which causes a stall at 40.5 ns. At 57.5 ns, the core PPGS detects a core stall

dependent on a memory miss and then power gates the core. At the same time, the PPGS

requests a lower-latency wake-up mode from the WUC in hopes of power gating for

longer. The WUC receives this wake-up mode request at 62.5 ns causing the WUC to

update the state of the core. Should there be no conflicting wake-ups, the WUC may

issue a one-use lower-latency wake-up mode to the requesting core. The core PPGS

receives this response at 67.5 ns and may reschedule the wake-up time of the core. The

PPGS wakes up its core at 110 ns for the memory response at 120.5 ns.

2.3.2 Distributed, Staggered Wake Up

The last section designs a Wake-up Controller (WUC) for the worst case when

all cores wake up simultaneously. However, wake-up latency is significantly reduced

when we stagger the wake-up sequence so that two cores wake up at slightly different

times (e.g., offset by 1 ns). In such a case, stagger reduces the worst-case peak current

and voltage noise that a core may experience. We now consider how to integrate stagger

into a many-core design; analysis of the benefit of stagger in given in Section 2.5.5.

To use staggered wake up, a controller must give wake-up modes and times to

each core. For a large multicore system (e.g., 64 cores), a given core’s PPGS may not

33

tolerate the latency to communicate with a centralized WUC due to propagation and

queuing delay across the chip. However, we observe that non-adjacent cores do not

significantly affect core wake-up latency, and with proper guardband, only adjacent cores

(eight cores at most) need be considered.

This observation motivates a distributed design which assigns each core to a

recurring wake-up slot. In this scheme, each core is given a recurring slot at which it

can start waking up. To avoid any performance hit, a core should select a slot before

the deadline to start waking up. The average wake-up delay for a core is defined by two

degrees of freedom: the number of unique wake-up slots, η , and the stagger between two

adjacent wake-up slots, ψ . The worst-case reduction in power-gated time occurs when a

core predicts that it would need to wake up ε seconds before its assigned slot such that

ε < ψ , causing the core to wake up η ∗ψ− ε seconds earlier. Given a core that wakes

up at any time, uniformly at random, the average expected reduction in power-gated time

is η∗ψ
2 .

0 1 2 3 4 …

3 4 5 6 7 …

0 1 2 3 4 …

2 3 4 0 1 …

0 1 2 0 1 …

2 1 0 2 1 …

6 7 8 0 1 …

0 1 2 3 4 …

… … … … … …

4 0 1 2 3 …

1 2 3 4 0 …

… … … … … …

1 2 0 1 2 …

0 2 1 0 2 …

… … … … … …

(a) α = 9 (b) α = 5 (c) α = 3

(a) η = 9 (b) η = 5 (c) η = 3

Figure 2.10. Wake-up slot assignments with different number of slots (η).

Values of η and ψ should be chosen to maximize a core’s power-gated time

and minimize the safe wake-up latency of the core. Given η , wake-up slots should be

assigned to cores to minimize the number of adjacent woken-up cores. Figure 2.10

shows three ways of assigning wake-up modes to cores such that the number of adjacent

woken-up cores is minimized with a preference given to cores waking up simultaneously

34

in the diagonal position. An increase in η and ψ reduces the maximum number of

simultaneous core wake-ups and the minimum safe wake-up latency. At the same time,

increasing these two parameters increases average expected reduction in power-gated

time. According to our simulations, system energy savings are maximized when η and

ψ equal 5 (no simultaneous wake-ups) and 0.9 ns, respectively. This setting results in a

10.3 ns minimal wake-up latency and 2.25 ns± 1.30 ns average reduction in power-gated

time per core power-gating opportunity, compared to 9.6 ns with 0.9 ns stagger for an

ideal centralized WUC, when simulated on GEM5 [20] with the Spec2006 benchmarks

(see Section 2.5.5).

2.3.3 MAPG-Counter: Counter-Based Controller Design

In this subsection, we consider how MAPG-Counter predicts core-stall duration,

adapts to steady changes in average core-stall duration, and quickly scales down the

duration of predicted stall windows if it over estimates. We can calculate the interval

over which a core must be power gated so as to break even on wake-up energy costs

from Table 2.3.6 To avoid both energy and performance overhead, a core must receive no

memory response for a time greater than the break even time plus the delay to wake up a

core. A core-stall period longer than the sum of these two events yields energy savings.

We find for our system described in Table 2.3 that there are energy saving opportunities

when the last-level cache misses and memory is accessed. Last-level cache accesses, on

the other hand, are too short to get any energy saving opportunities.

Performance overhead is avoided by (i) predicting a long stall interval and (ii)

waking the core for the expected end of the stall interval. The long stall interval is

predicted by counting the number of stalled cycles after a core memory access. If the

number of cycles reaches beyond the expected latency at which the core would have

6 In our Energywake−up calculation, we ignore ripple effects from waking up cores since the effective
operating voltage is small during the wake-up.

35

received a last-level cache hit response (22 ns according to Table 2.3), the PPGS calculates

the expected arrival time of the memory response and power gates the core if sufficient

time will elapse to save energy. The expected arrival time is estimated as the memory’s

row-buffer miss latency (45 ns) plus a value, δ . We compute δ as an exponential moving

average of the difference between the actual and expected response arrival times, except

when the expected arrival time is greater than actual, then δ is immediately set to the

difference. The actual algorithm is outlined below:

MAPG-Counter Prediction Algorithm:

di f f ←MemDelayactual−MemDelayexpected

if di f f < 0 then

δ ← δ +di f f

else

δ ← α ·δ +(1−α) ·di f f

end if

Quickly adapting to overprediction avoids repeated late core wake-ups and per-

formance hits that would otherwise have to wait for the exponential moving average.

In the common case, the exponential moving average will adapt to variable memory

latency caused by contention for the memory resource, optimizing the duration of the

power-gating window.

To provide this functionality, the MAPG-Counter controller is located within the

PPGS of Figure 2.8. Whenever the core stalls, the MAPG-Counter controller performs

two actions. First, it times the duration of the core stall in terms of clock cycles by

interfacing with the core-stall signal and clock. This action allows the controller to

create a history of core-stall durations that it may use to train Algorithm 2.3.3. Second,

after a number of stall cycles greater than a last-level cache hit response time occurs, it

must provide a prediction of the duration of the core stall duration. The PPGS uses this

36

prediction plus the wake-up mode from the WUC to decide if a power-gating opportunity

would save energy.

To implement MAPG-Counter, each core requires a 15-bit register to save δ .

The 15-bit register can track latencies as large as 3.28 µs (twice the longest stall latency

observed for 32 threads) with a granularity of 100ps. The input to the δ register is

controlled with a MUX that selects between one of two inputs as defined in the if/else

clause of Algorithm 2.3.3. Without modification, Algorithm 2.3.3 requires at least

one multiplier as a part of the else condition which could result in significant power

expenditure depending on technology. This requirement can be removed by setting α to

0.75 and using a combination of shifters and adders. Each core also requires a counter

that starts once the core stalls; this is realized as a 15-bit counter to match the accuracy of

the prediction scheme. To orchestrate these two registers per core, a controller is required

that (i) takes as input the pipeline-stall signal, the clock, and the counter, and (ii) outputs

the PPGS control control signals and the write control signals for the δ register. Overall,

only 30 bits of register storage are required per core.

2.3.4 TAP: Token-Based Adaptive Power Gating

TAP informs each PPGS about expected memory latency by modifying the cache

controllers to send tokens on cache misses that include an estimate of the lower-bound

access latency of a next-level memory hit derived from Table 2.3 and a timestamp of

creation7. The controllers send the tokens to the PPGS of the core that requested the

memory access. Once the PPGS receives the token, it looks at the lower-bound latency to

satisfy the request and power gates the core if the core is both stalled, and idle long enough

to save energy. Should the core receive more than one token for simultaneous memory

requests, it will track each expected response separately and schedule the resumption

7A cache controller sitting on the core side of a shared NUCA cache would require a per-bank lower-
bound access latency

37

of core execution to satisfy the earliest response. If a token is delayed in the memory

subsystem by a controller or queue, the PPGS can compare its arrival time with its

generation timestamp and previous tokens to determine whether the token should be

ignored.

Whenever a memory request misses all the way to the memory controller, the

response latency experiences a significant amount of variability. This variability is caused

by the complexity of DRAM memory [123], which includes bank queues, availability of

the data in the row-buffer, writing wrong address row-buffers, accessing the column in

the row-buffer, and channel contention between banks. TAP adapts to memory variability

by adding a special token. As soon as the last-level cache experiences a miss, a token is

sent to the requesting core’s PPGS with an estimated completion time of UNKNOWN.

This is a directive to the PPGS to start power gating its core immediately and to expect

one additional token with the ETA of the memory response. Once the memory controller

submits the memory access to one of the banks and determines whether the access is a

row-buffer hit or miss, it sends the second ETA token to the core’s PPGS with the ETA of

the response assuming that there is no memory channel contention. The PPGS receives

the second token before the response and schedules core wake-up for the appropriate

time.

Figure 2.11 shows a timing-accurate diagram of a PPGS power gating the core in

response to messages from the TAP technique. At time 0 ns, a memory request occurs

that will miss in the cache hierarchy and cause a memory access. The PPGS then receives

tokens for the L1, L2 and L3 misses. Just after receiving the L2 token, the core stalls due

to a dependency. After the L3 token is received, the PPGS decides to power gate the core

and saves all core state. The core is then power gated and the memory controller (MC)

sends an updated ETA for the memory response. At 70 ns, the PPGS begins waking up

the core. At 78 ns, the core state is restored and the pipeline is restarted. The memory

38

0	 10	 20	 30	 40	 50	 60	 70	 80	

nanoseconds	

Ac-ve	

Power	 Gated	

Stalled	

Woken	 up	

Po
w
er
	 S
ta
te
s	

Mem	
Request	

L1	 Token	

L2	 Token	

Core	 Stall	

L3	 Token	 Core	 Saves	
State	

MC	 Sends	
Response	 ETA	

PPGS	 	
Wakes	 Core	

Restore	 State	
&	 Fill	 Pipeline	

Mem	
Response	

PPGS	 Power	
Gates	 Core	

Figure 2.11. Diagram depicting the core going through various power states (Power
Gated, Stalled, Active, Woken up) as the PPGS power gates the core on a memory access.

response comes back at 81 ns and the core resumes execution as if nothing happened.

The benefit of TAP is that core-level power gating can be directed by system-level

information about the memory subsystem. This information represents lower-bound

estimates of when a memory response can arrive. Because TAP operates on lower-bound

estimates, it avoids over-prediction of core idle latency and achieves zero performance

impact. The disadvantage of lower-bound estimates is that TAP misses out on potential

power-gating time and additional energy savings.

To implement TAP in hardware, additional structures are added to both the

memory controller and the core. For each bank of each rank of memory, we add a 15-bit

delay counter that indicates the soonest time at which the bank would go idle. Similar to

the MAPG-Counter above, it is capable of tracking up to 3.28 µs at a granularity of 100s

of picoseconds. With each cycle, every memory controller decrements its counter by the

number of picoseconds in a memory clock cycle until the counter reaches a minimum of

zero. When the memory controller schedules a memory operation to a particular bank,

it increments the bank’s counter with the lower-bound estimate for the completion of

39

the memory operation. If the memory operation is a row-buffer hit, the bank counter

is incremented by the time to issue the command, perform the column address select,

and transfer the data across the memory bus. If the memory operation is a row-buffer

miss, then the counter is incremented by the time to issue the command, pre-charge the

row-buffer, issue the row lookup, perform the column address select on that row, and

finally transfer the bytes across the memory bus. The value of the counter is the ETA

returned to the core’s PPGS by the token sent from the memory controller. To quickly

determine a row-buffer hit, a register at each bank maintains the row-buffer address of

the last memory access.

Each core also requires additional state to track currently valid tokens. For each

unique address memory request that causes a token-generation event, we require 80

bits of storage. The first bit indicates validity of the entry. The next 64 bits contain the

physical address of the request. The last 15 bits track the lower-bound ETA for the given

request. In the worst case, we require sufficient entries to track the maximum number

of parallel memory requests with unique physical cache line addresses that can issue

from a core. For our technique, this number is limited by the number of MSHR (Miss

Status Handler Registers) queue entries in the instruction and data caches, which is 20

for our EV6 architecture and 4 for our in-order architecture. However, our simulations

show that fewer entries are actually required because long core stalls do not usually occur

with a large number of parallel memory requests. For example, the benchmark astar,

which has little benefit from our techniques, does experience 20 parallel requests while

the benchmarks mcf and gobmk, which benefit the most from our techniques, experience

at most 13 parallel memory requests. In any case, we estimate for the worst case that

the support to track tokens at the core adds 1456 µm2 of area overhead per core (0.05%

of EV6 area), while the modifications to estimate memory latencies add 677 µm2 area

overhead per memory rank (0.02% of EV6 area).

40

2.3.5 Formal Analysis of In-Order Core Energy Savings

We now derive the expected energy savings from TAP for an in-order core, to

gain intuition regarding how energy savings change with system conditions, and to

independently verify our reported energy savings. In the following terms and equations,

latencies are in units of seconds, power is in units of watts, and energy is in units of

joules. When a core experiences a leveli cache miss, it receives either a token or response

from the leveli+1 cache. The idle period between when the core receives the leveli token

and the leveli+1 token or response can be estimated by Equation (2.2), where Ltx:Li→Li+1

is a bus (transmit) latency from leveli to leveli+1 cache miss, and Lhit:Li is a memory hit

latency at leveli. Packets from both the leveli and leveli+1 caches need to travel through

the same memory hierarchy from leveli upwards to the core. The only difference is

that the packet from the leveli cache travels twice across the interconnect between leveli

and leveli+1, waits for the leveli+1 cache controller, and waits twice for the leveli cache

controller.

L∆miss:Li = Ltx:Li→Li+1 +Lhit:Li+1 +Ltx:Li+1→Li +Lhit:Li (2.2)

Because of core wake-up latency, waking the core when it receives the token or

response from the leveli cache would incur a significant performance penalty, as this

effectively increases the leveli cache miss latency by the core wake-up latency. We avoid

this performance overhead by preemptively waking up the core even if there is a miss in

the leveli+1 cache. This reduces the period of energy savings in some cases, but avoids

the performance overhead. Further, core wake-up costs energy, which places a constraint

on how long the idle period must last to amortize the energy loss from core wake-up.

41

The core’s wake-up event is not the only overhead. When a cache sends a token,

it must contend for the CPU-side ports of each cache on the way to the core, traverse the

shared interconnect, and wait in any queues to shared resources. These delays can reduce

the period over which our technique power gates the core. In summary, we can estimate

the energy savings of power gating a leveli cache miss using Equation (2.3). Emiss:Li is

the energy savings on a leveli cache miss; Lmiss:Li is the latency to propagate a request

from the core to the leveli+1 cache and back; Ltoken:Li is the latency to propagate a request

from the core to the leveli cache and send a token back to the core; Lcore wakeup is the

core wake-up latency; Pleakage is the core leakage power; R is the factor of reduction of

leakage from power gating; and Ecore wakeup is the energy to wake up a core from the

power-gated state.

Emiss:Li =(Lmiss:Li−Ltoken:Li−Lcore wakeup)

·R ·Pleakage +Ecore wakeup

+Lcore wakeup ·Pleakage (2.3)

We extend this analysis to estimate the energy savings from token-based power

gating for all levels in the cache hierarchy in Equation (2.5). Esave:LN denotes the energy

savings for an N-level cache hierarchy; Tperc idle f rom miss:Li is the percent of time the

core spent idle waiting for a leveli cache miss (estimated as MLi·L∆miss:Li); Emiss:Li is

defined in Equation (2.3); MLi is the number of leveli cache misses per second; and Ptotal

is the total active power. The denominator is simply the sum of idle and active energy

for when no power gating is being used. The numerator is equal to core energy during a

leveli cache miss without power gating, minus the energy with power gating summed

across all cache levels: i.e., the sum of energy savings for each cache level. The total

42

system time is factored from the numerator and denominator, leaving the percentage of

time spent in active execution and waiting for leveli cache misses. We compare energy

savings measured from McPAT [78] and M5 with the analytical model shown in Equation

(2.5) and see a good match. The average error between M5 and the equation is 0.82%

with a maximum error of 9.75% for lbm.8 This model demonstrates that TAP’s energy

savings is a strong function of core wake-up latency and memory hierarchy.

κ = Tperc idle f rom miss:Li ·Pleakage (2.4)

Esave:LN =

N

∑
i=1

(κ−Emiss:Li ·MLi)

N

∑
i=1

(κ)+

(1−
N

∑
i=1

(Tperc idle f rom miss:Li)) ·Pmiss:Li

Pleakage/Ptotal

(2.5)

2.3.6 Core State Retention and Restoration

To avoid losing core state that is required for correct and efficient execution,

essential sequential and SRAM cells must be retained. We replace a subset of sequential

cells with live-slave retention flip-flops [67] which can be triggered to retain their logical

values before a power-gating action at a cost of 20% increase in area and power versus

a normal flip-flop. Only those sequential cells comprising the architectural registers

8Our model overestimates the energy savings for lbm because it assumes that all memory accesses will
be row-buffer misses. This assumption works well for the Spec2006 benchmarks except lbm, because lbm
has sufficient locality in its memory accesses to experience row-buffer hits. If the memory system uses a
closed page policy, where all accesses are row-buffer misses, then our assumption would in fact be correct.
However, our current result compares against an open page policy to measure how much error exists in our
simple model for the hard to estimate case.

43

Controller
(PPGS)

clock

retention
control

CORE
Vdd

D

Collapsible Domain

RET

Vss

SRAM

level
shifter

Vdd(sram)

Register
files

sw
it

ch
h

ea
d

Retention
Domain

switch
control

retention
flip-flops

fli
p-

flo
p

s

ID EX MEM

WB

fli
p-

flo
p

s

fli
p-

flo
p

s

fli
p-

flo
p

s

IF

PC

Turn on power gating switches and restore
SRAM voltage source
:10 ~ 50 cycles w.r.t wake-up mode

Apply reset to normal flip-flops and
load data from retention registers
: 4 cycles

Refill data to pipeline stages
: 6 cycles

1

2

3

architectural,
misc priv.
registers

Figure 2.12. Interface for power gating and data retention.

necessary to refill the pipeline are selected, which results in 3.4% area overhead for the

processor. SRAM cells are retained through source biasing [101] in which the supply

voltage is reduced to 50% of nominal supply voltage so that SRAM leakage is reduced,

but logical state is maintained. This technique allows for saving the contents of L1 caches,

TLBs, branch predictor state, physical registers, etc. To provide supply power during

power gating, a separate non-collapsible voltage domain provides power to the retention

flip-flops and SRAM cells. Thus, as the power is gated from combinational logic and

non-essential sequential cells, the separate voltage rail provides power to maintain core

state. The overhead from multi-power domains and separate voltage rails already exist

for power-gating cores today. Figure 2.12 shows an in-order core implementation for

power gating and restoration with retention flip-flops.

Additional cycles are required for the power gating and wake-up sequence, and to

account for the time to disable/enable the clock, trigger data retention, refill the pipeline,

and de-assert/assert the clamps. We model the entire power down and wake-up sequence

as in [65]. For example, to wake-up an EV6 core after signals enable few and enable

44

rest have charged core logic, it takes 1 cycle to enable the clock signal, 1 cycle to

asynchronously reset logic, 1 cycle to restore registers from retention flip/flops, and 7

cycles to restore the pipeline which takes 3.03 ns at 3.3 GHz.

2.4 Simulation Methodology

Table 2.3 summarizes all system parameters in our experiments. The system has

4 cores, each with its own private L1 and L2 caches, and a large shared L3 cache. The L3

cache forwards requests to the memory controller through a shared memory bus. The

L1 and L2 cache configurations are 32 KB-8way and 256 KB-8way. The L3 cache is

a relatively large, 8MB-16way, which we expect to minimize pressure on the memory

subsystem and hence minimize gains we see from our power-gating technique. We model

an out-of-order core, the DEC-Alpha EV6, clocked at 3.3 GHz and able to issue six

instructions on each cycle. We also model an in-order, dual-issue, DEC-Alpha EV4 core,

clocked at 2.0 GHz.

We simulate the system with the GEM5 simulator [20]. GEM5 is a full sys-

tem simulator that can boot an unmodified OS. It features cycle-level models of an

out-of-order core, the cache hierarchy, and the interconnect. We integrate GEM5 with

DRAMSim2 [104] to provide cycle-level modeling of the memory subsystem including

the memory controller, DRAM modules, and shared channels used for communication.

We modify GEM5 to support our power-gating methodology described in Section 2.3.

We simulate our system with 21 of the Spec2006 benchmarks using the Simpoint method-

ology [98] in which 100M-instruction representative regions of execution are determined

for each benchmark. To simulate each region, we fast-forward to 100M instructions

before the region, warm-up the memory and caches, and perform detailed simulation.

Once simulation is complete, we enter the system configuration and performance

counters to McPAT [78] to model power consumption. McPAT is comprised of a power,

45

Table 2.3. System configuration values

parameter value notes

IO core model DEC-Alpha EV4
IO core clock 2.0 GHz – 1.2 GHz
IO execution 2-way, in-order
IO functional units 2 ALU, 1 IMULT

1 FPALU
EV6 core model DEC-Alpha EV6
EV6 core clock 3.3 GHz – 1.9 GHz
EV6 execution 6-way, out-of-order
EV6 functional units 6 ALU, 2 IMULT

2 FPALU
ICache/Dcache 32 KB-8way, 1 cycle
L2 Cache 256 KB-8way, 4 ns Private per core
L3 Cache 8 MB-16way, 13 ns Shared
Memory DDR3, 2GB, 50 ns
Core-to-L1 token latency 0.5 ns controller delays
Core-to-L2 token latency 4.5 ns controller delays
Core-to-L3 token latency 17.5 ns controller delays
Core-to-WUC latency 5 ns controller delays
PPGS wake-up modes 4.5 ns – 16.9 ns SPICE
IO pipeline refill latency 2 ns 4-pipeline stages
IO core wake-up energy (IWE) 4,020 pJ Charge cells
IO leakage power (ILP) 0.486 Watts McPAT [78]
IO PG leakage reduction (ILPR) 97.74% [67]
IO PG break even point 8.53 ns IEW/(ILPR∗ ILP)
IO DFLT core wake-up latency 8.06 ns SPICE
IO FUPG wake-up energy 1780 pJ McPAT, ITRS [6]
IO FUPG wake-up latency 6.0 ns SPICE
EV6 pipeline refill latency 2.12 ns 7 pipeline stages
EV6 core wake-up energy (EWE) 15,358 pJ Charge cells
EV6 leakage power (ELP) 0.916 Watts McPAT [78]
EV6 PG leakage reduction (ELPR) 97.65% [67]
EV6 PG break even point 17.17 ns EWE/(ELPR∗ELP)
EV6 DFLT core wake-up latency 10.2 ns SPICE
EV6 FUPG wake-up energy 9641 pJ McPAT, ITRS [6]
EV6 FUPG wake-up latency 6.4 ns SPICE

46

area, and timing framework that provides off-line power and area estimates for full

systems designed in technology nodes between 90 nm and 16 nm. McPAT generates

values for dynamic power, leakage power, peak power, thermal design power, and

area. We update McPAT’s technology.cc file to accurately reflect the ITRS 2010 update

report [6].

We compare both techniques to dynamic voltage and frequency scaling (DVFS)

via simulation. We calibrate our DVFS settings to match those of [30] for the 32 nm

technology node, in which a 7.5% reduction in voltage follows each 20% reduction

in frequency. To direct the DVFS policy, we apply the technique from [38], which

uses a cycle-per-instruction based metric, µmean, to detect memory bounded phases of

execution. During execution, we sample the application’s µmean to determine the most

aggressive DVFS setting that may be used to save energy while sustaining at most a 5%

performance hit. In addition, we also consider an oracle DVFS technique that chooses

the DVFS point that results in the lowest energy-delay product (EDP). This technique

takes an arbitrary performance hit as long as more energy is saved. For both policies, we

model the availability of five DVFS modes which include 100%, 95%, 90%, 80%, and

60% frequency.

In addition, we compare the two systems to Functional Unit Power Gating (FUPG)

[14, 58, 83]. In this scheme, a controller monitors the core’s functional units for stall

periods that last at least 5 ns, and then power gates the functional unit when such a stall

occurs. Meanwhile, the controller also monitors the duration of the power-gating period

to ensure that over every 10,000 ns interval, at most 2% performance overhead occurs.

Should a functional unit power gate at a performance loss of up to 2% (meaning that the

functional unit continually wakes up later than it is needed), then the controller disables

power gating for the remainder of the 10,000 ns interval. At the end of the interval, the

controller resets and attempts to power gate functional units again. The wake-up latency

47

and energy for FUPG are given in Table 2.3.

Unless otherwise stated, our results assume a 32 nm HP circuit technology, core

wake-up latencies from Table 2.3, and a four-core system that is 50% utilized (two

cores idle), which results in conservative energy savings during little memory contention,

shorter core-stall durations, and utilization of a slower wake-up mode than if only one

core was utilized. The following overheads were considered when modeling the reported

results (including the Oracle policy): core wake-up energy, core wake-up delay, core

pipeline-refill latency, retention overhead of live-slave retention cells, SRAM leakage

during source biasing mode of operation, and voltage noise safety.

2.5 Results

We now analyze MAPG-Counter and TAP to understand their energy savings and

how those energy savings depend on system configuration and utilization. Also, we show

that both techniques’ potential to save energy improves as core wake-up latency reduces.

We make the case that TAP is more adaptable to system variability and usually achieves

higher energy savings than MAPG-Counter and functional unit power gating. Last, we

reveal that staggered wake-ups are an easy way of reducing core wake-up latencies in

CMPs. In the following, Section 2.5.1 examines the energy savings of the two techniques,

MAPG-Counter and TAP for both EV6 and IO CMPS. The remaining subsections focus

solely on the EV6 CMP, because there is little difference in the analysis between the EV6

and IO CMPs. Sections 2.5.2 dissects simulation time of the two techniques into time

spent power gating, waking up, restoring state, executing code, and adding execution

overhead. Sections 2.5.3 and 2.5.4 examine energy savings as a function of wake-up

latency and memory congestion. Last, Section 2.5.5 shows the benefit of staggered

wake-up on energy savings for a CMP with up to 16 cores.

48

2.5.1 EV6 vs IO Power Gating Energy Savings

Figures 2.13 and 2.14 compare the energy savings of TAP with the energy

savings of an oracle memory predictor (Oracle), MAPG-Counter, FUPG [14, 58, 83],

DVFS-Oracle, and DVFS-µmean [38] for an EV6 CMP and IO CMP, respectively. The

discussion that follows focuses on the EV6 CMP, but highlights IO CMP results that

differ significantly.

Oracle-Based Power Gating To understand the limit of energy savings from power

gating cores during memory stalls, the oracle memory predictor assumes a priori knowl-

edge of all memory accesses and determines the optimal power-gating behavior. The EV6

oracle policy achieves a maximum of 23.9% energy savings, and 3.6% energy savings

on average. A few benchmarks show negative energy savings as high as -0.2%. These

negative energy savings are caused by the lack of power-gating opportunities and the

retention cells’ power overhead on cpu-bound benchmarks.

The IO oracle policy achieves up to 36.8% energy savings, with an average energy

savings of 8.1%. The greater energy savings result solely from the lack of memory level

parallelism of the IO core, and the greater time spent in stalls waiting for the memory

subsystem. Two benchmarks suffer negative energy savings as high as -0.2% for similar

reasons as the EV6 core.

TAP In comparison with the Oracle, TAP must determine memory latencies in a running

system to ensure that sufficient time is available to power gate a core. TAP EV6 is able

to achieve 22.4% (23.9% is Oracle) maximum energy savings, and 3.1% on average.

TAP does not achieve the same energy savings as the Oracle because TAP is not able to

power gate memory accesses until they miss in the L3 cache, and because lower-bound

latencies are used. The result is that TAP avoids any performance hit but misses out on

power gating at the beginning of the core stall. TAP also sees a few benchmarks with

49

bwaves
bzip2

cactusADM gcc

GemsFDTD
gobmk lbm

leslie
3d mcf milc

omnetpp
sjeng

zeusmp avg5

0

5

10

15

20

25

En
er

gy
 S

av
in

gs
 (%

)
Oracle
TAP
MAPG-Counter
FUPG
DVFS-Oracle
DVFS-umean

bwaves
bzip2

cactusADM gcc

GemsFDTD
gobmk lbm

leslie
3d mcf milc

omnetpp
sjeng

zeusmp avg60

70

80

90

100

110

120

No
rm

al
iz

ed
 T

im
e

(%
)

Oracle
TAP
MAPG-Counter
FUPG
DVFS-Oracle
DVFS-umean

Figure 2.13. Energy savings and performance overhead of power-gating Oracle, TAP,
MAPG-Counter, FUPG, DVFS-Oracle and DVFS-µmean for an EV6 CMP. Benchmarks
with less than 1% absolute change are filtered out for readability.

50

astar
bwaves

bzip2

cactusADM gcc

GemsFDTD
gobmk lbm

leslie
3d mcf milc

omnetpp
zeusmp avg5

0

5

10

15

20

25

30

35

40

En
er

gy
 S

av
in

gs
 (%

)
Oracle
TAP
MAPG-Counter
FUPG
DVFS-Oracle
DVFS-umean

astar
bwaves

bzip2

cactusADM gcc

GemsFDTD
gobmk lbm

leslie
3d mcf milc

omnetpp
zeusmp avg60

70

80

90

100

110

120

No
rm

al
iz

ed
 T

im
e

(%
)

Oracle
TAP
MAPG-Counter
FUPG
DVFS-Oracle
DVFS-umean

Figure 2.14. Energy savings and performance overhead of power-gating Oracle, TAP,
MAPG-Counter, FUPG, DVFS-Oracle and DVFS-µmean for an IO CMP. Benchmarks
with less than 1% absolute change are filtered out for readability.

51

-0.2% energy savings due to cpu-bound behavior.

TAP IO achieves up to 20.3% and averages 4.0% energy savings. The average

energy savings for TAP IO is higher than TAP EV6 because of the lack of memory level

parallelism in the IO core. However, TAP EV6 can see higher energy gains than TAP

IO for the benchmark mcf. We account the higher peak savings of mcf to the EV6 core

more quickly reaching the stall periods and spending a larger percentage of execution

time waiting for the memory subsystem.

MAPG-Counter MAPG-Counter power gates cores after the core stalls for a longer

time than the L3 hit latency, and power gates for the predicted stall duration according

to its exponential-learning algorithm. MAPG-Counter EV6 is able to achieve up to

12.0% energy savings (1.2% savings on average). TAP is able to achieve 2.58× the

average energy savings of MAPG-Counter for out-of-order cores.9 The is because out-of-

order cores stall more randomly than in-order cores, which makes the adaptive-counter

mechanism unstable and more prone to misprediction.

In comparison, MAPG-Counter IO reduces energy consumption by up to 19.6%

(4.1% on average). Although the maximum energy savings for mcf are not as high as

TAP IO, the average energy savings are nearly identical. These similar energy savings

occur because MAPG-Counter can predict the stall behavior of the IO core with more

success. This indicates that the simple MAPG-Counter mechanism can act as a memory

access power-gating controller for well-behaved architectures. However, MAPG-Counter

experiences a perfomance hit as high as 2.6% on lbm (0.4% on average).

FUPG [14, 58, 83] FUPG EV6 has a maximum and average energy savings of 17.6%

and 2.2% with a maximum performance hit of 2% (1.5% average), at which point control

logic prevents future power-gating actions. The FUPG mechanism does better on average

9If method A saves 1% energy on average, and method B saves 3% energy on average, we say that
“method A achieves 3.00× the average energy savings of method B”.

52

for the out-of-order core than MAPG-Counter, but TAP achieves 1.4× the average energy

savings of the FUPG mechanism. FUPG does achieve more energy savings than TAP on

a few cpu-bound integer codes in which not all the functional units are being used, but

the core does not go idle. Greater energy savings could result from the cooperation of

FUPG and TAP.

FUPG IO saves up to 13.7% energy (2.7% on average). Both TAP and MAPG-

Counter save 1.5× more energy than FUPG IO on average. The major reason for this

behavior is that functional units account for 36% of IO core power compared to 61%

of EV6 core power. Hence FUPG IO addresses a smaller portion of the leakage power

problem for an IO core and better suits the EV6 for energy savings. FUPG IO also causes

a 1.9% hit in performance on average (maximum 2.0% performance hit).

It should be noted that FUPG could be a complementary technique to TAP or

MAPG-Counter, capable of reducing leakage power consumption when the core is not

stalled, but being partially utilized. The power-gating hardware we propose should be

capable of enacting a FUPG policy in addition to TAP/MAPG-Counter, but design would

require careful consideration of the interaction of the WUC and the FUPG controller.

DVFS-Oracle We also examine DVFS-Oracle using the scaling properties from [30],

and a controller that takes an arbitrary performance hit as long as energy is saved (see

Section 2.4). The maximum and average EV6 core energy savings are 24.6% (lbm) and

3.3%, respectively. DVFS-Oracle on an EV6 core sees less maximum and average energy

savings compared to the power-gating oracle, but greater savings when compared to TAP.

However, these energy savings suffer from two shortcomings. First, DVFS-Oracle has a

maximum and average performance hit of 11.8% (GemsFDTD) and 2.4%. Second, these

energy savings rely on oracle knowledge.

DVFS-Oracle IO saves up to 19.6% power for lbm, but only 1.5% on average.

The energy savings for lbm comes, because lbm performs many parallel memory accesses

53

with few dependencies to simulate fluids on free surfaces. The result is that the dual issue

of the IO core experiences modest memory-level parallelism and a favorable tradeoff

between energy savings and performance loss. DVFS-Oracle IO also saves 8.6% energy

on mcf, which is less than lbm mostly because of a greater number of dependencies in

the code. The remaining benchmarks do not experience energy savings from DVFS,

because the performance hit of slower clock frequencies outpaces the reduction in power.

Lbm and mcf suffer from a 14.7% and 8.7% performance loss, respectively as a result of

DVFS-Oracle.

DVFS-µmean [38] To understand DVFS under a realistic state-of-the-art policy, we

consider DVFS-µmean [38], which predicts the performance hit of DVFS at each interval

based on performance counters. DVFS-µmean achieves a maximum and average energy

savings of 5.9% and 0.6% respectively. Thus, DVFS-µmean achieves less energy savings

than TAP while experiencing a 1.0% performance hit on average (3.9% maximum). This

result highlights the challenge of applying DVFS at 32nm to match different application

behaviors, and why TAP’s determinism can result in higher energy savings.

The DVFS-µmean controller decides to not use DVFS for the IO core. The reason

is because DVFS-µmean depends on classifying benchmarks into different memory

boundness categories, and scaling only those benchmarks that are most memory bound.

However, the lack of memory-level parallelism of the IO architecture means that all

benchmarks appear sensitive to core clock frequency.

2.5.2 Execution Time and Overheads

Figure 2.15 examines simulation time of each benchmark on an EV6 core and

separates it into time spent executing (execute), time spent power gating the core (power

gate), short stalls that could not be power gated without energy loss (short stalls), core

wake-up time to charge core logic (core wakeup), core restore time to restore data from

54

astar
bwaves

bzip2

cactusADMgcc

GemsFDTD
gobmk

gromacs
h264ref

hmmer lbm
leslie

3d

libquantummcfmilc
namd
omnetpp

povray
sjeng
zeusmpavg0

20

40

60

80

100

No
rm

al
iz

ed
 T

im
e

(%
)

execute
power gate
short stalls
core wakeup
core restore
overhead

(a) MAPG-Counter EV6

astar
bwaves

bzip2

cactusADMgcc

GemsFDTD
gobmk

gromacs
h264ref

hmmer lbm
leslie

3d

libquantummcfmilc
namd
omnetpp

povray
sjeng
zeusmpavg0

20

40

60

80

100

No
rm

al
iz

ed
 T

im
e

(%
)

execute
power gate
short stalls
core wakeup
core restore

(b) TAP EV6

Figure 2.15. Breakdown of simulation time for each benchmark running on an EV6
core utilizing either MAPG-Counter or TAP to save energy.

55

retentive flip-flops and fill the pipeline (core restore), and execution overhead from

waking up the core too late (overhead).

We observe that TAP has no measurable performance overhead for EV6 cores.

The reason for this is that TAP wakes up the power-gated core for the lower bound access

latency of a next-level hit in the memory hierarchy. The result is that the power-gated

core is resumed in advance and always ready for the memory response. MAPG-Counter

does incur a small performance overhead of up to 3.98% (0.56% on average) for the

EV6 core. TAP and MAPG-Counter power gate cores up to 48.34% and 32.55% of the

time for the benchmark mcf. Averaged across all benchmarks, they power gate cores for

9.24% and 4.82% of time, respectively. TAP is able to achieve an average improvement

of 1.92× over MAPG-Counter for average time spent power gating the core.

TAP’s advantage in power-gated time has a secondary effect, which is that TAP

spent more time waking up and restoring the core. For the out-of-order core, TAP spends

an average of 0.97% and 0.93% waking up and restoring its cores compared to MAPG-

Counter’s 0.68% and 0.66%. It is true that TAP only power gates the EV6 core slightly

more often than MAPG-Counter. However, TAP’s greater precision in tracking memory

requests and expected response latency allows it to avoid harmful power-gating decisions.

In comparison, MAPG-Counter has a counter that starts when the core stalls, which is

subject to the variance in stall time from the EV6 core re-ordering instructions.

2.5.3 Energy Savings as a Function of Wake-up Latency

Both MAPG-Counter and TAP should save more energy as wake-up latency

decreases. In this subsection, we examine both systems’ sensitivities to wake-up latency,

and further consider outcomes if wake-up latencies are reduced below our calculated

limits. Figure 2.16 shows that energy savings increase linearly with reduced wake-up

delay for both TAP and MAPG-Counter. Across the 12 benchmarks, TAP’s average

56

bwaves
bzip2

cactusADM gcc

GemsFDTD
gobmk lbm

leslie
3d mcf milc

sjeng
zeusmp avg5

0

5

10

15

20

25

30

En
er

gy
 S

av
in

gs
 (%

)

MAPG-Counter-2000ps
MAPG-Counter-4000ps
MAPG-Counter-8000ps
MAPG-Counter-16000ps
TAP-2000ps
TAP-4000ps
TAP-8000ps
TAP-16000ps

Figure 2.16. Energy savings for MAPG-Counter and TAP as wake-up mode changes from 2 ns to 16
ns wake-up latency for an EV6 core. Benchmarks astar, gromacs, h264ref, hmmer, libquantum, povray,
namd, and omnetpp omitted due to small change (less than 0.2%).

energy savings increase from 2.33% to 3.33%, while MAPG-Counter’s average energy

savings increase from 0.70% to 2.15% between the wake-up latency of 16 ns and 2

ns. For TAP, peak energy savings for mcf increase from 20.00% to 25.88% as wake-up

latency decreases from 16 ns to 2 ns. Likewise, MAPG-Counter’s peak energy savings

for mcf increase from 8.22% to 17.21%. In general, improved energy savings results from

less wake-up time overhead, and the ability to power gate the core for longer periods of

time.

A comparison between TAP and MAPG-Counter indicates that reduced wake-up

latency has a more dramatic effect on the energy savings of MAPG-Counter than TAP.

Indeed, as wake-up latency decreases from 16 ns to 2 ns, TAP’s average energy savings

increases by 1.43× on average. In contrast, MAPG-Counter’s energy savings increases

by 3.05×. MAPG-Counter’s greater dependence on wake-up latency has two causes.

57

First, a lower wake-up latency reduces the penalty of overpredicting the duration of the

idle interval. Second, the lower wake-up latency makes it easier to power gate for at least

the break-even time so that negative energy saving periods are minimized. In comparison,

TAP’s greater fidelity in tracking memory requests allows it to determine that longer idle

periods exist and to power gate sooner.

2.5.4 Adapting to Memory Contention

Both TAP and MAPG-Counter can adapt to varying levels of memory contention

and can power gate cores for longer as memory subsystems become oversubscribed. We

show how both TAP and MAPG-Counter adapt to a system facing increased memory

contention for the multi-threaded memory benchmark, STREAM, running on a CMP with

up to 32 cores. STREAM is a memory-intense benchmark used to measure sustained

memory bandwidth and computation rates for simple vector kernels [84]. We modify

STREAM to act as an embarrassingly parallel memory benchmark such that more threads

cause more simultaneous requests to the memory subsystem. Increasing STREAM’s

thread count causes more queuing of memory requests, longer delay per request and

more frequent stalling of each core. A good power-gating technique should be able to

power gate the core more often to reduce power consumption.

Figure 2.17 depicts both average duration of core stalls and the percentage of

total simulation time spent power gating the core for both TAP and MAPG-Counter.

The x-axis tracks the number of threads that are run simultaneously. The left y-axis

indicates the average stall duration for a core in nanoseconds as the number of threads

increases from 0 to 32. The right y-axis shows the percentage of time that both TAP and

MAPG-Counter can power gate the core as the memory subsystem experiences more

contention.

First, we note that as the number of threads increases, the average duration of

58

0%	

5%	

10%	

15%	

20%	

25%	

30%	

35%	

40%	

0	

50	

100	

150	

200	

250	

300	

350	

0	 5	 10	 15	 20	 25	 30	 35	

Co
re
	 P
ow

er
	 G
at
e	
Ti
m
e	
(%

)	

Av
er
ag
e	
St
al
l	 D

ur
a8

on
	 (n

an
os
ec
on

ds
)	

	

Number	 of	 Threads	

Average	 Stall	 Dura4on	
TAP	
MAPG-‐Counter	

Figure 2.17. TAP and MAPG-Counter adapting to increasing memory contention. The
left y-axis shows the average duration of a stall in nanoseconds, while the right y-axis
shows the percentage of time that TAP and MAPG-Counter can power gate as a function
of the number of STREAM threads.

a core stall increases. For 1, 2, 4, 8, 16, and 32 threads, the average stall durations are

36.77 ns, 29.31 ns, 38.29 ns, 59.191 ns, 109.22 ns, and 287.63 ns, respectively. From 1 to

32 threads, average core-stall duration increases by 7.82×10. The increase in the average

core-stall duration is caused by more threads making parallel requests to the memory

subsystem at once. This increase causes longer queues in the memory controller and

contention to use the limited number of memory channels to transfer the requested cache

line. Further, an increase in memory demand decreases the probability of a row-buffer

hit and yields longer access latencies.

In addition, Figure 2.17 shows that as cores experience increased memory latency,

both TAP and MAPG-Counter power gate the core longer. TAP power gates the core

for 9.08%, 6.61%, 6.21%, 15.81%, 19.55%, and 33.50% of the time for 1, 2, 3, 4, 8,
10From 1 to 2 threads, core-stall duration decreases. This happens because more threads both increase

the amount of available cache (more cores) while increasing the number of simultaneous memory requests.

59

16, and 32 threads, respectively. From 1 to 32 threads, TAP power gates cores 3.69×

longer. MAPG-Counter power gates the core for 6.03%, 6.19%, 7.49%, 8.11%, 9.38%,

and 12.18% of the time as the number of threads increases from 1 to 32, a total increase

of 2.02×. Together, this data indicates that TAP adapts more closely to the level of

memory contention and shows greater energy proportionality over a greater range of

memory contention. However, TAP power gates its core less for 4 threads than for 2

even though average core-stall time increases. This is because TAP uses a conservative

lower-bound estimate of memory-response time and does not account for all memory

scheduling actions, and memory contention scenarios.

2.5.5 Distributed, Staggered Wake Up

The previous section shows that TAP can adapt to increasing memory contention,

but it is not clear if the centralized WUC would be practical for such a large multicore

processor. For a 16-core system with multiple cores waking up simultaneously, voltage

noise on the power distribution network can cause unsafe voltage drops on neighboring

active cores. By introducing a sub-nanosecond stagger between any two adjacent cores

waking up, worst-case inrush current and resulting voltage noise are reduced. The result

is a faster wake-up mode and increased energy savings on the chip. Hence cores should

wake up staggered by at least a fraction of a nanosecond.

Figure 2.18 shows SPICE simulation of the effect of stagger on core wake-

up latency for no-stagger, 0.3ns-stagger, 0.6ns-stagger, and 0.9ns-stagger for CMPs

composed of 16 EV6 cores as 0 to 14 cores are idle. Staggered wake up can reduce

the variance between the min and max wake-up latency when most cores are actively

executing or waking-up. For the 16-core CMP with no cores idle and no stagger, the

max and min wake-up latency is 18.4 ns and 9.7 ns, whereas, a staggered wake up of 0.9

ns decreases the max and min values to 10.7 ns and 8.6 ns respectively. As more cores

60

go idle, staggered wake up has less impact on reducing the variance of wake-up latency

because cores are less likely to interfere with each other, and the core’s location becomes

the dominant factor in wake-up latency. For example, when 14 cores are idle in a 16-core

CMP, the min and max wake-up latencies are both 4.5 ns and 9.1 ns, respectively, in both

the no-stagger and 0.9ns-stagger cases. Lastly, stagger reduces the maximum wake-up

latency as more cores are active. An example of this is for the 16-core case when no core

is idle; maximum wake-up latency is 18.4 ns without stagger and 10.7 ns with 0.9 ns

stagger, a reduction of 58.2%. Thus, stagger relaxes the guardband on wake-up latency.

Figure 2.19 shows the energy impact of staggered wake up for a 16 EV6 core,

TAP architecture. The largest improvement in energy savings is 3.14% for mcf as energy

savings increase from 18.92% to 22.06% for staggered wake ups of 0.0 ns and 0.9 ns

respectively. On average, energy savings go from 3.52% to 4.34% as stagger increases

from 0 ns to 0.9 ns. Staggered wake up does not cause any decrease in energy savings.

Although cores may have to wake up at slightly different times, the savings in latency

with which they wake up is much greater than the stagger offset of 0.9 ns.

To have cores safely and reliably use staggered wake up, a controller or scheme

is required to control the wake-up behavior of all cores. A centralized WUC would be

able to use more aggressive wake-up modes and power gate the core for longer, but

such a design does not scale to many cores. By contrast, the distributed wake-up control

of Section 2.3 can scale to many-core designs, but sacrifices some power-gating time

waiting for an assigned wake-up slot. Figure 2.20 shows the difference of application

power-gated time for a subset of the Spec2006 benchmarks in a 16-core TAP architecture.

Our simulations show that the distributed wake-up control has a maximum decrease in

power-gated time of 2.68% (0.93% on average) for the benchmark lbm. This indicates

that the difference in energy savings between a distributed scheme and a centralized WUC

would be negligible, but that a distributed scheme scales to many-core architectures.

61

0
2
4
6
8

10
12
14
16
18
20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

W
ak
e‐
u
p
 T
im

e
(n
s)

Number of Idle Cores

no‐stagger 0.3ns‐stagger

0.6ns‐stagger 0.9ns‐stagger

Figure 2.18. The improvement in core wake-up latency with increased stagger for a 16
EV6 core CMP as 0 to 14 cores are idle. The average latency is shown with bars denoting
the min and max safe wake-up modes.

0%

5%

10%

15%

20%

En
er
gy
 S
av
in
gs
 (%

)

no stagger 0.3ns stagger
0.6ns stagger 0.9ns stagger

Figure 2.19. The improvement in energy savings with staggered wake ups in an 16 EV6
core CMP. Benchmarks with less than 0.2% energy savings filtered.

62

lbm gc
c

ze
us

m
p

sje
ng

h2
64

re
f

les
lie

3d m
ilc

bz
ip2

bw
av

es
go

bm
k

ca
ct

us
AD

M
m

cf
Ge

m
sF

DT
D

na
m

d
av

g0

10

20

30

40

50

Co
re

 P
ow

er
-G

at
ed

 T
im

e
(%

)

central-wuc
distributed-wuc

Figure 2.20. Comparison of power-gated time using staggered wake up with a central-
ized WUC versus a distributed WUC.

2.6 Summary

With each generation of microprocessors produced, leakage power becomes a

larger issue. Data center applications and the servers that run them will not be energy

efficient if leakage power is wasted, while no interesting work progresses. In this

chapter, we have described two techniques, TAP and MAPG-Counter, which effectively

reduce wasted leakage power for cores waiting on the memory subsystem, while actively

executing workloads. MAPG-Counter achieves higher average energy savings for in-

order cores (4.1%) than TAP. However, TAP achieves 22.4% maximum energy savings

for an out-of-order core. The energy savings for the out-of-order core are noteworthy

for both being within 13.9% of the Oracle scheme on average, and having 2.58× the

average energy savings of MAPG-Counter. TAP is also shown to be more adaptive to

different levels of memory contention, and yields a more energy proportional system

than MAPG-Counter. Lastly, we demonstrate that a wake-up stagger of 0.9 ns reduces

63

core wake-up latency by up to 58.2% (7.7 ns), and increases TAP’s energy savings by an

additional 3.14%.

2.7 Acknowledgments

Chapter 2 contains material from “MAPG: Memory Access Power Gating”, by

Kwangok Jeong, Andrew B. Kahng, Seokhyeong Kang, Tajana S. Rosing, and Richard

Strong, which appears in Design, Automation & Test in Europe Conference & Exhibition,

2012. The dissertation author was a principle contributor and author of this paper.

Chapter 2 also contains material from “TAP: Token-Based Adaptive Power Gat-

ing”, by Andrew B. Kahng, Seokhyeong Kang, Tajana S. Rosing, and Richard Strong,

which appears in the ACM/IEEE International Symposium on Low Power Electronics

and Design, 2012. The dissertation author was a principle contributor and author of this

paper. This material is copyright c©2012 by the Association for Computing Machinery,

Inc. Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, to republish,

to post on servers, or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from Publications Dept., ACM, Inc., fax +1 (212) 869-0481, or

permissions@acm.org.

In addition, Chapter 2 contains material from “Many-Core Token-Based Adaptive

Power Gating”, by Andrew B. Kahng, Seokhyeong Kang, Tajana S. Rosing, and Richard

Strong, which will appear in in the IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems. The dissertation author was a principle contributor and

author of this paper.

64

Last, Chapter 2’s research was supported by the MARCO FCRP (GSRC and

MuSyC centers), Qualcomm, Oracle, and NSF grants SHF-0916127, SHF-1218666,

SHF-1116667 and CCF- 1162085.

Chapter 3

Very Fast Core Switching

The previous chapter discusses a low-latency, power-gating technique that can

reduce core leakage power during a memory access. Such a technique is best suited

for cores running memory bound applications, and requires modification to existing

processor microarchitecture. If a technique could leverage the millions of underutilized

cores in today’s data centers to improve energy efficiency, the benefits may be realized

more quickly. Such a technique can use low-latency software to improve the energy

efficiency of applications, while maintaing critical QoS agreements in the data center.

To this end, Chapter 3 presents fast core switching, a software-based thread

migration technique, which enables a variety of potential improvements such as: thermal

management [28, 52], fine-grained load-balancing [18], and exploiting asymmetric

cores [72] by moving computation when execution characteristics change. For example,

a thermal management technique may migrate the most power-hungry applications to the

edge of a chip to reduce overall chip temperature, and reduce the energy consumption

from cooling costs [35]. Alternatively, when the server experiences high demand for

computation, thread migration every 20–200 µs can spread computation across the chip,

reduce chip temperature by 12.4◦ C, and allow each core to run at a faster frequency [52].

In all of these cases, the migration mechanism is used to improve server energy efficiency

either directly or indirectly, and its delay ultimately determines when and how often

65

66

the mechanism can be used. Therefore, successful exploitation of these opportunities

demands low core-switching costs.

CPU vendors currently offer as many as 64 cores per 1U server [8]. Inter-core

communication costs have dropped by orders of magnitude compared to traditional

multiprocessors. This creates the potential for significantly more nimble and dynamic

management of executing threads, since it reduces the time for hardware to move a

migrating thread’s working set by similar orders of magnitude.

However, we cannot exploit these opportunities while the software costs of

moving a thread remain as high as they are now, since these costs can dominate the

communication costs of moving the working set. For instance, both simulation and

hardware experiments show that thread migration between complex cores takes longer

than 2 µs on average. Simulations show that migration across asymmetric cores takes

more than 8 µs on average. In comparison, a remote cache line for the complex core

architecture of Chapter 2 is accessible in 45 ns, which is 44× shorter than a thread

migration. This research seeks to understand and reduce these software costs to provide

a lower overhead migration mechanism.

This chapter focuses particularly on the potential of asymmetric multicore pro-

cessors, because core-to-core performance asymmetry can improve energy and area

efficiency. An asymmetric multicore CPU has cores, which vary greatly in complexity

and energy consumption, while executing more or less the same instruction set. Code that

has no need for a complex core can be run on a simpler core, often with relatively little

performance cost but with greater throughput per watt. The use of asymmetric multicore

processors increases the need for frequent migration of threads between cores.

Previous work shows the potential value of multicore performance asymmetry,

starting with Kumar et al. [72], who proposes an asymmetric single-ISA (ASISA)

multicore. Their simulations show that dynamic migration of application code between

67

cores of varying complexity could improve energy efficiency. Other publications propose

asymmetric architectures with specialized cores for operating system (OS) code and

for network code [94, 117]. In addition, Nellans et al. suggest that adding OS-specific

caches to standard cores might also be a good way to improve efficiency [95].

Balakrishnan et al. [15] point out that an asymmetric multiprocessor can outper-

form a symmetric processor, when a faster core executes serial portions of a parallelized

application. Grant et al. [48] evaluate an ASISA approach in which specific kernel

threads are bound to cores optimized for OS performance, using actual hardware and

throttling the clock of one core to emulate the performance of a low-power core. Previous

work [89] also evaluates the use of simpler cores to run OS code, using simulation to

show the potential for improved energy efficiency.

Much of the prior work dynamically matches the characteristics of code to the

appropriate core. Exploiting performance asymmetry requires switching cores during the

execution of a thread. For example, to get good performance, the OS scheduler may need

to migrate a thread from a slow core to a fast, idle core [15]. Thread migration is also

necessary when balancing loads between cores in a symmetric or asymmetric system.

However, dynamic migration must balance the benefits against the costs, especially if

the benefits come from frequent migrations to exploit the performance characteristics of

relatively short execution segments.

Therefore, core-switching costs are fundamental to evaluating the feasibility of

asymmetric multicore systems. It might seem that moving thread T from core A to core

B simply requires transferring the thread’s architectural state from A to B. However,

this would only work if core B is idle before the core switch, and if no other thread

should run on core A while T is bound or blocked at core B. Otherwise, T must be the

most appropriate thread to run on B, and the scheduler must find another thread, perhaps

the idle thread, to run on A. These are both scheduling decisions, requiring access and

68

updates to the kernel’s scheduling data structures. This is why the scheduler must be

involved in a core switch.

In all versions of this chapter’s modifications to the Linux scheduler, kernel code

that wants to initiate a core switch calls a SwitchCores function that, sooner or later ends

up invoking Linux’s schedule function. This approach does not replace the operating

system’s normal scheduling policies. All standard scheduling proceeds as usual. The

kernel modifications do not core switch at such points. No previous work has carefully

evaluated the software costs of core switching, or how these might be reduced. This

chapter makes the following contributions:

• We reduce Linux core-switching latencies by up to 2.5× compared to vanilla Linux,

and see migration latencies as low as 933 ns.

• We show several ways to reduce the cost of software-based core switching, which

indicates that extra context switches, unnecessary scheduler operations, and the

interrupt code path all hinder fast thread migration.

• Using simulations, we explore how core-switching costs depend on several archi-

tectural considerations. They indicate that core switching is senstive to L1 cache

sizes, the wake up latency of cores, and the presence of an instruction that allows

efficient cross-core wake ups.

• We present both microbenchmarks and macrobenchmarks evaluating the efficiency

of core switching, on both real and simulated hardware. Real hardware running

macrobenchmarks has no performance penalty from the proposed core-switching

technique. Simulations show that core switching between asymmetric cores also

improves energy efficiency by 3.37× on average.

69

3.1 Related Work

Chapter 3 relates to research in two areas: thread migration techniques and

scheduling for asymmetric multicores. Thread migration techniques focus on efficiently

moving threads between cores with the goal of minimizing performance impact, or to

exploit idle core resources by fine-grained thread movement. Scheduling for asymmetric

multicores focuses on the challenge of scheduling the use of different complexity cores

to optimize the performance and energy efficiency of an application or workload. The

subsections that follow discuss each in their turn.

3.1.1 Thread Migration Techniques

There is a rich history in the literature of systems that supports thread migration on

conventional multiprocessors [109]. However, the issues and priorities shift significantly

on a chip multiprocessor, where extremely low hardware communication costs apply

much more pressure on the software overhead of the migration mechanism.

Constantinou et al. [33] consider a variety of costs associated with moving threads

between cores on a CMP, but focus primarily on moving and warming up caches and

branch predictor state. They do not address the software costs of migration.

Li et al. [79] modify the Linux scheduler to create a custom scheduler, with a

load balancer that accounts for the asymmetry of an ASISA system. They account for

the expected costs of moving a thread, particularly the cost of moving the cache working

set. Their best scheduler migrates threads many orders of magnitude more often than the

original Linux scheduler.

Choi et al. [31] examine the specific case of migrating branch predictor state

when a thread switches cores, but do not address software overhead issues. They find

that setting the global history register of a migrated thread to the initial value of thread’s

70

program counter can improve IPC by 13%.

Carbon proposes a hardware scheduler capable of scheduling parallel applications

[75]. The application is broken down into a series of tasks, many of which can execute

in parallel. The hardware scheduler then controls how these tasks migrate and execute

across a multicore architecture.

Brown et al. [23] take a different approach and propose a shared-thread mul-

tiprocessor (STMP), where the hardware manages thread movement. Thread state is

represented in hardware that is shared among all cores on a chip, so the hardware can

move a thread between cores without direct OS involvement. For example, STMP would

allow core-switching in a user-mode threads package. Later, Brown et al. improve fast

thread migration by predicting and migrating a thread’s working set [22]. They find that

migrating instruction cache entries that are likely to be accessed by the migrated thread

significantly boosts performance.

STMP is an intriguing alternative to software-managed core-switching, but we

do not yet have the ability to experiment with how this approach interacts with OS code.

While the STMP hardware can reschedule active threads whose state is represented in

hardware, the OS will have to be involved with scheduling threads in several cases;

such as, when threads are blocked on OS-mediated I/O operations, when there are too

many threads for the hardware to represent, or when the scheduling policies must involve

OS-managed state. STMP will therefore require fairly significant modifications to the

operating system’s view of the threads it manages.

3.1.2 Scheduling for Heterogeneous Multicores

Hill et al. point out that asymmetric multicores are an inevitable consequence

of scaling to large numbers of cores on a chip [54]: by analogy to Amdahl’s Law,

highly-parallelizable applications have sequential code that runs best on a core with the

71

greatest possible single-thread performance. Such asymmetry exists on both Intel and

AMD processors in which one or more cores can increase their frequency for critical

applications.

Kumar et al. [72] argue for asymmetric cores because some code gains little

benefit from complex cores, and if executed on a simple core, will run at nearly the same

speed with lower energy consumption. Simple cores can be a better match for memory

bound application code. To utilize asymmetric hardware, they present scheduling policies

for ASISA architectures in both the performance [74] and power/performance [72]

domains. Those scheduling policies are sampling-based, and run at infrequent intervals

to limit migration costs. Their assumption is that migration points are unknown to the

software for an application that rapidly changes in behavior, which is not the case for the

architecture that this chapter assumes. Kumar et al. [72] model core switching at a very

coarse granularity, allowing them to neglect the cost of core switching. However, the

introduction of specialized cores for OS and similar code implies the potential for much

more frequent migration, potentially making performance highly sensitive to that cost.

Becchi et al. [18] model core switching for a similar architecture, using a

somewhat more sophisticated model including the execution of an OS. While they model

the data-communication costs of core switching, they do not try to model the kernel

software overheads.

Work in [89] observes that operating system code has large working sets and many

branch dependencies, and hence should be a good match for energy-efficient execution

on simple cores in asymmetric multicores. The authors migrate OS code from a complex

core to a simple core at system calls, to improve energy efficiency. However, no attempt

is made to reduce the overhead of migration between cores.

Fedorova et al. [45], similar to [79], create a custom OS scheduler to account

for an asymmetric system. In particular, they seek more balanced core assignments to

72

Table 3.1. Summary of core-switching versions

Version number Mechanism(s) used Section
V1 Linux’s existing thread-migration mechanism 3.2.2
V2 Direct invocation of modified scheduler 3.2.3
V3 Scheduler fast paths for source and target 3.2.4
V4 Idle loop uses polling instead of interrupts 3.2.5
V5 Cross-core wake up from quiesce 3.2.6

increase fairness and decrease runtime jitter.

Chakraborty et al. [27] also look at migrating OS code to distinct processors.

However, their motivation is not heterogeneous cores, but the opportunity to spread

computation that is unlikely to use the same working set (e.g., user and kernel code) onto

separate cores with separate caches.

To the best of our knowledge, no previous work carefully evaluates the software

costs of core switching, especially in the context of the operating system. In contrast, this

chapter uses a trace driven technique to break down the costs of migrating a thread via

the operating system. This analysis is further used to reduce core-switching costs, and

minimize performance. Last, this chapter analyzes the new core-switching technique for

both simulated and actual hardware.

3.2 Software Approaches to Core Switching

First, this section describes how to modify the code for various specific system

calls to invoke core switching, so as to avoid modifications to user applications. Next,

this section describes a sequence of increasingly more efficient designs labeled V1 to V5

(see Table 3.1). V1 starts with the current state-of-the-art Linux migration code. Each

step identifies inefficiencies in the migration process, and optimizes around them. In

addition, the separation of the various steps allows the reader to gauge the significance of

each change. This chapter makes several assumptions related to core switching:

73

• Threads only switch between cores with a single ISA. That is, any core where a

thread can run will correctly execute its instructions, allowing the experiments to

run unmodified applications.1

• This chapter considers only the performance consequences of switching a thread

between cores on a single die. The kernel modifications in this section can suc-

cessfully switch threads between cores on different sockets, but since inter-socket

communication costs are much higher, this is less useful in cases where rapid core

switching is desirable.

We implement all changes as modifications to the Linux 2.6.18 kernel. The 2.6.18

kernel uses a scheduler optimized for efficiency [9]. Starting with 2.6.23, Linux uses the

Completely Fair Scheduler, whose design the author describes as “quite radical” [90].

This chapter does not analyze this design to know how it can be optimized for efficient

core switching, though we suspect its modularity might add some latency. There is

no obvious reason why this section’s approach would not generalize to other operating

systems.

3.2.1 Modified System Calls

Given a core-switching mechanism that is reasonably efficient but not free, it is

necessary to choose when to switch. One approach is to provide a simple system call like

coreswitch(destcoreset, flags), to allow an application to explicitly initiate switching to

one of a set of cores, with policies such as core affinity controlled by flags. This requires

application-specific changes, so this dissertation chooses not to evaluate this approach.

Instead, long-running and frequently-used system calls have been modified to

invoke core switching. Figure 3.1 shows how to add code to the read system call, to
1 It is possible to trap on certain unimplemented instructions, save the thread state, and resume the thread

on a more appropriate core; see Li et al. [80] for an example. It is also possible to migrate applications
between different instruction set architectures [36].

74

sys_read(unsigned int fd, char __user * buf, size_t count) {

struct file *file; ssize_t ret = -EBADF;

int fput_needed; int switched = 0;

/*new*/ if ((count >= RWThresh) && OKtoSwitch(__NR_read))

/*new*/ switched = SwitchToOScore();

file = fget_light(fd, &fput_needed);

if (file) {

loff_t pos = file_pos_read(file);

ret = vfs_read(file, buf, count, &pos);

file_pos_write(file, pos);

fput_light(file, fput_needed);

}

/*new*/ if (switched)

/*new*/ switched = SwitchToAppCore();

return ret;

}

Figure 3.1. Example of a system call modified to support core switching

conditionally switch to an OS-specific core if the buffer size exceeds a threshold. The

OS sets the buffer-length threshold to 4096 bytes. The costly work (e.g. vfs read) then

continues on the OS core; when done, if code did switch cores, it is switched back. The

following system calls are modified in the same way: open, stat, read, write, readv, writev,

select, poll, fsync, fdatasync, readfrom, sendto and sendfile.

3.2.2 V1: Linux’s Thread-Migration Mechanism

The first approach is to use Linux’s existing thread-migration mechanism, nor-

mally used for relatively long-term load-balancing across cores. Linux’s thread-migration

mechanism is the current state-of-the-art for software core switching. When a task wants

to migrate, it puts itself on a per-core migration queue, wakes up, and switches control to

a per-core migration thread, which does the actual work of moving the thread to the run

queue of the target core. If the target core is idle, the migration thread signals that core to

invoke the scheduler (see Section 3.2.5 for details), which finds the thread on the target

75

run queue and reawakens it.2 This migration approach involves an extra context switch

between the initiating thread and the migration thread. Kernel code that wants to initiate

a core switch calls a SwitchCores function that, sooner or later ends up invoking Linux’s

schedule function The new SwitchCores function requires less than 30 non-commented

source code lines, that invokes this thread-migration mechanism. Thus, there is little

performance overhead from the SwitchCores function, and migration cost reflects the

default Linux mechanism.

3.2.3 V2: Modified Scheduler

V1 spends significant time context switching to the kernel migration thread. The

V2 scheduler removes the extra context switch, and initiates thread migration directly.

This means that SwitchCores directly invokes a modified version of Linux’s schedule

function.3 The changes require 43 non-commented source-code lines.

Since it would be very difficult to change the arguments to schedule, a new

thread-info field is created to pass the target core ID from SwitchCores. If this field is

set, schedule unconditionally deactivates the thread T , places it on a special per-core

Alternate Queue (AQ), and then rejoins the original scheduler code where it picks the

next thread N to run on the source core. Once schedule has context switched the core to

thread N, the modified version checks AQ, finds T safely dormant in the queue, inserts it

in the run queue for the target core, and signals the target core (see Section 3.2.5). This

cross-core signal causes schedule to run on the target core; it finds T on its run-queue,

context switches to T , and the core switch is complete.

2This mechanism is also invoked when an application uses the sched setaffinity system call in a way
that requires it to vacate the current core.

3Apparently, Solaris uses this approach for thread migrations [44, 85].

76

3.2.4 V3: Scheduler Fast Paths

Through analysis of instruction-level traces from simulation runs (see Sections

3.3 and 3.4), it is clear that the V2 scheduler executes several sequences of slow and

unnecessary code. The V3 scheduler realizes a fast-path version of schedule that it tailors

to expediency for the specific case of core switching. The scheduler is split into three

versions: the original modified V2 schedule; a fast schedule source version the source

core calls to initiate a core switch, and a fast schedule target version called by the target

core in response to the cross-core signal.

Both fast schedule source and fast schedule target omit a number of house-

keeping functions normally done in schedule, like recalculating thread priority, which

involves expensive arithmetic, and load-balancing for an about-to-be-idle core. Also,

fast schedule source sets a special per-core hint for the target core, which tells the target

core’s idle loop to invoke fast schedule target rather than schedule. Since this is a hint,

no locks are required, although the slow path, V2 scheduler, may be used occasionally

on the target core. Standard scheduling events, e.g., the expiration of a thread’s quantum,

always use the normal slow-path V2 schedule, and hence all housekeeping functions

execute approximately as often as they would normally.

The fast schedule target function cannot omit the code that checks AQ, because

although the application thread initiates the core switch using fast schedule source, the

check of AQ happens after the context switch, and thus in the idle thread, which calls

fast schedule target before it yields the core, and thus, it is still within fast schedule

target’s call stack. The function fast schedule target always executes in the context of

the idle thread on one core or another. For the same reason, fast schedule source can

omit the code that checks AQ. Figure 3.2 depicts the timeline schematically for two core

switches. Core 0 executes code, starts a core switch through the fast schedule source,

77

Core%0%
Core%1%

CS
W
	

CS
W
	

CS
W
	

CS
W
	

IDLE	 THREAD	 EX
EC

U
TE
	

EX
EC

U
TE
	

EX
EC

U
TE
	

FS
S1
	

FS
T2
	

FS
T1
	

FS
S2
	

FS
T1
	

FS
S2
	

FS
S1
	

FS
T2
	

IDLE	 THREAD	 IDLE	 THREAD	

FSS<n>	 =	 fast_schedule_source	 (Part	 n)	 	 	 	 	 	 	 	 CSW	 =	 context	 switch	
FST<n>	 =	 fast_schedule_target	 (Part	 n)	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 =	 IPI/other	 signal	
	

Time	

Figure 3.2. Timeline showing 2 core switches between a pair of cores, using fast-path
versions of schedule

context switches, and fast schedule target performs the core switch. A signal wakes core

1, calls fast schedule target, and context switches the original thread for execution. The

timeline goes on to show a core switch back to the original core.

Figure 3.3 (left) shows abstract pseudo-code for the V2 scheduler with modifica-

tions for core switching underlined. Figure 3.3 (right) shows the code that is deleted for

fast schedule source.

3.2.5 V4: Addressing IPI Costs

The V3 scheduler needs to wake up the target core if it is currently idle. Linux

allows the idle loop either to poll for changes to a need resched flag, or to quiesce

the core and wait for an inter-processor interrupt (IPI). Architectures that support core

power-down generally quiesce idle cores. Like the scheduler, the IPI code path includes

78

1: void schedule(void) {
2: sanity checks
3: prev = current thread;
4: more sanity checks
5: compute prev’s run-time during quantum
6: if prev wants to switch cores then
7: deactivate prev from RQ[this core]

8: place prev on AQ[this core]
9: else

10: handle signal-related state changes for prev
11: end if
12: if no other runnable threads for this core then
13: try to borrow some threads from other cores
14: end if
15: if still nothing to run then
16: next = idle

17: else
18: next = highest-priority runnable thread for

this core
19: end if
20: adjust priority for next
21: SMT-related optimizations
22: prefetch next’s kernel thread-related state and

stack
23: prepare and do actual context switch
24: if AQ[this core] non-empty then
25: dequeue thread t from AQ[this core]
26: update load-balancing info for t
27: place t on RQ[t->target core]
28: signal target core to check its RQ
29: end if
30: }

Modifications for core-switching are underlined

1: void fast schedule source(void) {
2: sanity checks
3: prev = current thread;
4: more sanity checks
5: compute prev’s run-time during quantum
6: if prev wants to switch cores then
7: deactivate prev from RQ[this core]

8: place prev on AQ[this core]
9: else

10: handle signal-related state changes for prev
11: end if
12: if no other runnable threads for this core then
13: try to borrow some threads from other cores
14: end if
15: if still nothing to run then
16: next = idle

17: else
18: next = highest-priority runnable thread for

this core
19: end if
20: adjust priority for next
21: SMT-related optimizations
22: prefetch next’s kernel thread-related state and

stack
23: prepare and do actual context switch
24: if AQ[this core] non-empty then
25: dequeue thread t from AQ[this core]
26: update load-balancing info for t
27: place t on RQ[t->target core]
28: signal target core to check its RQ
29: end if
30: }

Source-core fast path; deletions are struck out

Figure 3.3. Abstract pseudo-code for modified versions of schedule()

79

significant software overhead, which is unnecessary in this instance.4

First, the existing code to send an IPI to a specific core invokes a function that

sends the IPI to all members of a specified set of cores. Although the set, in this case,

is a singleton, the required bit-map manipulations are very slow. Consequently, the

IPI-sending function is modified to be more efficient for the singleton case. All of the

benchmark results for IPI-based core switching use this improved code.

Using the IPI to invoke schedule on the target core results in a long code path

for interrupt handling. To avoid the IPI path completely, V4 schedule forces the use of

polling in the simulated system. The real x86 system already uses polling, due to a lack

of quiesce instruction on the particular server used. Section 3.2.6 discusses a simple

hardware change that can yield the time efficiency of polling without requiring the idle

core to stay powered-up, and therefore without the power-increasing drawbacks of V4’s

naive polling.

3.2.6 V5: Cross-Core Wake Up from Quiesce

As discussed in Section 3.2.5, Linux’s idle loop either polls on a need resched

flag, or waits for a cross core interrupt. The former mechanism is inefficient, especially

for cores that can power-down. The latter is slow, because of the interrupt-handler

overhead, which lasts for 160 ns on a simulated 3 GHz Alpha.

We add a new cross-core wake-up instruction to the simulated processor architec-

ture, wakeup(core).5 This causes the specified core to continue from a quiesce instruction;

it is a no-op if that core is not quiesced. The simulator continues execution on the awak-

ened core after a delay to account for stabilizing the core upon power up. The delay

4 The simulator’s kernel quiesces in the idle loop, since this greatly reduces the cost of simulating idle
cores. That, through analysis of simulation traces, is what led to the discovery that the IPI path adds a lot
of overhead.

5This is analogous to the Intel monitor/mwait mechanism, but it is simpler to simulate. The goal is to
show how core-switching software can exploit this kind of feature.

80

Table 3.2. A mapping from architectural configuration name to core types for both the
application and OS core

Cofiguration App Core OS Core
sim C EV6 3 GHz N/A
sim CC EV6 3 GHz EV6 3 GHz
sim SS EV4 3 GHz EV4 3 GHz
sim Cc EV6 3 GHz EV6 750 MHz
sim CS EV6 3 GHz EV4 3 GHz
sim Cs EV6 3 GHz EV4 750 MHz

mechanism is designed as described in Section 3.3.1.

We modify fast schedule source to issue a cross-core wake-up instruction as early

as possible. This completely hides the target-core stabilization delay, by overlapping

it with a considerable amount of instruction execution on the source core, except when

the source core is much faster than the target core. When this is successful, it avoids

the interrupt-handler overhead entirely. It is possible that core wake up could occur

later in fast schedule source to save a little power, but it is hard to calculate the optimal

point without a risk of doing this too late. The target core might start running before the

need resched flag is set, so a separate per-core flag tells it to temporarily poll rather than

quiesce.

3.3 Simulation Environment and Workloads

Simulations use the M5 simulator [20], which supports execution of full systems,

including operating system code, and can simulate detailed architectural models cycle-

by-cycle. We leverage M5 to generate detailed timelines, showing when interesting

events such as procedure calls, cache misses, and long-latency instructions occur; these

timelines have been valuable in understanding where time is being spent. M5 can also

generate detailed traces showing, for example, when specific cores are idle or active.

The simulations use a model based on the Alpha EV6 (21264) as the complex

81

core, and an EV4-based (21064) model for the simple core. The complex core has

64 KB, 2-way set associative, 64 B block size L1 caches, with 1-cycle access for the

L1 instruction cache and 2-cycle access for the L1 data cache. The simple core has 8

KB, direct-mapped, 64 B block size, 1-cycle L1 caches, except for Section 3.5, which

evaluates simple cores with larger L1 caches. The simulations assume a shared L2 cache

with 3.5 MB, 7-way set associative, 4 ns access latency, and a main-memory access time

of 25 ns.

This chapter simulates a variety of configurations (see Table 3.2), with a naming

scheme showing the types (C for complex, S for simple) and speeds (upper-case letters

for 3 GHz, lower-case for 750 MHz) of each core: sim C with a single (uniprocessor)

3 GHz complex core; sim CC with two 3 GHz complex cores; sim SS with two 3 GHz

simple cores; sim Cc with two complex cores; one at 3 GHz and one at 750 MHz; sim CS

with one complex core and one simple core, both at 3 GHz; and sim Cs with one 3 GHz

complex core and one 750 MHz simple core. The first letter represents the application

core; the second represents the OS core.

For each dual-processor hardware configuration, this chapter runs tests using

unmodified Linux, an unmodified Linux that binds Ethernet and disk interrupts to the OS

core but does not core switch, and the five versions of core switching Linux (V1 ... V5),

also with interrupts bound to the OS core. All configurations but unmodified Linux pin

the user application process to the application core. The simulator is fully deterministic

and requires only one trial per experiment.

3.3.1 Modeling Core Power Up

Chapter 1 discusses that servers will often have one or more idle cores, and so

power could be saved by powering-down these idle cores. This leads to some issues in

modeling the performance aspects of powering up a core. These experiments assume

82

that a core’s L1 cache state persists during power-down, using a source biasing technique

[101] similar to that used in Chapter 2.6 The experiments also assume that architectural

register state is preserved similar to either the C6 state in the Intel Core Duo [61] or the

slave-latches used in Chapter 2.

When a powered-down core is powered up, some time passes until the voltages

have stabilized enough for the core to safely execute instructions as discussed in Chapter 2.

This delay is imposed by the RC time constant defined by the capacitance of the core

and the resistance in the power wiring. This chapter uses a delay model provided by

Matteo Monchiero [91]. With parameters chosen for a 65 nm process and a maximum

core current of 10 A similar to the physical x86 hardware, the model predicts a power-on

time of about 16.3 ns, or about 50 cycles at 3 GHz and 12.5 cycles at 750 MHz. For

comparison, James et al. report that “a single POWER6 core is capable of causing a 13 W

power step within about 20 clock cycles” [64]. This delay is longer than that calculated

in Chapter 2, because of the different technology node assumptions.

We modify M5 to simulate a configurable delay between the time that a quiesced

core receives an interrupt and the time that it executes the first interrupt-handler instruc-

tion. This delay ranges from 0 ns to a conservative 1000 ns to generalize findings across

a range of power distribution network designs (see Figure 2.6). Section 3.5.2 discusses

how this chapter’s results depend on this delay. Simulation results present elsewhere

in this chapter use a delay of zero to represent the ideal scenario for the power-gating

techniques of Chapter 2.

3.3.2 Workloads

This chapter uses the following OS-intensive benchmarks: netperf/TCPstream

benchmark, which sends TCP data as fast as possible, and netperf/TCPmaerts, which

6In other work, we investigate the case where core power down causes the L1 cache to flush its state
[35].

83

receives data as fast as possible; Web, Apache with a workload based on SPECweb; and

DB, using the ex tpcb “TPC-B-like” example from the Berkeley DB distribution [96].

Table 3.3 shows that these applications spend a lot of their non-idle time in kernel or inter-

rupt modes, although at slower network interface (NIC) speeds the netperf benchmarks

often leave the CPU idle.

Table 3.3. Fraction of CPU time spent in various modes. Measurements are based on
unmodified Linux on a simulated uniprocessor

NIC Percentage of CPU time spent in mode
speed Benchmark User Kernel Interrupt Idle
1 Gbps TCPmaerts 14.8% 27.4% 17.5% 40.4%
1 TCPstream 0.1% 38.1% 18.2% 43.7%
1 Web 55.0% 25.8% 10.6% 8.6%
10 Gbps TCPmaerts 25.0% 46.2% 12.9% 15.9%
10 TCPstream 0.1% 27.0% 25.4% 47.5%
10 Web 54.5% 29.8% 8.3% 7.4%

Simulation of TCP-based benchmarks can be problematic, as described by Hsu

et al. [57]. TCP performance depends on, among other things, the apparent round-trip

time (RTT). Changes in the RTT during a connection can cause packet losses or spurious

retransmissions. Unfortunately, some of the techniques the experiments use to make

simulations more efficient cause changes in apparent RTT. The simulations boot the

system and start the benchmark in a fast simulation mode, then checkpoint and switch to a

detailed simulation, possibly using slower CPU cores. This sudden change in CPU speed

can lead to increased software delays in packet processing, causing a sudden increase in

the apparent RTT.

This chapter’s experiments took some steps to avoid this problem, such as slowing

down the simulated core clock speeds during the pre-checkpoint phase, and increasing the

simulated LAN latency; these steps mean that the relative effects on RTT of core speed

are reduced. However, increasing the total RTT too much means that TCP connections

84

do not ramp up fast enough, leaving the cores idle.

3.3.3 Organization of Experiments

The sections that follow show results for a microbenchmark, the effect of architec-

tural parameters on that microbenchmark, and then macrobenchmarks. The microbench-

mark results for Section 3.4 accurately measure the software overhead to perform a core

switch, and how these change based on core complexity. Next, Section 3.5 demonstrates

that the latency of core switching also depends on factors beyond core complexity such

as the size of the L1 cache and core wake-up delay. Last, Section 3.6 shows macrobench-

mark results for the performance and energy impact of core-switching on OS-intense

codes.

3.4 Microbenchmark Results

Core switching is not free; it adds direct overhead due to extra instruction execu-

tion, and indirect overhead due to loss of cache affinity. It can also improve performance

if the use of distinct L1 caches on source and target cores reduces the number of conflict

and capacity misses. This section measures the direct overhead of core switching using a

microbenchmark, which invokes core switching as rapidly as possible. Since the modified

system calls listed in Section 3.2.1 are chosen because they spend a lot of time in the

kernel, none of these are suitable. Instead, we modify the gettid (get thread ID) call,

since unlike getpid, it is not cached by the user-mode library, and it executes very few

kernel-mode instructions. We then wrote gettidbench, which executes gettid N times in a

tight loop, measures the total elapsed time, and computes the mean time per call. This

yields twice the mean time per core switch, since the system call switches to the OS core

and then back to the application core. Note that, on asymmetric hardware, the cost of a

single switch may depend on its direction.

85

Table 3.4. Microbenchmark results for gettid per-call delay with 1,000,000 samples per
trial. The x86 servers did not support a quiesce instruction, so the V3 scheduler must use
polling.

(a) Dual-core x86 hardware
Mean gettid delay in nsec.

Over 10 Core-switching mechanism
trials None V1 V2 V3
min. 83 4094 3355 2870
max. 87 4320 3413 2886

(b) Simulated hardware
gettid delay in nsec.

Hardware Core-switching mechanism
config. None V1 V2 V3 V4
sim CC 120 4669 3247 2550 1986
sim SS 130 13229 10248 7982 6770
sim CS 121 8651 6343 4696 3869
sim Cs 118 16735 11148 8140 6781

3.4.1 Results on Real x86 Hardware

This section’s experiments run gettidbench (N = 1,000,000) on a dual-core Xeon

model 5160 (3.0 GHz, 64 KB L1 caches, 4 MB L2 cache), with Linux compiled in 32-bit

mode. Table 3.4(a) shows the results. Even in single-user mode, some variation exists

between trials, so these results report the minimum and maximum values for the mean

gettid delay. We believe the minimum values are more likely to provide a noise-free

comparison. The V3 fast-path scheduler (Section 3.2.4) experiences a round-trip delay

of 2870 ns, for an excess of 1394 ns per core switch over the unmodified call.7 For the

entire system call, this is a 1.17× speedup over mechanism V2 (Section 3.2.3) and a

speedup of 1.43× over the time for mechanism V1 (Section 3.2.2).

3.4.2 Results on Simulated Hardware

This section runs gettidbench on various configurations of the simulated hardware.

In this case, the simulator can measure the duration of one call to gettidbench, which

avoids the noise involved in measuring the average of many trials. The measured duration

comes after first warming up the caches with 100 calls. Table 3.4(b) shows the results.

The delays for the sim CC configuration are quite similar to those for the real

7Remember that each gettid call in this benchmark results in two core switches.

86

Table 3.5. Microbenchmark results with cross-core wake up

gettid delay in nsec.
Hardware Core-switching mechanism
config. V3 V4 V5 (wake up)
sim CC 2550 1986 2042
sim SS 7982 6770 6689
sim CS 4696 3869 4087
sim Cs 8140 6781 7024

hardware in Table 3.4(a); since both are 3 GHz dual-core CPUs with different instruction

sets, this result helps to validate the simulations. The lowest delays are for V4, which

uses polling instead of interrupts. On the sim CC configuration, this represents an

excess of 933 ns per core switch, while on the slowest hardware, sim Cs, the excess

is 3332 ns. Both of these represent substantial improvements over the existing Linux

thread-migration V1 mechanism and over the V2 modified scheduler.

Table 3.5 reveals that while the V5 scheduler using cross-core wake ups is not

always faster than the always-polling (V4) version, both are consistently faster than the

fastest interrupt-based version (V3). While V5 generally follows the same approach as

V4, it executes a few extra instructions in the critical path to both issue the cross-core

wake up, and to reset some state flags after the wake up takes effect. Generally, given

these similar delays, cross-core wake ups will be more energy-efficient than polling if

idle cores can be powered down.

3.5 Effects of Architectural Parameters

This section looks at the effect of two architectural parameters on the performance

of the simulated microbenchmarks: L1 cache size and core wake-up delay. Given that

source biasing can reduce cache power consumption when not in use, it makes sense to

increase the cache size of the OS core if it can benefit the core-switching technique. In

87

addition, since we assume that cores power gate when not in use to avoid extra energy

consumption, it is necessary to examine what effect the core’s wake-up latency can have

on the performance of the core-switching techniques. The remainder of this section

considers these issues.

3.5.1 L1 Cache Sizes

Table 3.6. Effect of L1 cache size on microbenchmark results, using the V5 core-
switching mechanism

gettid delay in nsec.
Hardware 8 KB 16 KB 16 KB 2-way
config. L1 caches L1 caches L1 caches
sim SS 6689 5692 3787
sim CS 4087 3665 2706
sim Cs 7024 6515 5515

Migration costs are sensitive to cache size, for both instructions and data. The L1

caches (8 KB, direct-mapped, 64 B block size, 1-cycle) for the simple cores are relatively

small, so we also simulate two versions of larger caches. Both are 16 KB total size,

64 B block size. One is direct-mapped, the other is two-way set associative. Table 3.6

shows that for the V5 mechanism, increasing the simple-core L1 cache size to 16 KB

does indeed improve performance by 7% for sim Cs and by 15% for sim SS. There is no

line in this table for sim CC, since that configuration has only complex cores, which is

always modeled with 64 KB, 2-way L1 caches. Adding associativity further improves

performance by 15% for sim Cs and by 33% for sim SS. The large impact of associativity

implies that the small cache experiences a lot of conflict misses.

Based on examination of detailed miss-rate statistics, we speculate that the 8 KB

instruction cache creates lots of capacity misses, which are mostly eliminated by the 16

KB direct-mapped cache. However, the data cache miss rate benefits both from the larger

88

Table 3.7. Effect of power-up delay on performance

Wake-up gettid delay in nsec.
HW delay Core-switching mechanism
config. (cycles) None V1 V2 V3 V4 V5
sim CC 0 120 4669 3247 2550 1986 2042
sim CC 1000 120 5216 3914 3224 1986 2059
sim SS 0 130 13229 10248 7982 6770 6689
sim SS 1000 130 13977 10916 8630 6770 6690
sim CS 0 121 8651 6343 4696 3869 4087
sim CS 1000 121 9376 6847 5393 3869 4081
sim Cs 0 118 16735 11148 8140 6781 7024
sim Cs 250 118 16891 11480 8555 6781 7930
sim Cs 1000 118 16514 12835 9822 6781 9503

size and again from the associativity, implying that it suffers from the conflict misses.

3.5.2 Core Wake-Up Delay

This section runs M5 simulations in which the wake-up delay is very conserva-

tively set to 1000 cycles for all cores (at both 3 GHz and 750 MHz). Table 3.7 shows the

results. Increasing the delay has no effect on the non-switching and V4 (always-polling)

versions, since neither of these ever quiesces a core. Similarly, it adds roughly the

expected delay for the V1, V2, and V3 configurations; 333 ns to wake up the 3 GHz

cores, and 1333 ns to wake up the 750 MHz core. When using the cross-core wake up

V5, there is essentially no effect from the added wake-up delay, since the wake up is

generated much earlier than necessary to cover 1000 cycle delay.

In the one case of the sim Cs configuration in which one core is much faster than

the other, when switching from the fast core to the slow core, the cross-core wake up

does not happen soon enough to finish the 1000-cycle delay before the IPI is generated.

Table 3.7 also shows a 250-cycle delay for the sim Cs architecture, and found that in

this case, the core does wake up before the IPI is sent, but just slightly too late to set the

polling flag before the source core decides to send the IPI.

89

3.6 Macrobenchmark Results

This section presents results obtained by running a variety of macrobenchmarks

on both a real dual-core x86 server and on a number of simulated configurations. These

are throughput-oriented benchmarks, which represent realistic execution scenarios and

are designed to stress the code that core switches during lengthy system calls. In the

simulations, this means running some OS code on the simpler core; on the real hardware,

both cores are equally fast.

These macrobenchmarks do not prove that real applications in general can profit

from frequent low-latency core switching. To do so would require simulations with

realistic workloads, which would be much lengthier than M5 has been able to support to

date.

The core-switching configurations are not meant to give better throughput than

the non-switching systems, but rather to enable more frequent power-down of complex

cores. Therefore, the macrobenchmark results do not require throughput improvements

from the various implementations of core switching; they only care that core switching

does not significantly reduce performance.

3.6.1 Web Benchmark

This section simulates the Web benchmark, which is Apache with a workload

loosely based on SPECweb8, for a simulated time of 133 ms, after a warmup period of

333 ms using M5’s simpler core model. Table 3.8 shows the results. The NIC speed

has no significant effect, because this benchmark nearly saturates the cores, as shown
8Very loosely, it turns out. We discovered that all responses are “404 Not found” due to a buggy mod

specweb99.so. For complex reasons, we cannot fix this bug. It has the effect of making the benchmark
more latency-sensitive, since the responses are all short, and it also makes comparisons between relatively
brief simulation trials simpler, because all responses are about the same length. However, in order to trigger
any core switching at all on server response transmissions, we therefore set the core-switching threshold for
reads and writes to 256 B, rather than 4 KB. This setting is possibly too aggressive for efficient operation,
but it ensures that this benchmark does reflect core-switching costs.

90

Table 3.8. Simulated Web results on dual-core CPUs for 1G and 10G NICs. Values are
KB transferred during 133 ms.

NIC speed = 1 GBit/sec
Hardware Kernel configuration
config. Unmod. Bound V1 V2 V3 V4 V5
sim C 1231 NA NA NA NA NA NA
sim CC 2087 1354 706 486 1300 1329 1301
sim SS 1079 615 490 572 578 585 583
sim Cc 1560 1393 724 780 852 870 (M5 bug)
sim CS 1706 1340 847 1163 1184 1176 1161
sim Cs 1417 1373 482 696 690 704 688
sim CS (16 KB L1) 1772 1344 953 1192 1211 1204 1196
sim Cs (16 KB L1) 1464 1382 574 734 764 762 754

NIC speed = 10 GBit/sec
Hardware Kernel configuration
config. Unmod. Bound V1 V2 V3 V4 V5
sim C 1229 NA NA NA NA NA NA
sim CC 2326 1339 1046 1261 1296 1319 1117
sim SS 1062 617 476 567 585 587 594
sim Cc 1629 1391 579 155 701 696 938
sim CS 1759 1339 872 1162 1171 1178 1169
sim Cs 1481 1379 481 695 712 700 703
sim CS (16 KB L1) 1777 1330 964 1191 1199 1204 1196
sim Cs (16 KB L1) 1505 1375 513 764 791 774 753

in Table 3.3. Note that all of the bound configurations, with the exception of sim SS,

achieve essentially the same throughput, because they are executing non-interrupt code

on a full-speed complex core.

For this benchmark, core switching imposes a fairly significant cost depending

on the configuration of the OS core. The results show that the V2–V5 kernels generally

outperform the V1 kernel, with the exception of the V2 kernel for architectures sim CC at

1 Gb/s and sim Cc at 10 Gb/s. A trace of the network traffic indicates that both of these

experiments retransmit a few packets, which may be the cause. Further, it is not clear for

the other experiments whether the differences between the V2–V5 kernels themselves are

consistent.

We also ran this benchmark on the dual-core Xeon hardware, using trials of 15

seconds. Again, the throughput is identical, saturating the 1 Gb/s NIC, independent of

kernel configuration. Table 3.9 shows that several different system calls accounted for

91

Table 3.9. Core-switch counts for 1 Web trial, dual-core X86

Core-switches by system call
Benchmark read write open fsync poll sendfile
Web 2131 7 1829 6 3649 3640

Table 3.10. Simulated Web results on quad-core CPUs. Values are KB transferred during
133 ms

NIC speed = 1 GBit/sec
Hardware Kernel configuration
config. Unmod. Bound V1 V2 V3 V4 V5
sim CCSS 2897 2739 685 1187 1222 1239 1227
sim CCCC 3425 3431 1318 1278 1301 1322 (M5 bug)
sim CCss 2175 1704 348 1100 1133 1142 1140

NIC speed = 10 GBit/sec
Hardware Kernel configuration
config. Unmod. Bound V1 V2 V3 V4 V5
sim CCSS 2937 2795 683 1192 1227 1238 1233
sim CCCC 3335 3390 1326 (crashed) 1318 1330 1293
sim CCss 2139 1758 350 1104 1136 1149 1134

the majority of the core switches during this benchmark. Poll is normally used to wait

for available input; sendfile is used to transmit data directly from a file to the network,

without copying it into and out of user space. In profiles made on the simulated system,

only the writev system call consumes significant core time, possibly implying that Apache

on the simulated system is not using sendfile.

We also simulate quad-core configurations using the notation from Section 3.3,

sim CCSS, sim CCCC, and sim CCss, where Apache is bound to the first two complex

cores, and system calls and interrupts are bound to the two other cores. The results in

Table 3.10 show that in these tests, the fastest core-switching kernel is V4, but there is

little difference between the V2–V5 kernels.9 We do not yet solve the scheduling problem

for core switching with multiple choices of targets, but profiles show a rough balance of

effort between the two OS cores.
9One trial failed due to an M5 bug, and another died with a kernel crash, apparently because of a

synchronization bug in the core-switching code which allowed a timer interrupt during a critical section.

92

Table 3.11. Simulated throughput for ex tpcb. Values are transactions/sec. rates (for 100
transactions). This trial used 16 KB L1 caches.

HW Kernel configuration
config. Unmod Bound V1 V2 V3 V4 V5
sim C 11411 NA NA NA NA NA NA
sim CC 10467 12006 7251 3291 3002 11416 11631
sim SS 4562 4789 4307 4355 4402 4413 4419
sim Cc 3819 10541 7276 7419 7615 7627 7746
sim CS 4563 10320 8556 8680 8872 8857 8952
sim CS∗ 5510 11644 9092 9233 9422 9439 9619
sim Cs 2336 9007 5930 5900 6054 6063 6298
sim Cs∗ 2608 9442 6240 6098 6240 6258 6306

3.6.2 Database Benchmark

The data base benchmark uses the ex tpcb example from the Berkeley DB dis-

tribution [96]. Normally, ex tpcb’s throughput is dominated by disk I/O, which makes

it hard to evaluate the cost of computation. These experiments eliminate most disk I/O

delays by using a RAM disk on the real hardware, and by setting the access time to 1 µs

in M5’s disk simulator.

Table 3.11 shows the results for trials of 100 transactions, on various simulated

hardware configurations. This benchmark requires no warmup period, and only core

switches on fdatasync and not on other system calls. Even though the application is

single-threaded, and actually shows a slight slowdown when going from one to two cores

under the vanilla kernel, both the bound and core-switching configurations see speedup.

We are not sure why the V2 and V3 configurations for sim CC perform so poorly.

Table 3.11 also shows that, in general, the unmodified kernel is the worst per-

former. This is mostly an artifact of the single-threaded application, which on the

unmodified kernel tends to run on core 0. In the experimental configurations, the slower

core is numbered 0. When the configuration binds user-mode code to the faster core,

this leads to an artificial speedup, except for sim SS and sim CC, which have no faster

core. In the cases of sim SS and sim CC, pinning the user code to core 1 has the effect

93

of separating its execution from the interrupts on core 0, and the modest speedup of

bound over unmod may be the result of more parallelism and/or fewer cache conflicts.

Somewhat surprisingly, the V5 kernel usually performs better than the V4 kernel. Perhaps

the idle-loop polling in V4 causes interference with the non-idle core.

Table 3.12 shows the results for trials of 20,000 transactions, on the dual-core

Xeon hardware. There appears to be no meaningful impact of the core-switching code on

this benchmark, even though it spends 33% of its time in the operating system. Table 3.13

shows that essentially all of the core switches happen during the fdatasync system call,

which flushes a file’s kernel buffers to the disk and hence makes a transaction durable.

We modify the M5 simulator to yield procedure profiles for this benchmark. For

the uniprocessor (sim C) trial, the system spends 56% of the core in user mode, 24%

in system calls (including 13% in fdatasync), and 8% in interrupt handlers. For the

unmodified kernel on the sim CC dual processor, the primary core spends 53% of its

time in user mode, 22% in system calls (12% in fdatasync), and 7% in interrupt code; the

secondary core was mostly idle.

For comparison, consider the sim CS core with 8 KB L1 caches. For the V5

kernel, the application core spends 42% of its time in user mode, 43% idle, 9% in system

calls, and negligible time in interrupts or fdatasync. The OS core spends 55% of its

time idle, 15% in interrupt code, and 24% in system calls – almost entirely in fdatasync.

Thus, even though the simple OS core spends more core time executing fdatasync than a

complex core does, there is enough spare OS core time to maintain throughput, while

allowing the high-power complex core to be quiesced in low-power mode for almost half

of the time.

94

Table 3.12. Throughput for ex tpcb on dual-core X86

N = 100 trials
20,000 transactions/trial

Core-switching Mean Std. Max.
mechanism TPS dev. TPS
None 21532 71 21692
V1 21462 78 21623
V2 21467 85 21583
V3 21491 62 21619
V3, work-conserving 21446 75 21576

Table 3.13. Core-switch counts for 1 ex tpcb trial, dual-core X86

Core-switches by system call
Benchmark read write open fdatasync
ex tpcb 81 23 196 200029

Table 3.14. Simulated Netperf results for TCPstream. Values are KB transferred during
167 ms.

NIC speed = 1 GBit/sec
Hardware Kernel configuration
config. Unmod. Bound V1 V2 V3 V4 V5
sim C 21185 NA NA NA NA NA NA
sim CC 21185 21185 21185 21185 21185 21185 21185
sim SS 13920 19196 14354 14377 13965 14003 13954
sim Cc 21185 21185 13546 13683 13698 13769 13734
sim CS 21185 21185 14413 14471 13952 13948 14037
sim Cs 21185 20939 7139 7128 6990 6973 6990
sim CS (16 KB L1) 21185 21185 17287 17734 17871 17828 18101
sim Cs (16 KB L1) 21185 21185 7845 7970 7965 8030 8036

NIC speed = 10 GBit/sec
Hardware Kernel configuration
config. Unmod. Bound V1 V2 V3 V4 V5
sim C 47639 NA NA NA NA NA NA
sim CC 46623 65049 47158 47823 48378 48536 48031
sim SS 13861 19162 14334 14404 13909 13920 13958
sim Cc 46180 41563 13468 13680 13728 13778 13746
sim CS 46185 60718 14421 14484 13951 14002 14014
sim Cs 46120 23103 7105 7139 6987 6987 7021
sim CS (16 KB L1) 46172 62680 17357 17700 17766 17827 18046
sim Cs (16 KB L1) 46146 26547 7836 7953 7965 8002 8039

95

Table 3.15. Simulated Netperf results: TCPmaerts. Values are KB transferred during
167 ms.

NIC speed = 1 GBit/sec
Hardware Kernel configuration
config. Unmod. Bound V1 V2 V3 V4 V5
sim C 17793 NA NA NA NA NA NA
sim CC 17668 16549 16302 16424 16425 16425 16425
sim SS 17268 16545 16018 16144 16144 16148 16147
sim CS 17668 16554 16020 16140 16145 16144 16166
sim Cs 21185 13546 11382 11458 11494 11499 11494

NIC speed = 10 GBit/sec
Hardware Kernel configuration
config. Unmod. Bound V1 V2 V3 V4 V5
sim C 20417 NA NA NA NA NA NA
sim CC 20266 18966 18688 18826 18827 18827 18827
sim SS 18655 19018 17164 17840 17852 17913 17913
sim CS 20266 18966 17751 17960 17960 18023 18023
sim Cs 24155 13847 11631 11829 11902 11902 11902

3.6.3 Network Streaming Benchmarks

This section simulates the netperf/TCPstream benchmark, which sends TCP data

as fast as possible, and netperf/TCPmaerts, which receives data as fast as possible. These

run for a simulated time of 167 ms, after a 33 ms warmup period. Tables 3.14 and

3.15, respectively, show the results. Except for the unmodified, non-bound trials, the

application itself is bound to core 1.

In tests with a 1 Gb/s link, TCPstream on the unmodified kernel gets essentially

full wire bandwidth, except on the sim SS configuration, which with two simple cores

seems underpowered. Core switching clearly causes a slowdown on cores with a slow or

simple OS core. There is some variation based on the core-switching version.

There is no clear pattern as to which core-switching kernel performs the best. The

benchmarks are configured to send and receive data in buffers of 64 KB per system call,

which makes core switching relatively infrequent. Perhaps the variation between trials is

due to the effects described in Section 3.3.2. The use of core switching, however, does

move significant core time from the fast core to the slow core, which reduces throughput.

96

Also, since almost no time is spent in user mode, the application core is almost entirely

idle, and need not be drawing power.

At 10 Gb/s, the simulated architecture could not saturate the network; the core is

the bottleneck. Interestingly, on the sim CC configuration, the bound configuration yields

40% more throughput than the unmodified configuration. A profile of the unmodified

configuration shows that the scheduler puts both the user code and interrupt handling

on the same core, leaving the other core fully idle except for clock ticks. The bound

configuration spreads the load somewhat more evenly over both cores. Again, core

switching does cause a slowdown for cores with slower OS cores, and there is no clear

winner among the core-switching kernels. Core switching and interrupt binding forces

most of the load onto the OS core, again leaving the application core is mostly idle.

With TCPmaerts, the results seem inconsistent, possibly because of the effects we

describe in Section 3.3.2 as their network traces sometimes show packet retransmission.

Profiles show even the uniprocessor core is mostly idle. Table 3.15 therefore omits some

rows to save space.

Table 3.16. Core-switch counts for 1 netperf trial, dual-core X86

Core-switches by system call
Benchmark read write open socketcall poll
netperf/tcpstream 273 0 120 431216 10
netperf/tcpmaerts 410 1 460 431240 10

On the real dual-core Xeon system, with a 1 Gb/s NIC, multiple trials of both

streaming benchmarks always transfer between 941.2 and 941.45 Mb/s regardless of the

software configuration, implying that the system is network-limited. We do measure,

during the one 60-second trial of each benchmark, the number of times various system

calls perform core switches. Table 3.16 shows that almost all of these core switches were

in the socketcall system call. Linux on x86 differs from Linux on Alpha in that its C

97

Table 3.17. Energy efficiency comparison between the bound and V5 kernels
(KTrans/s/W or MB/s/W)

bench os CC CS SS
Web Bound 1.31 1.31 7.98
Web V5 0.87 1.19 5.59
ex tpcb Bound 2.31 2.30 9.61
ex tpcb V5 2.19 2.79 8.99
netperf/tcpmaerts Bound 55.75 55.71 363.29
netperf/tcpmaerts V5 54.96 338.35 354.19
netperf/tcpstream Bound 47.92 47.82 231.10
netperf/tcpstream V5 46.89 218.83 225.35

library funnels the socket API through this one system call.

3.6.4 Energy Efficiency

Very fast core switching can save energy by switching from a complex core

to a simpler core during a system call. Table 3.17 shows the energy efficiency of the

four macro benchmarks for the architectures CC, CS, and SS for both the bound and

V5 kernels. We compare only these two kernels to separate the impact of parallelism

and core switching for energy efficiency.10 We generate the power information using

the McPAT power, area, and timing modeling framework [78]. For each benchmark,

either KTrans/s/W or MB/s/W is reported which is equivalent to KTrans/J and MB/J,

respectively. Hence throughput per joule is measured for each application, and higher is

better.

The SS processor is always more efficient than CC for both kernels, due to

the efficiency of in-order execution. The bound kernel shows very little difference in

energy efficiency between the CC and CS processor configuration. This is because

the application is pinned to the complex core, which means that the application code

10We avoid the unmodified, unbound kernel because it is hard to separate the parallelism of specweb
from core switching. We also avoid the core-switching schedulers that use polling and IPI, as this increases
energy consumption.

98

receives the same amount of computational resources on both processors. Also, there

is little benefit from running the interrupts on a dedicated complex core compared to a

dedicated simpler core. Interrupts for these applications are well suited for the OS core.

By comparison to the CC processor, the V5 kernel improves energy efficiency by up to

6.16× for TCPmaerts and 3.37× on average on the CS processor.

3.7 Summary

Core-switching costs will become increasingly important with the use of many-

core servers. If asymmetry exists between these cores, core switching can migrate code

between different cores to improve server energy efficiency. The shorter the delay to core

switch, the more often it may be used without violation of server QoS agreements. This

chapter shows a series of changes that reduce core-switching costs by half or more to

933 ns compared to the state-of-the-art Linux scheduler. These changes are evaluated

using both microbenchmarks and macrobenchmarks on both real and simulated hardware.

Core switching on real hardware has no performance impact on macrobenchmarks,

because these applications bottleneck on hardware devices like the disk or network. For

a simulated system, core switching to slower OS cores on frequent, expensive system

calls sometimes reduces performance and sometimes improves performance, but it also

provides opportunities to power-down complex application cores, which results in 3.37×

greater energy efficiency on average for OS-intense workloads.

Interestingly, the OS-intense workloads that benefit most from core switching

either interact with the disk or network. This chapter assumes that the network can always

provide the processor with more data to process, which keeps simulation duration tenable

and allows close study of the core-switching technique. The next chapter removes this

assumption, and considers the network more closely.

99

Acknowledgments

We could not have done this work without significant help from Rakesh Kumar,

Partha Ranganathan, Vanish Talwar, and the members of the M5 community. We are

grateful for the helpful suggestions we received from Alexandra Fedorova, David Nellans,

and various anonymous reviewers. The research contained in Chapter 3 was supported

by NSF grant CCF-0702349.

Chapter 3 contains material from “Fast Switching of Threads Between Cores”,

by Richard Strong, Jayaram Mudigonda, Jeffrey C. Mogul, Nathan Binkert, and Dean

Tullsen, which appears in SIGOPS Operating Systems Review, Volume 43, Issue 2 on

April 2009. The dissertation author was the primary investigator and author of this paper.

This material is copyright c©2009 by the Association for Computing Machinery, Inc.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, to republish,

to post on servers, or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from Publications Dept., ACM, Inc., fax +1 (212) 869-0481, or

permissions@acm.org.

Chapter 4

Integrating Microsecond Circuit
Switching into the Data Center

Both power gating and fast core switching from Chapters 2 and 3 can offer

improvements in server energy efficiency through hardware-only and software/hardware

co-design. However, they both operate under the assumption that servers have access to

the data they need to process locally, or that their I/O devices have sufficient bandwidth to

keep the processor busy. In contrast to this assumption, sometimes the server spends its

time waiting for I/O, especially from the network due to oversubscription. Data centers

often use network oversubscription to reduce cost and complexity [1], but pressure to

aggregate more services per server [16] in such an environment can lead to poor network

performance and increased energy consumption. Oversubscription ratios as high as 240:1

[49] exist in data centers today. They can nearly double the server energy consumption

to complete the same amount of work [121] due to increased delay.

Further, network demand is likely to grow in near future. Servers with 10 Gb/s

link rates are common today, and 40 Gb/s NICs are already commercially available.

In addition, some big data applications use server memory as a distributed parallel

cache to save recently generated data for map reduce like jobs that require several

iterations over that data, yielding order of magnitude improvements in performance over

100

101

a disk only solution [119].1 RAMCloud uses DRAM as a replacement for disk to offer

up to three orders of magnitude improvement in storage performance [97]. Even the

underlying storage for the data center is poised to greatly increase in speed. Today, data

centers usually employ the spinning disk technologies that have been around for several

decades, and operate near 7,200 RPM. Flash-based SSDs are commodity, scale linearly

in performance in RAID arrays, and can offer sequential bandwidths of up to 569 MB/s.

Phase change memory could potentially offer an order of magnitude improvement in

sequential throughput at 2.932 GB/s [26]. Such an increase in raw storage bandwidth for

a distributed file system may put significant pressure on the network.

As the size, complexity, and bandwidth demands of data center deployments grow,

meeting their requisite bisection bandwidth needs is a challenge. At large scale, this

translates into significant bisection bandwidth requirements. To optimize server efficiency

for a large data center with numerous, rapidly changing applications, supporting as close

to full bisection bandwidth as practical is important. The result is that network complexity

and expense are increasing.

To meet the required bandwidth demands, data center operators have adopted

multi-layer network topologies [55] (e.g., folded Clos, or “FatTree” [12, 93]), shown in

Figure 4.1a. While these topologies scale to very high port counts, they are a significant

source of cost and energy, due in part to the large number of switches, optical transceivers,

fibers, and power that each of the layers requires. If servers became energy proportional

and were only 15% utilized on average, then a full bisection bandwidth network with a

peak individual server demand of 1 Gb/s, would consume as much power as the servers

[10].
1In a personal communication [118], we discover that Spark is often scheduled within a single POD to

ensure full bisection bandwidth. However, this technique can have potentially negative consequences on
fault tolerance for large distributed jobs, if failure is correlated within the POD. Full bisection bandwidth
for the data center alleviates this issue.

102

S0,0 S0,1 S0,2 S0,3 S0,k...

S1,0 S1,1 S1,2 S1,3 S1,k...

S2,0 S2,1 S2,2 S2,3 S2,k...

SN,0 SN,1 SN,k/2... = Core transceiver
= Edge transceiver

Hi Hi Hi Hi Hi

N
-L
ay
er
s

(a) A FatTree network topology

S0,0 S0,1 S0,2 S0,3 S0,k...

= Edge transceiver

Hi Hi Hi Hi Hi

OCSkxkPkt

(b) A Hybrid network topology

Figure 4.1. A comparison of a scale-out, multi-layered FatTree network and a Hybrid
electrical/optical network design. In the FatTree topology (a) each layer of switching
incurs additional cost in electronics, core transceivers, fiber cabling, and power. In
contrast, the Hybrid topology (b) requires only a single “layer” assuming that the OCS
reconfiguration speed is sufficiently fast.

103

Recent efforts have proposed [29, 43, 115] using optical circuit switches (OCS) to

deliver reconfigurable bandwidth throughout the network, reducing some of the expense

of multi-layer scale-out networks, shown in Figure 4.1b. A key challenge to adopting

these proposals has been their slow reconfiguration time, driven largely by existing

3D-MEMS technology limitations. This reconfiguration time is dominated by two

components: (1) the hardware switching time of the 3D-MEMS OCS (10–100 ms), and

(2) the software/control plane overhead required to measure the communication patterns

and calculate a new schedule (100 ms to 1 s). As a result, the resulting control plane is

limited to supporting only highly aggregated traffic at the core of the network [43], or

constrained applications with high traffic stability [115].

As optical switches become faster, deploying them more widely in data center

networks requires a correspondingly faster control plane capable of efficiently utilizing

short-lived circuits. To gain experience with fast OCS switching, we start with supporting

a TCP/IP stack across a 24-port OCS prototype called Mordia,2 which has a circuit

reconfiguration time of 11.5 µs. Mordia is built entirely with commercially available

components, most notably 2D-based MEMS wavelength-selective switches (WSS). We

use this prototype as a stand-in for future low-latency OCS devices.

To enable a TCP/IP stack on top of the OCS, we develop a software top-of-

the-rack switch (TOR), capable of acting on circuit reconfiguration events within a

microsecond. The software TOR relies on a commodity server and OS module that

interact below the TCP/IP stack through softirqs. The software TOR can achieve 65%

of the bandwidth of an identical link rate electronic packet switch (EPS) with circuits

as short as 61 µs duration, and 95% of EPS performance with 300 µs circuits using

commodity hardware. The module is able to run unmodified virtualized infrastructre

(Xen and KVM), with support to dynamically switch flows between networks via Open

2Microsecond Optical Research Data Center Interconnect Architecture

104

vSwitch [99]. Taken together, this chapter shows that continuing to push down the

reconfiguration time of optical switches, allowing flexible schedules, and reducing the

software and control overheads holds the potential to radically lower the cost and energy

needed to deliver full bisection bandwidth networks in the data center.

4.1 Related Work

Optical switching technologies: Realistic optical switches that can be used in practice

require a limited overall insertion loss and crosstalk, and must also be compatible with

commercial fiber optic transceivers. Subject to these constraints, the performance of

a switch is characterized by the switch speed and port count. Optical switches based

on electro-optic modulation or semiconductor amplification can provide nanosecond

switching speeds, but intrinsic crosstalk and insertion loss limit their port count. Analog

(3D) MEMs beam steering switches can have high port counts (e.g., 1000 [17]), but are

limited in switching speed on the order of milliseconds. Digital MEMs tilt mirror devices

are a “middle-ground”. They have a lower port count than analog MEMs switches, but

have a switching speed on the order of a microsecond [47] and a sufficiently low insertion

loss to permit constructing larger port-count OCSes by composition.

“Hotspot Schedulers”: This chapter considers optical technology integration in the

data center and could be considered complementary to work such as Helios [43], c-

Through [115], Flyways [50], and OSA [29], which explored the potential of deploying

optical circuit switch technology in a data center environment. Such systems to date have

all been examples of hotspot schedulers. A hotspot scheduler observes network traffic

over time, detects hotspots, and then changes the network topology (e.g., optically [29,

43, 115] or wirelessly [50]) such that more network capacity is allocated to traffic matrix

hotspots and overall throughput is maximized.

105

Optical Burst Switching: Optical Burst Switching [100, 111] is a research area ex-

ploring alternate ways of scheduling optical links through the Internet. Previous and

current techniques require the optical circuits to be setup manually on human timescales.

The result is low link utilization. OBS introduces statistical multiplexing where a queue

of packets with the same source and destination are assembled into a burst (a much larger

packet) and sent through the network together. Like OBS, the Mordia architecture has a

separate control plane and data plane.

TDMA: Time division multiple access is often used in wireless networks to share the

channel capacity among multiple senders and receivers. It is also used by a few wired

networks such ITU-T G.hn “HomeGrid” LANs and “FlexRay” automotive networks. Its

applicability to data center packet-switched Ethernet networks was studied in [112].

Traffic Matrix Scheduling: A key challenge in supporting microsecond-latency OCS

switches is effectively making use of short-lived circuits. Previous works [41, 42]

describe an approach to circuit scheduling, called Traffic Matrix Scheduling (TMS). The

idea is that traffic demand matrix (TDM) is known for the switch through a demand

estimation mechanism. The algorithm massages the TDM into a doubly stochastic BAM

via a matrix scaling algorithm [108]. The BAM can then be translated into a schedule of

circuits by a matrix decomposition algorithm [21, 114].

Traffic Matrix Estimation: Traffic matrix scheduling, just like hotspot scheduling,

requires an estimate of the network-wide demand. There are several potential sources

of this information. First, packet counters in the TORs can be polled to determine

the traffic matrix, and from that the demand matrix can be computed using techniques

presented in Hedera [13]. This method would likely introduce significant delays, given

the latency of polling and running the demand estimator. A second potential approach,

106

if the network is centrally controlled, is to rely on OpenFlow [86] network controllers

to provide a snapshot of the overall traffic demand. Third, an approach similar to that

taken by c-Through [115] may be adopted: A central controller, or even each TOR, can

query individual end hosts and retrieve the TCP send buffer sizes of active connections.

Asynchronously sending this information to the TORs can further reduce the latency

of collecting the measurements. Finally, application controllers, such as the Hadoop

JobTracker [4], can provide hints as to future demands. Our prototype implementation

does not implement demand estimation.

4.2 Motivation: Reducing Network Cost via Faster
Switching

Decreasing the end-to-end reconfiguration time of optical circuit switching can

reduce the cost and complexity of data center networks. We next examine some of the

sources of these costs, and motivate the need for low-latency circuit switching.

4.2.1 Multi-layer Switching Networks

While multi-layer switching topologies like FatTrees have been shown to support

very large bisection bandwidths, they are a significant source of cost. This cost is likely to

increase. To stem this cost increase requires pushing optical circuit switching to a lower

layer of the topology — which requires a likewise decrease in OCS switching latency.

Multi-layer packet-switched topologies are very flexible — any node can commu-

nicate with any other node on demand. However, they must be provisioned for worst-case

communication patterns, which can require as many as five to nine layers in the largest

networks, with each subsequent layer less utilized than the next in the common case. Each

of these layers adds substantial cost in terms of the switch hardware, optical transceivers,

fibers, and power.

107

Consider a scale-out data center network supporting M servers partitioned into

racks (e.g., 20 to 40 servers per rack), and assume that the network is a FatTree. In general,

an N-level FatTree built from k-radix switches can support kN/2N−1 servers, with each

layer of switching requiring kN−1/2N−2 switches (though layer N itself requires half this

amount). Therefore, the choice of the number of layers in the network is determined by

the number of hosts and the radix k of each switch. Given a particular data center, it is

straightforward to determine the number of layers needed to interconnect each of the

servers.

There are two trends that impact the cost of the network by increasing the number

of necessary layers of switching: fault tolerance and high link rates. We consider each in

turn.

Fault tolerance: While a FatTree network can survive link failures by relying on its

multi-path topology, doing so incurs a network-wide reconvergence. This can be highly

disruptive at large scale, and so redundant links are often used to survive such failures.

Dual link redundancy, for instance, effectively cuts the radix of the switch in half since

each logical link now requires two switch ports.

High link rates: For mature link technologies like 10 Gb/s Ethernet, high-radix

switches are widely available commercially: 10 Gb/s switches with 64 or even 96

ports are becoming commodity. In contrast, newer generations of switches based on 40

Gb/s have much lower radices, for example 16 to 24 ports per switch. Hence, as data

center operators build out new networks based on increasingly faster link rates, it will

not always be possible to use high radix switches as the fundamental building block.

This constraint will necessitate additional switching layers and, thus, additional cost and

complexity.

108

In summary, at large scale several switching layers are likely necessary to deliver

scalable bandwidth to a large number of servers. Each layer of switching in the data center

network adds additional cost, wiring, and complexity. This cost is driven primarily from

three sources: the switches, optical transceivers, and fiber links. Since each layer in a fully

provisioned FatTree network consists of kN−1/2N−2 switches, these switches constitute

a considerable source of cost and motivate increased adoption of OCS switching.

4.2.2 OCS Power Advantages

Optical technologies offer several power benefits in network communications.

First, optical technologies require less power than copper to transmit data at a given data

rate across the same distance. As the data rate of a copper line increases, so does the loss

per meter and required input power to transmit across the same distance of wire. If we

consider the Cat6a Ethernet cables suggested to support the 802.3an-2006 10GBASE-T

specification, then the loss per meter for a frequency f is approximately 2∗10−5 ∗ f 2 [87].

At 10 Gb/s, it is possible to transmit 100 m across Cat6a cables, but at 100 Gb/s, the loss

and maximum supported Ethernet cable input power limits transmission distance to 7

m. Hence electrical networks in the data center may likely stop scaling past 100 Gb/s.

In comparison, an optical fiber suffers loss of only 2∗10−4 dB/m [87], separating the

concern of transmission rate from distance for today’s data center sizes. Hence much

less power is needed to transmit optical bits across the data center for current and future

data center network speeds.

In addition, the power per port of an OCS network is two and three orders of

magnitude lower than an EPS at 10 Gb/s and 100 Gb/s, respectively. For example, the

Huawei CloudEngine 12800 Series High-Performance Core Switches can offer 1152

10 Gb/s ports at 14.1 W/port or it can offer 96 100 Gb/s ports at 168.9 W/port [2]. By

comparison, a 3D-MEMS Glimmerglass OCS scales at approximately 240 mW/port [43].

109

Table 4.1. Power consumption of data center networking components. Electrical
networking component power consumptions are based on [2]. Optical networking
component power consumptions are from [43].

Device Power

10G-1152 EPS Port 14.1 W
40G-288 EPS port 56.4 W
100G-96 EPS Port 168.9 W

OCS Port 240 mW
Optical Transceiver (λ=8) 1 W

Optical Transceiver (λ=16) 1 W
Optical Transceiver (λ=32) 3.5 W

Fiber 0 W

For core switch components in data centers, it it likely that tens of meters of cabling will

be necessary to connect switches from each pod. An EPS based network would need to

use fiber with a electrical-to-optical transceiver at both ends of the fiber. An OCS would

only need transceivers for EPS ports that uplink to the OCS.

To give a concrete example, we consider a 64 pod, 1024 host per pod, 65,536

server data center similar to [43], where per server peak network bandwidth demand

increases from 10 to 100 Gb/s. We assume that the data center network provides full

bisection bandwidth in a 2-level multi-rooted tree that connects the uplink ports of each

pod to the core switch. The power per port scales according to Table 4.1, and the core

switches may be all electrical or optical. We assume that the servers idle at 100 W and

reach 250 W at 100% utilization based on in house measurements of server power and

the reports of non-proportional server energy in production data centers [16]. Figure 4.2

shows the savings in data center power usage from replacing the EPS core switch layer

with an OCS as a function of server utilization. First, we note that as server peak network

demand increases from 10 to 100 Gb/s, the average power reduction from an optical

switch increases from 7.27% to 23.68%. The major reason for this trend is that the power

to support large port counts in an EPS core switch becomes a larger portion of data center

110

0%	

5%	

10%	

15%	

20%	

25%	

30%	

0	 0.1	 0.2	 0.3	 0.4	 0.5	 0.6	 0.7	 0.8	 0.9	 1	

Se
rv
er
	 &
	 N
et
w
or
k	
Po

w
er
	 R
ed

uc
1o

n	

	 Server	 U1liza1on	

10G	
40G	
100G	

Figure 4.2. Data center server and network power reduction from replacing the core-
layer, full bisection bandwidth EPS with an OCS as average server utilization increases.
The benefits from an OCS grow for increasing server network demand and lower server
utilization.

power at higher data rates. A secondary trend indicates that as servers become more

fully utilized, the network’s percentage contribution to data center power decreases and

dampens the impact of an OCS core switch layer. However, previous studies [16] of

data centers indicate that servers are on average 30% utilized, which indicates that an

OCS would yield an average power savings between 8.01% and 24.65% for server peak

network demands of 10 Gb/s and 100 Gb/s, respectively.

4.2.3 OCS Model

We now describe a simple model of an OCS suitable for supporting a greater

share of overall network traffic than previous proposals. This model is similar to that

assumed by previous hybrid network designs [29, 43, 115], with a key difference: orders

of magnitude faster switching speed.

We consider a model consisting of an N-port optical circuit switch, with a recon-

111

figuration latency of O(10) µs. Each input port can be mapped to any output port, and

these mappings can be changed arbitrarily (with the constraint that only one input port

can map to any given output port). The OCS does not buffer packets, and indeed does

not interpret the bits in packets either — the mapping of input ports to output ports is

entirely controlled by an external scheduler. This scheduler is responsible for determining

the time-varying mapping of input ports to output ports and programming the switch

accordingly.

For this reason, we assume that TORs attached to the OCS support per-destination

flow control, meaning that packets for destination D are only admitted to a switch input

port when that input port connects to D. Packets to destinations other than D are queued

in the edge TOR during this time. Furthermore, during the OCS reconfiguration period,

all packets are queued in the TOR. Since the OCS cannot buffer packets, the TOR must be

synchronized to only transmit packets at the appropriate times. This queueing can lead to

significant delay, especially for small flows that are particularly sensitive to the observed

round-trip time. In these cases, packets can be sent to a packet switch in the spirit of other

hybrid network proposals. In this chapter, we focus on the OCS and its control plane in

isolation, focusing particularly on reducing the end-to-end reconfiguration latency. In

this way, our work is complementary to other work in designing hybrid networks.

4.3 OCS Throughput and Latency

This section compares the bandwidth and latency tradeoffs between an OCS and

EPS. An OCS network can leverage greater aggregate bandwidth and lower operational

power to offer more efficient full-bisection bandwidth networks. However, because the

OCS reconfigures circuits with measurable delay, there is a duty cycle on the bandwidth

and an increase in packet latency for those circuits that share a port. The three subsections

that follow analyze these tradeoffs in more detail.

112

4.3.1 Throughput

Compared to an EPS, an OCS can support greater aggregate bandwidth in the

network. The reason comes from the difficulty in designing copper cables that support

higher data rates, reasonable lengths, and do not exceed the maximal input power that a

cable can support as we discuss in Section 4.2.2. By comparison, each fiber of an optical

network can use wave division multiplexing to transmit between 44 - 176 channels

(depending on channel spacing) at 20 Gb/s [71] per channel yielding between 880 -

3520 Gb/s. Consider the equation for the increase in aggregate bandwidth of on an EPS

network as a function of port transmission rate REPS and number of ports N:

BEPS = REPS ·N (4.1)

An OCS network scales similarly, except that a duty cycle D is imposed by the duration of

each circuit and the reconfiguration time between circuits. Thus, if ROCS is the bandwidth

of an an optical port, then the aggregate bandwidth of an OCS switch is given by:

BOCS = D ·ROCS ·N (4.2)

The immediate concern is whether the duty cycle negatively impacts OCS throughput.

An OCS need only increase its transmission rate or number of supported channels

to compensate for a lower duty cycle. Further, it could do these two things without

modifying much of the underlaying network with the exception of the transmitters and

receivers.

4.3.2 Latency

The delay from sharing a port between two or more circuits could prohibit the

introduction of a Mordia-like OCS in the network. To formalize the issue, let us consider

the RTT of an OCS:

RT TOCS = 4 · M
ROCS

+2 ·POCS +2W · C
1−D

(4.3)

113

0	

5000	

10000	

15000	

20000	

25000	

0	

2000	

4000	

6000	

8000	

10000	

12000	

0	 200	 400	 600	 800	 1000	

RT
T	
(m

ic
ro
se
co
nd

s)
	

Ba
nd

w
id
th
	 (G

b/
s)
	

Circuit	 Dura:on	 (microseconds)	

Bandwidth	
RTT	

Figure 4.3. The effect of changing duty cycle on OCS bandwidth and RTT
where M is the size of the message, POCS is propagation delay along fiber, W is half of

the average number of circuits that transmit across a port shared with a circuit of interest,

and C is the configuration time of the circuit3. The average RTT across the OCS is

linearly proportional to the duration of the circuit and configuration time (C
1−D). However,

the greater availability of OCS bandwidth allows the same amount of information to be

transmitted in less time. The result is that we can reduce the duration of a circuit (i.e.

reduce the duty cycle of a circuit), which more quickly reduces RTT (2W · C
1−D) than

bandwidth (D) for a significant portion of duty cycle.

To give a concrete example, Figure 4.3 considers the aggregate bandwidth and

RTT between two ports of a Mordia-like system with 100 ports, an average of 22 circuits

sharing the port interest, 10 µs configuration delay, and 100 Gb/s links as the duration

of a circuit ranges from 1,000 µs- 10 µs. At a circuit duration of 1,000 µs, bandwidth

is maximized (for this example) to 9,901 Gb/s at the cost of a high RTT time equal to

3Equation 4.3 ignores packet processing time

114

1	

10	

100	

1000	

10000	

100000	

0	 20	 40	 60	 80	 100	

Av
er
ag
e	
RT

T	
(m

ic
ro
se
co
nd

s)
	

Number	 of	 Circuits	 Sharing	 a	 Port	

Duty	 Cycle	 @	 99.0%	

Duty	 Cycle	 @	 98%	

Duty	 Cycle	 @	 90.9%	

Duty	 Cycle	 @	 83.3%	

Duty	 Cycle	 @	 50.0%	

Figure 4.4. The effect of changing duty cycle and number of port sharers on OCS RTT

22,200 µs. However, as the duration of the circuit goes down, the RTT reduces more

quickly than the bandwidth (before the knee). At a duty cycle of 50% (i.e. circuit duration

is 10us), the OCS can offer 5,000 Gb/s of throughput (5× the throughput of a 100-port

10G EPS switch) with an average RTT of 440 µs. Thus, a key means of reducing RTT in

an OCS is by considering smaller duty cycles with higher bandwidth links and keeping

circuit duration short.

When two or more flows require the use of the same input or output port, the result

is that those hosts may wait for their required circuit. When we consider Equation 4.3,

we realize that on average a circuit waits behind half of the other circuits that currently

share a port and need to send packets. Hence any scheme that reduces the number of

circuits sharing a port that must transmit simultaneously, also reduces RTT of an OCS

network.

Figure 4.4 shows the average RTT for a circuit on a 100 port, Mordia-like OCS,

115

with 100 Gb/s links, and a configuration delay of 10 µs as the number of circuits

transmitting via a shared port decreases from 99 to 1. If we consider a circuit that lasts

for 1,000 µs, then the average RTT decreases from 99,990 µs to 1,010 µs as the number

of circuits sharing a port ranges from 99 to 1. Further reduction in RTT is possible if

this technique is combined with reduction in circuit duty cycle. Figure 4.4 shows what

happens to RTT as both duty cycle and port sharing decreases. For instance, a circuit

that shares a port with only one other circuit and has a duty cycle of 50% would have

an average RTT of 20 µs (assuming negligible packet processing time). Meanwhile, the

availability of abundant optical bandwidth would still see throughput benefits for such an

OCS.

4.4 Implementation

To evaluate our design, we chose to implement it in a testbed environment. This

implementation effort consists of two primary tasks: (1) selecting an OCS capable

of switching at O(10) µs, and (2) modifying TORs to support flow control on a per-

destination basis at microsecond timescales. Unfortunately, as we discuss in Section 4.1,

the only practical commercially available OCSes that can switch in sub-100 µs timescales

have small port counts (e.g., 4 or 8 ports). To evaluate at the scale of a TOR (e.g., 24–48

hosts), a prototype OCS is built supporting 24 ports based on commercial wavelength-

selective switches, described in Section 4.4.1. Instead of building our own TORs with

our flow control requirements, we instead emulate them using commodity Linux servers,

as described in Section 4.4.2.

The challenge of selecting an OCS is the main topic of another work [41], and

only a brief overview of the prototype is given here. This chapter focuses on the challenge

of emulating TORs in software to enable TCP/IP network traffic across an OCS prototype.

116

λ{1-24}WSS

H1 H2 H3 H4

λ8 λ6

λ1 λ4

λ{5-24}
Station

1
WSS

H5 H6 H7 H8

λ4
λ6 λ8

Station
2

Station 3

Hi
Station 4

Hi

Station 5

Hi

Station 6

Hi

λ{1-4,
9-24}

Figure 4.5. The Mordia OCS prototype, which consists of a ring conveying N wave-
lengths through six stations. Each source TOR transmits on its own wavelength, and each
station forwards a subset of four wavelengths to the TORs attached to it. This prototype
supports an arbitrary reconfigurable mapping of source ports to destination ports with a
switch time of 11.5 µs.

4.4.1 Mordia Prototype

The Mordia prototype is a 24-port OCS that supports arbitrary reconfiguration

of the input-to-output port mappings. We first describe the underlying technology we

leverage in building the OCS, and then describe its design.

Technology

Unlike previous data center OCS designs [43, 115], we chose not to use 3D-

MEMS based switches due to their high switch time. The maximum achievable speed of

a 3D-MEMS space switch depends on the number of ports. Large port count switches

require precise analog control of the 2-axis orientation of relatively large mirrors. Since

the mirror response time depends on the size and angular range, there is in general

a design tradeoff between the switch port count, insertion loss, and switching speed.

117

Commercial 3D-MEMS switches support reconfiguration times in the 10s of milliseconds

range [3].

Another type of optical circuit switch is a wavelength-selective switch (WSS).

It takes as input a fiber with N wavelengths in it, and it can be configured to carry any

subset of those N wavelengths to M output ports. Typically a WSS switch has an extra

“bypass” port that carries the remaining N−M frequencies. We call this type of WSS

switch a 1xM switch, and in our prototype, M = 4. Our switch does not have a bypass

port, and so we implement the bypass functionality external to the WSS using additional

optical components.

The internal switching elements used in a wavelength-selective switch can be

constructed using liquid crystal technology or MEMS [47]. Most MEMS WSSes use

analog tilt to address multiple outputs, but at least one commercial WSS has been built

using binary MEMS-based switches [110]. Binary MEMS switching technology uses

only two positions for each mirror moving between two mechanically stopped angles

and also uses much smaller mirrors with respect to a 3D-MEMS space switch. A similar

binary MEMS switch is used for commercial projection televisions. The binary switching

of small mirror elements results in an achievable switching speed that is several orders of

magnitude faster than a commercial 3D-MEMS switch.

In general, there is a tradeoff between 3D-MEMS, which offers high port count at

relatively slow reconfiguration time, and 2D-MEMS, which offers microsecond switching

time at small port counts (e.g., 1×4 or 1×8). The key idea in the Mordia OCS prototype

is to harness six 1×4 switches with bypass ports to build a single 24x24-port switch. We

now briefly summarize the operation of the data path.

118

Data Plane

The Mordia OCS prototype is physically constructed as a unidirectional ring of

N = 24 individual wavelengths carried in a single optical fiber. Each wavelength is an

individual channel connecting an input port to an output port, and each input port is

assigned its own specific wavelength that is not used by any other input port. An output

port can tune to receive any of the wavelengths in the ring, and deliver packets from

any of the input ports. Consequently, this architecture supports circuit unicast, circuit

multicast, circuit broadcast, and also circuit loopback, in which traffic from each port

transits the entire ring before returning back to the source. We note that although the data

plane is physically a ring, any host can send to any other host, and the input-to-output

mapping can be configured arbitrarily (an example of which is shown in Figure 4.5).

Wavelengths are dropped and added from/to the ring at six stations. A station is

an interconnection point for TORs to receive and transmit packets from/to the Mordia

prototype. To receive packets, the input containing all N wavelengths enters the WSS to

be wavelength multiplexed. The WSS selects four of these wavelengths, and routes one

of each to the four WSS output ports, and onto the four TORs at that station. To transmit

packets, each station adds four wavelengths to the ring, identical to the four wavelengths

the station initially drops. To enable this scheme, each station has a commercial 1×4-port

WSS.

Top-of-the-Rack Switches (TORs)

Each TOR connects to the OCS via one or more optical uplinks. Each TOR

internally maintains N−1 queues of outgoing packets, one for each of the N−1 OCS

output ports. The TOR participates in a control plane, which is used to inform each TOR

of the short-term schedule of impending circuit configurations. In this way, the TORs

know which circuits will be established in the near future, and can use that foreknowledge

119

to make efficient use of circuits once they are established.

Initially, the TOR does not send any packets into the network, and simply waits to

become synchronized with the Mordia OCS. This synchronization is necessary since the

OCS cannot buffer any packets, and so the TOR must drain packets from the appropriate

queue in sync with the OCS’s circuit establishment. Synchronization consists of two

steps: (1) receiving a schedule from the scheduler via an out-of-band channel (e.g., an

Ethernet-based management port on the TOR), and (2) determining the current state

of the OCS. Step 2 can be accomplished by having the TOR monitor the link up and

down events and matching their timings with the schedule received in Step 1. Given the

duration of circuit reconfiguration is always 11.5 µs, the scheduler can artificially extend

one reconfiguration delay periodically to serve as a synchronization point. The delay

must exceed the error of its measurement and any variation in reconfiguration times to be

detectable (i.e., must be greater than 1 µs in our case). Adding this extra delay incurs

negligible overhead since it is done infrequently (e.g., every second).

We use the terminology day to refer to a period when a circuit is established

and packets can transit a circuit, and we say that night is when the switch is being

reconfigured, and no light (and hence no packets) are transiting the circuit. The length of

a single schedule is called a week, and the week lengths can vary from week-to-week.

When the OCS is undergoing reconfiguration, each TOR port detects a link down event,

and night begins. Once the reconfiguration is complete, the link comes back up and the

next day begins.

During normal-time operation, any data received by the TOR from its connected

hosts is simply buffered internally into the appropriate queue based on the destination.

The mapping of the packet destination and the queue number is topology-specific, and

is configured out-of-band via the control plane at initialization time and whenever the

topology changes. When the TOR detects that day i has started, it begins draining packets

120

from queue i into the OCS. When it detects night time (link down), it re-buffers the

packet it was transmitting (since that packet likely was ‘runted’ mid-transmission), and

stops sending any packets into the network.

Data plane example

Figure 4.5 shows an overview of the prototype’s data path. In this example, there

are a three circuits established: one from H6 to H4, one from H8 to H1, and one from H4

to H5. Consider the circuit from H4 to H5. H4 has a transceiver with its own frequency,

shown in the Figure as λ4. This signal is introduced into the ring by an optical mux,

shown as a black diamond, and transits to the next station, along with the other N−1

frequencies. The WSS switch in Station 2 is configured to forward λ4 to its first output

port, which corresponds to H5. In this way, the signal from H4 terminates at H5. The

N−4 signals that the WSS is not configured to map to local hosts bypass the WSS, which

is shown as λ{1−4,9−24}. These are re-integrated with the signals from hosts H5 through

H8 originating in Station 2, and sent back into the ring. A lower-bound on the end-to-end

reconfiguration time of such a network is gated on the switching speed of the individual

WSS switches.

Implementation details

The implementation of the hardware for the Mordia prototype consists of four

rack-mounted sliding trays. Three of these trays contain the components for the six

stations with each tray housing the components for two stations. The fourth tray con-

tains power supplies and an FPGA control board that implements the scheduler. This

board is based on a Xilinx Spartan-6 XC6SLX45 FPGA device. Each tray contains

two wavelength-selective switches, which are 1× 4 Nistica Full Fledge 100 switches.

Although these switches can be programmed arbitrarily, the signaling path to do so has

not yet been optimized for low latency. Thus we asked the vendor to modify the WSS

121

switches to enable low-latency operation by supporting a single signaling pin to step the

switch forward through a programmable schedule. As a result, although our prototype

only supports weighted round-robin schedules, those schedules can be reprogrammed on

a week-to-week basis. This limitation is not fundamental, but rather one of engineering

expediency.

4.4.2 Emulating TORs with Commodity Servers

To construct our prototype, we use commodity servers to emulate each of the

TORs. Although the Mordia OCS supports 24 ports, our transceiver vendor was not able

to meet specifications on one of those transceivers, leaving us with 23 usable ports in

total. Each of our 23 servers is an HP DL 380G6 with two Intel E5520 4-core CPUs, 24

GB of memory, and a dual-port Myricom 10G-PCIE-8B 10 Gb/s NIC. One port on each

server contains a DWDM 10 Gb/s transceiver, taken from the following ITU-T DWDM

laser channels: 15-18, 23-26, 31-34, 39-42, 47-50, and 55-58. Each server runs Linux

2.6.32.

Each of the emulated TORs must transmit packets from the appropriate queue

in sync with the OCS at microsecond precision. The source code to our NIC firmware

is not publicly available, and so we cannot detect link up and down events in real time

and cannot implement the synchronization approach presented in Section 4.4.1. Instead,

we modify our prototype to include a separate synchronization channel between the

scheduler and the servers that the scheduler uses to notify the servers when the switch is

being reconfigured. Ethernet NICs do not typically provide much direct control over the

scheduling of packet transmissions. Hence we implement a Linux kernel module to carry

out these tasks.

For each emulated TOR, we modify the OS in three key ways to support circuit

scheduling while remaining synchronized with the OCS. First, we adapt the Ethernet

122

NIC driver to listen for synchronization packets from the scheduler so that the host

knows the current state of the OCS. Second, we modify the NIC driver to ignore the

link-down events that occur when the OCS is reconfiguring. Third, we add a custom

queuing discipline (Qdisc) that drains packets from queues based on the configuration of

the OCS. The subsections that follow start with an overview of the modifications made

to the OS, the TCP/IP stack, the Qdisc, and softirqs. We follow this overview with a

detailed description of the changes necessary to support a software TOR.

Microsecond TOR Module Overview

Figure 4.6 gives an overview of the emulated microsecond TOR module (MTOR).

When a user’s application sends data, that data transits the TCP/IP stack (1) and is

encapsulated into a sequence of Ethernet frames. The kernel enqueues these frames

into our custom Qdisc (2), which then selects (3) one of multiple virtual output queues

(VOQs) based on the packet’s IP address and the queue-to-destination map (4). The

Ethernet frame is enqueued (5) and the qdisc dequeue function is scheduled (6) using a

softirq. The qdisc dequeue function reads the current communication slot number (7)

and checks the queue length (8). If there is no frame to transmit, control is yielded back

to the OS (9). If there is a frame to transmit, the frame is DMA copied to the Ethernet

NIC (10–12). The total number of packets sent directly corresponds to the number of

tokens accumulated in the Ethernet NIC’s data structure to control the timing and the rate.

The qdisc dequeue function is then scheduled again (13) until VOQ is empty and control

is yielded back to the OS (9). When the next sync frame arrives (14), it is processed, and

the scheduling state is updated (15). Then the qdisc dequeue function is scheduled with

a softirq in case there are frames enqueued that can now be transmitted (16). Given that

all the packets are only transmitted during the times that the slot is active, the code for

receiving packets did not need to be modified. The Mordia Qdisc details are expanded in

123

Application

Operating System

NIC

Network

process_sync_frame()

qdisc_dequeue()
slot #

slot duration

setup/teardown

TDMA State

Sync Frame

current slot #

slot start (ns)

tokens

destination

TCP/IP Stack

send()

qdisc_enqueue()

Queues

select_queue(ip_address)

dma_copy()

Transmit Data Frame Receive Sync Frame

yield()

1

14

15

2

3

4

5
6

7

8

9 10

11

12

13

16

Application

Operating System

NIC

Network

process_sync_frame()

qdisc_dequeue()
slot #

slot duration

setup/teardown

TDMA State

Sync Frame

current slot #

slot start (ns)

tokens

destination

TCP/IP Stack

send()

qdisc_enqueue()

Queues

select_queue(ip_address)

dma_copy()

Transmit Data Frame Receive Sync Frame

yield()

1

14

15

2

3

4

5
6

7

8

9 10

11

12

13

16

Figure 4.6. A software implementation of multi-queue support in Linux using commodity
Ethernet NICs. Sync frames coordinate state between each emulated TOR (server) and
the scheduler, so that each Qdisc knows when to transmit Ethernet frames.

124

Eth	 i	
Driver	
&	

DMA	

Traffic	
Control	
Qdisc	

TCP/IP	
Stack	

User	
Program	

sendto	
syscall	

Socket	 Buffer	

Q
disc	 Q

ueue	

N
IC	 Q

ueue	

User	 Process	 SoEirq	 SoEirq	 Device	

Figure 4.7. Steps for a user program to transmit a packet.

the the later sections.

Link-Down Events

Since the OCS is switching rapidly, the host NIC ports attached to the OCS

experience numerous link-up and link-down events. When Linux receives a link-down

event, it normally disables the interface, resetting and closing any open sockets and

TCP connections. To prevent these resets, we disable the link-down and link-up calls

in the NIC driver. Our NIC vendor believes that with access to the firmware source

code, synchronization could be implemented entirely in hardware, obviating the need for

ignoring link-up and link-down events.

A Packet’s Stack Life & Sources of Delay

Figure 4.7 shows the steps necessary for a user-space program to transmit a

packet. The user-space program allocates a socket, transmits data with the sendto system

call which adds the data to a socket buffer. The TCP/IP stack is then processed and the

packet is added to a Qdisc traffic control queue. A softirq then dequeues packets from

the Qdisc traffic control layer and delivers the packet to the NIC driver, which DMAs the

packet to the NIC for transmission. In order to support low-latency circuits, the behavior

of stages past the Qdisc queue are critical. For instance, if the traffic control Qdisc is too

slow, the maximum data rate that the Qdisc can deliver to the driver may be significantly

125

slower than the data rate of the NIC. Further, if the latency is too high between when

the driver receives the packet and the packet is transmitted along the link, then high data

rates may be supported with the negative consequence that the packets are transmitted

along the wrong circuit or while the circuit is currently inactive.

To make matters worse, the stages past the Qdisc queue are subject to variability

in processing time. The Qdisc traffic control system is handled by softirqs subject to

preemption by interrupts, including the timer interrupt, which may indicate that the

softirq has run too long, and that another process should be allowed to run [19]. Further,

many devices use softirqs (or their derived tasklet form) to handle the bottom half of the

interrupt. Thus, softirqs may need to share processor time with other softirqs. In our

experience, this variability can cause unexpected delays in processing a softirq from less

than a microsecond4, to as much as several hundreds of microseconds.

The network card is also subject to variability. In particular, the variability in

delay between when a packet is sent to the NIC for transmission and it appears at the

neighboring NIC increases as the data rate increases.5 We found that below 8.2 Gb/s, the

Myricom 10GE NIC experiences between 1 - 23.5 µs delay, as a monotonic function of

packet size. However, as the data rate at which packets transmit increases up to 10G, the

delay increases to as much as 100 µs later at the receiving host. Should we add packets

to the NIC faster than 10 Gb/s (i.e. we partially fill the NIC buffer), it may take as long

as 400 µs for those packets to appear at the neighboring host. The result is that when the

OS delivers packets to the NIC at higher rates, the delay and jitter seen from the NIC

increases. Section 4.5.1 discusses experimental results about this delay.

4By less than a microsecond, we mean that we could detect no delay from the linux kernel 2.6.32
ktime get() function.

5On first consideration, the increase in delay may seem to be the result of queuing delay. However,
there is a considerable 10-300 µs jump in delay as soon as we queue 80 KB to the NIC queue. We suppose
that a combination of queuing delay and some additional hardware path are combining to increase packet
delay.

126

Last, the user application experiences a delay from the TCP/IP stack. To test

this, we perform two echo experiments. The first echo experiment uses a traditional

linux socket, while the second echo experiment uses a kernel bypass API provided

by the Myricom sniffer library [7]. The Myricom sniffer library bypasses the kernel’s

involvement in packet transmission, allowing a user application to deliver a char pointer

array directly to the NIC for transmission. Hence this experiment allows one to measure

the overhead of the kernel’s transmission and reception stack. This measurement found

that the average overhead of the kernel’s transmission and reception averages 10 µs.

OS Pre-Driver Packet Handling

If a device raises an interrupt, the OS divides processing of that interrupt into

two halves [82]. The top half saves important device state the OS requires to process

the interrupt, and sets a flag indicating that more processing is required. The OS then

processes the bottom half at a later time when checking the flags set by the top halves.

The bottom half is responsible for handling the greater share of device information

processing. The reason for this model lies in the state of the system when a top half runs.

The top half runs with interrupts disabled and may not be preempted by another process.

Thus, too much processing in the top half impairs the OS’s ability to respond to further

interrupts. In contrast, bottom half handlers run without interrupts which allows the OS

to preempt them with other interrupts, or time share with other processes.

Both reception and transmission of packets use the two-half protocol and since

the 2.4 kernel, softirqs have been the preferred bottom half handlers. For packet reception,

the top half interrupt handler copies the packet into a sk buff data structure usually via

DMA, initializes the sk buff and device structures, adds the device to a list of devices

that currently have packets, and then sets the flag for the NET RX SOFTIRQ sotirq. At a

later time (i.e. often right after packet reception), the OS handles the NET RX SOFTIRQ

127

by calling the net rx action function which is responsible for going through the list of

devices that currently have packets, processing those packets per device subject to a total

packet processing budget, and a time limit of one scheduling interval.

Packet transmission goes through a similar sequence, with the exception that the

OS processes the packet with several softirqs before the OS hands it to the driver. Once

a packet makes it through the network protocol stack, the timing critical steps occur

for transmission. Within a single softirq, the function dev queue xmit receives a packet,

enqueues the packet to the kernel’s queuing discipline (Qdisc), then tries to dequeue a

packet from the Qdisc. If dev queue xmit dequeues a non-null packet, it grabs the NIC

driver’s lock, gives the packet to any registered sniffer (e.g. tcpdump), and then delivers

the packet to the driver for transmission.

In between the steps when dev queue xmit enqueues and dequeues a packet lies

the netfilter’s Qdisc. The Qdisc is a powerful addition to the Linux kernel’s traffic control

system that gives a user a hierarchal means of enforcing different policies and constraints

on network packets [60]. The Qdisc is able to control which packets are enqueued and

dequeued during each packet transmission, in addition to passing a subset of the packets

to other Qdisc’s to enforce additional policies. In its simplest form, a Qdisc may use the

pfifo fast queuing discipline that provides three FIFO queues with monotonic priorities.

The OS enqueues and dequeues packets from the context of the softirq which is discussed

above. The primary importance of the Qdisc is that it allows the OS to enforce arbitrary

policies on network packets below the level of the user application and network stack.

Hence the Qdisc is well suited to adapt to low-latency circuits without modification to

user applications.

128

Day	 Night	 Night	

Preamable	 Frame	
Delimiter	

MAC	 Dst	 MAC	 Src	 Ethertype	 Payload	 Frame	
Check	
	 Seq	

Interframe	
Gap	

7	 bytes	 1	 byte	 6	 bytes	 6	 bytes	 2	 bytes	 N	 bytes	 4	 bytes	 12	 bytes	

Announcement	 Type	 Circuit	 Status	 Day	 Number	

7	 bits	 (0xAA)	 	 1	 bit	 (0==down,	 1==up)	 8	 bits	 (256	 separate	 slots)	

Sync	
	 Fram

e	
Sync	

Ethertype	
Day	 and	 N

ight	
Sync	

0	 us	 11.5	 us	 111.5	 us	 123	 us	

Figure 4.8. Organization of day and night synchronization frames. The synchronization
frame holds the day duration information in the payload.

Synchronization Packets

The OCS FPGA controller transmits synchronization packets to a separate 10G

packet-switched network which connects to a second Ethernet port on each server. In

order to participate with the OCS prototype, each server must listen for Ethernet frames

with a protocol type of 0x8015. The frames come in pairs at least 11.5 µs apart. The

first frame, called a night sync, announces that a new circuit is being setup and that the

link is down (i.e. no light may transmit through the link). This means that the server

should immediately stop transmitting packets meant for the previous circuit or risk losing

packets. The second frame, called a day sync, is almost identical to the night sync except

that the circuit state is set as up, notifying the servers that packets may successfully

transmit along the link. The synchronization frames include the day number, the day’s

duration, and whether the circuits are being setup or torn down (see Figure 4.8). 6

6We overload the Ethertype field, because our previous experience with overloading the MAC source
address causes the EPS to fail after learning too many mappings.

129

Kernel Modifications for a Microsecond TOR

The Microsecond TOR (MTOR) Qdisc separates the user application’s request

to send data from how the OS delivers data to the correct circuit. The user application

can pass a char buffer of data to the socket indifferent to both the data’s destination and

circuit availability. The MTOR Qdisc enqueues data into per destination VOQs, until a

demanded circuit is active. Once a circuit is active, the MTOR Qdisc dequeues data from

the VOQ associated with an active circuit.

We design the MTOR Qdisc to minimize core utilization when there is no data to

send, and to minimize latency when packets wait in at least one VOQ. Overall, the design

resembles the NAPI interrupts design [19] in its use of event triggered polling. The only

two times when the MTOR Qdisc would be scheduled to run is (1) when the receive-side

softirq detects a new sync frame announcing a circuit for a VOQ with more than zero

packets or (2) when the MTOR Qdisc dequeus a packet for a VOQ which has more than

one packet. Beyond these two conditions, the MTOR Qdisc remains unscheduled.7 We

now go over the OS modifications necessary to support a VOQ enqueue, the processing

of sync frames, and event based dequeue.

Once a packet transits the TCP/IP stack, it enters the MTOR Qdisc enqueue

function (see Figure 4.9). Initially, the MTOR Qdisc assigns each packet to the DROP

VOQ where packets are dropped instantly. If the packet is an IP packet, the MTOR Qdisc

checks a lookup table for a mapping of the IP address to VOQ number.8 If no mapping

exists, the MTOR Qdisc drops the packet; otherwise, the MTOR Qdisc assigns the packet

to a VOQ. Then, the MTOR Qdisc checks the assigned VOQ for space to hold the packet.

If the VOQ is full, the MTOR Qdisc drops the packet and notifies the higher levels of the

TCP/IP stack to temporarily stop transmitting packets. If the VOQ is not full, the MTOR

7The OS still periodically schedules the Qdisc every few seconds, to avoid a blocked packet
8Should the circuit connect to a range of hosts, it would be straightforward to queue packets into range

queues.

130

Is	 IP	
packet

?	

IP	 dst	
hash	
entry?	

Set	 VOQ	 number	

Set	 VOQ	 number	
to	 DROP	

Is	 slot	
number	
DROP?	

Drop	 packet	

Queue	 packet	 	
to	 VOQ	

Return	

Is	 Qdisc	
full	 	
?	

Yes	 Yes	

Yes	 Yes	

No	 No	

No	 No	

Figure 4.9. A flow diagram depicting the MTOR Qdisc enqueue function

131

Recharge	 VOQ	
tokens	

Set	 VOQ	 	
start	 2me	

Set	 VOQ	 number	

Set	 VOQ	 status	

Return	

Yes	 Yes	

No	 No	

Schedule	 	
Qdisc	 Dequeue	

Is	 sync	
frame?	 Is	 day?	

Figure 4.10. Pseudo-code flow diagram of the modifications to the OS NIC driver to
support low-latency processing of synchronization frames.

Qdisc enqueues the packet to the VOQ for later transmission.

In order to know when to dequeue packets from a particular VOQ, the OS

monitors received packets for sync frames, and Figure 4.10 depicts the pseudo-code flow

diagram of the changes made to the OS to support processing synchronization frames.

When the OS receives a packet, it processes that packet in an receive-side softirq. We

modify this softirq to check the Ethernet frame protocol type for 0x8015. If the OS

matches the frame, then it decodes the packet and updates a shared-memory table that

maintains the current circuit and the circuit’s status (day or night). If the circuit’s status

is set to day, the OS recharges the tokens for that circuit, and records the time when the

circuit becomes active. We use the start time of each circuit to add a safety check to

132

Set	 pkt	 to	 NULL	

Return	 pkt	

Get	 VOQ	
number,	 status,	

&	 start	 9me	

Get	 head	 VOQ	 pkt	

Update	 VOQ	
tokens	

Is	
night?	

Circuit	
9me-‐
out?	

Enough	
Tokens

?	

Is	 VOQ	
Empty?	

Reschedule	
Qdisc	 Dequeue	

Yes	

No	

Yes	 Yes	

Yes	

Yes	

No	 No	

No	

No	

Is	 VOQ	
Empty

?	

Figure 4.11. A flow diagram depicting the MTOR Qdisc dequeue function

ensure that the OS does not transmit packets at night.9 After processing the sync packet,

the OS schedules the MTOR Qdisc to dequeue packets (the code depicted in Figure 4.11).

In this way, the MTOR Qdisc only attempts transmit packets when the status of the circuit

connections changes.

If the OS detects a sync frame indicating that a VOQ with more than zero packets

may start dequeuing packets, it schedules the MTOR Qdisc dequeue function (see

Figure 4.11). This function dequeues a packet from the active VOQ as quickly as possible

and attempts to maximize the probability of successful reception. First, the function

checks the shared-memory table that saves the currently active VOQ, the circuit’s status,

and the time at which the circuit becomes active. Next, the MTOR Qdisc performs four

checks to ensure that a packet should be transmitted. (1) If the MTOR Qdisc detects

9Although not shown in the flow diagram, the Qdisc also checks the timestamps for anomalous sync
frame timings which may indicate a problem in the system

133

that the VOQ is empty, then it returns a NULL packet to indicate to the OS that there

is no data to send, and the MTOR Qdisc does not run until the OS receives a new sync

frame. (2) If the current circuit is in the night state, the MTOR Qdisc returns a NULL

packet. (3) The MTOR Qdisc checks the offset within the day of the circuit to ensure that

the packet is not transmitted at the expected night interval. (4) The MTOR Qdisc also

checks the total remaining tokens to ensure that the packet is allowed to transmit. If the

MTOR Qdisc passes all of these checks, then it dequeues the head packet from the VOQ

and updates the VOQ’s tokens. If the VOQ has more packets to send, the MTOR Qdisc

dequeue function reschedules itself. Rescheduling dequeue is critical for performance as

without it, the dequeue function would only be called on processing new sync frames

and right after enqueue.10 Last, the MTOR Qdisc returns the packet it dequeues from the

head of the active VOQ, and the OS delivers the packet to the NIC driver.

Enhanced Token Control

The MTOR Qdisc dequeue function checks the total number of tokens available

to the current VOQ before any packet may be transmitted. A naive token scheme might

only allow the NIC to transmit D∗R bytes across a circuit, where D is the duration of the

day in seconds and R is the link rate of the NIC in bytes per seconds. The naive scheme

would assign a number of tokens equal to this number of bytes for each active VOQ.

One problem with this scheme occurs when a large group of packets become

ready for transmission at the end of the day, a situation named evening rush. Evening

rush can cause the NIC to queue up more packets than the NIC can transmit with the

remainder of the day’s duration. This situation happens because the OS can queue up

packets to the NIC much faster than the NIC can transmit them. Figure 4.12 considers

10The reader may wonder when the MTOR Qdisc enqueue function calls the dequeue function as it
is not shown in Figure 4.9. The call to the Qdisc dequeue function occurs right after the OS calls Qdisc
enqueue. The code is in the vanilla kernel and hence is not a part of the OS modifications.

134

0.00E+00	

2.00E+04	

4.00E+04	

6.00E+04	

8.00E+04	

1.00E+05	

1.20E+05	

1.40E+05	

0	 10	 20	 30	 40	 50	 60	 70	 80	 90	 100	

To
ke
ns
	 L
e)

	 (B
yt
es
)	

Day	 Offset	 (microseconds)	

Evening	 Rush	

Aging	 Tokens	

Morning	 Rush	

Pacing	 Tokens	

Well-‐Behaved	

Figure 4.12. The case for enhanced token management

this scenario for a circuit configuration with 100 µs days for a connection that supports a

link rate of 10 Gb/s (125,000 bytes may be transmitted in 100 µs). The way to avoid this

problem is to cause tokens to age throughout the day in such way that for a day with δ

seconds remaining and a link rate of R bytes per second, only δ ∗R bytes may transmit.

The less intuitive problem occurs when a large group of packets all demand to be

transmitted at the beginning of the day, a scenario named morning rush. Morning rush

can cause a large delay in packet transmission of up to 300 µs resulting in average packet

loss rates of 2.2%. The issue grows grows worse as days increase from 61 µs to 1 ms.

Once the MTOR Qdisc queues more than 80 KB of data to the NIC, the NIC enters a

longer latency batch mode that is optimized for throughput as opposed to latency. To

resolve this issue, we track the difference between the number of age tokens and the total

tokens left for the VOQ to transmit pakcets. If the difference grows above 80 KB, the

MTOR Qdisc dequeue function reschedules itself and returns zero tokens. We call this

135

int

tokens_left(struct Qdisc *sch, struct mtor_voq *voq, int day_offset)

{

int age_tokens;

mtor_sched_data *q = qdisc_priv(sch);

// compute the number of tokens left from aging

age_tokens = voq->token_recharge

- (voq->token_recharge/q->us_per_day)*day_offset;

voq->tokens = MIN(age_tokens, voq->tokens);

// compute the number of tokens left from pacing

if ((age_tokens - voq->tokens) > 80E3){

// raise softirq to call Qdisc dequeue

// after other pending softirqs

__netif_schedule(sch);

return 0;

}

return voq->tokens;

}

Figure 4.13. Actual OS code for how the enough tokens function stage in Figure 4.11
determines the number of tokens left

scheme pacing tokens. Figure 4.12 summarizes the two problems with the naive scheme

and the impact of enhanced token management.

Figure 4.13 shows the OS code that computes the total number of tokens. Using

this code, 23 servers, and 506 GB of random data transmitted in an all-to-all pattern via

UDP, we characterize the improvement that the different token schemes have on packet

loss rate. Figure 4.14 shows the average loss rate per host as a function of day duration

ranging from 61 to 300 µs for three token schemes. The naive scheme losses an average

of 1.79% packets. The aging token scheme fairs somewhat better losing 1.65% packets

on average. The token scheme that employs both aging and pacing losses only 0.44%

packets on average, 4× less than the naive scheme. Interestingly, the loss rate goes down

as day length increases from 200 to 250 µs for both the naive and aging scheme. This

occurs because the duration of the day begins to start matching the increase in delay of

136

Figure 4.14. The impact of aging and pacing tokens on packet loss rate. Measurement
standard deviation is shown as verticle bars, that are sometimes obstructed by the plotted
dots when the deviation is small.

the NIC batch mode.

Server Configuration

In order to improve performance and reduce latency of the MTOR, we set several

system options. First, given the importance of cooperation of interrupts and softirq’s to

the MTOR’s performance and the high data rates of the NICs (e.g. 10 Gb/s), we gave

special care to their settings. The NIC devices use NAPI interrupts [19], which combine

the benefits of interrupts and polling within a single scheme. At low loads, the NIC

signals new packet arrivals and transmissions to the processor with interrupts. However,

if the NIC receives or transmits new packets before the OS processes the previous packet,

the NIC driver avoids setting an additional interrupt because the OS polls for additional

packets until the queue is empty.

To prevent one core from being a bottleneck for packet transmission and reception,

137

we configure each NIC interface to use two separate queues in which packet transmission

and reception may occur on either queue. The OS assigns a separate interrupt to each

queue, and binds the handling of interrupts associated with the separate queues to distinct

cores. For our experiments, care is taken to prevent user processes from running on the

NIC interrupt cores via the taskset command. This implies that our current configuration

sacrifices two cores for efficient use of circuits. However, the fact that our server has 16

cores available and the promise of Moore’s Law, minimize concern for core utilization.

The Myri-10G Dual-Protocol NIC offers two features to improve performance

in network code that prove to be problematic in our timing sensitive code, which we

disable. First, the NIC offers the capability to coalesce interrupts for some period of time

in microseconds. During this period, the NIC does not raise an interrupt for incoming

packets. At the end of the period, the NIC raises an interrupt if it receives at least one

packet at which point the NAPI polling mechanism processes the packet. This coalesce

delay adds to the processing latency of sync frames and also leads to data packets being

time stamped later than they are actually received.

Second, the NIC offers support to offload TCP segments (TSO). TCP TSO allows

the network stack to pass TCP segments much larger than the maximum segment size.

The NIC then sends the segments in MTU sized chunks and reassembles the segments

at the receiving host [88]. The problem is that TSO can delay the transmission of TCP

segments, which can result in TCP traffic blasting data into an inactive circuit connection

after the night sync. In addition, TSO causes received packets to get timestamps tens of

microseconds later than when they are actually received.

Finally, we modify the default configuration of several TCP parameters in the

TCP/IP stack. We find that setting the initial congestion window and receive-side buffer

of TCP so that at least two days worth of packets can saturate each connection maximizes

TCP performance, similar to the Blast protocol of [124]. We also configure the OS’s max

138

packet backlog to support 23 simultaneous 10G connections, as otherwise, the kernel

drops many packets.

4.4.3 All-to-All Traffic Generator

In order to fully exercise all-to-all connectivity with N hosts, we design a custom

benchmark such that each host blasts traffic to N-1 other hosts as quickly as possible

for both the UDP and TCP protocols, named a2a-syngen. Each host spawns a client

and server process that is responsible for transmitting and receiving traffic. The UDP

server allocates a single socket, polls that socket for new data, and sums up the total

data in bytes per each IP source. The UDP client pre-allocates N-1 non-blocking sockets

pointing to the N-1 hosts, respectively, and a data buffer H bytes smaller than the MTU,

where H is the number of header bytes in order to send full Ethernet frames with preset

data. When ready to send, the UDP client attempts to transmit a packet to each host in

round-robin fashion. If an attempt to send a packet on a socket fails, the socket does not

block and retries on the next transmission round. To support the TCP protocol, the TCP

server allocates N-1 sockets to each remote host and uses the poll system call to check

for data on any socket. Each TCP connection with the N-1 hosts is pre-established before

the experiment to avoid measuring TCP setup time. The TCP client operates similarly to

the UDP client with the exception that each socket must connect with the server before

the experiment may proceed.

One additional server synchronizes the N hosts by requiring each host to go

through five phases which include: AWAKE, SETUP-SERVER, SETUP-CLIENT , RUN-

EXPERIMENT , and CLEANUP. The synchronization host, S, uses parallel-ssh to wake

up clients on all N hosts. The clients respond that they are AWAKE. Next, S sends a

command which causes all hosts to enter the SETUP-SERVER phase during which the

hosts load kernel modules, initialize the interface, test for connectivity, start the server

139

Figure 4.15. Throughput comparison between a2a-syngen and netperf for varying MTU
between two hosts

process, and send an acknowledgement. Then, S sends a command for hosts to enter

the SETUP-CLIENT phase, during which, the client processes start and connect to the

N-1 remote host server clients. Each host may optionally add extra instrumentation (e.g.

tcpdump) depending on experimental configuration. After receiving all acknowledgments,

S sends the command for each host to run the experiment. When a host finishes its part

of the experiment, it sends an acknowledgment. When S receives all acknowledgments,

the final command issues to tell each host to enter the CLEANUP phase.

Figure 4.15 compares the throughput of a2a-syngen and netperf [53] for a two

host experiment as the available MTU increases from 1000 to 9000 bytes.11 The figure

shows a2a-syngen delivers higher throughput than netperf for any MTU size for both

UDP and TCP protocols. Further, a2a-syngen achieves 98.0% utilization of the 10 Gb/s

NIC as the MTU approaches 9000 bytes. As the number of hosts increases to 23 (not

11We use only two hosts due to the limitations of netperf

140

shown in Figure 4.15), a2a-syngen appears to fairly divide its bandwidth between each

remote host with only 0.14% standard deviation from the mean bandwidth. However, we

observe that as more hosts participate, the aggregate bandwidth of all hosts increases,

while the average receive rate of each individual host decreases. This issue relates to the

OS overhead of processing multiple TCP/IP connections simultaneously, and we discuss

it further in Section 4.5.2.

4.5 Evaluation

There are two questions that this evaluation seeks to answer. The first question

is if a software TOR can keep up with the 11.5 µs switching time of the Mordia OCS.

In order to achieve this, the overhead of OS packet control must be on the order of a

microsecond. Otherwise, the software TOR would likely transmit packets during circuit

reconfiguration or to the wrong destination host. The second question is if the software

TOR can support a TCP/IP protocol near the performance seen on the EPS. If both of

these goals can be met, then it is possible to measure the performance of all-to-all traffic

on the prototype, and to run data center applications.

4.5.1 Emulated TOR Software

Figure 4.16 captures Host 1 receiving 8,966 octet UDP packets from Hosts 12–16

via the Qdisc described in Section 4.4.2 for a day and night of 123.5 µs and 11.5 µs,

respectively. The transmission time and sequence number of each packet is determined

from a tcpdump trace that runs on only Host 1.

First, we note that it takes on average 33.2 µs for the first packet of each circuit

to reach Host 1. The tcpdump trace indicates that it takes less than 1 µs on average

to process the synchronization frame and transmit the first packet. When sending a

9000-octet frame (7.2 µs), the packet spends at least 23 µs in the NIC before being

141

0 100 200 300 400 500 600
Microseconds

0

20000

40000

60000

80000

100000
R

x
B

yt
e

s

Hos t 12 Host 13 Host 14 Host 15 Host 16

Night

NIC
Delay

Figure 4.16. Host 1’s Qdisc receiving UDP packets from Hosts 12–16 as it cycles
through circuits connecting it to 22 other hosts.

transmitted. To prevent this NIC delay from causing packet loss in excess of 0.5%, the

OS Qdisc must stop queuing packets for transmission 23 µs early. The result is that the

Qdisc cannot use 23 µs of the circuit’s day due to the behavior of the underlying NIC

hardware. Vattikonda et al. [112] have shown that NIC priority flow control (PFC) pause

frames can be used to enable fine-grained scheduling of circuits on (all-electrical) data

center networks, and this technique may be applied to Mordia.

Figure 4.17 shows that Host 1’s Qdisc transmits the first packet of each circuit

within 1-3µs of the synchronization event that announces the new circuit. All packets for

a circuit transmit in an average of 36 µs measured from day’s beginning, which indicates

that the processor is able to queue packets to the NIC faster than it can transmit them. It is

also necessary for the Qdisc to stop transmitting 23.5 µs to keep average loss rate below

0.5%, because of delay in the NIC transmission. These 23.5 µs reduce the maximum

duty possible for a fixed day and night, as no packets may be transmitted during them.

142

0 100 200 300 400 500 600
Microseconds

0

20000

40000

60000

80000

100000
T
x

B
y
te

s

Host 11

Host 10

Host 9

Host 8

Host 7

Night

NIC
DELAY

Figure 4.17. Host 1’s Qdisc transmitting UDP packets to Hosts 7–11 as it cycles through
circuits connecting it to 22 other hosts.

Figure 4.16 represents these two issues as NIC DELAY .

To summarize, the Linux hosts acting as emulated TORs are able to drain packets

into the network during the appropriate “day,” which can be as small as 61 µs. However,

jitter in receiving synchronization packets results in a 0.5% overall loss rate, and there is

a 23 µs delay after each switch reconfiguration before the NIC begins sending packets to

the OCS. These overheads are specific to our use of commodity hosts as TORs.

4.5.2 Throughput

We generate all-to-all TCP and UDP traffic (506 GB) between 23 hosts and

measure the throughput both over a traditional electrical packet switch (EPS, used as

a baseline) as well as our Mordia OCS prototype including emulated TOR switches.

Results are shown in Figure 4.18. The throughput over the EPS serves as an upper bound

on the potential performance over the OCS. In addition, throughput over the OCS is

143

0	
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

50	 100	 150	 200	 250	 300	

	 A
vg
.	 R

x	
Ra

te
	 P
er
	 H
os
t	 (
G
b/
s)
	

Circuit	 Day	 Dura;on	 (microseconds)	

EPS-‐UDP	 (8.8	 Gb/s)	
EPS-‐TCP	 (6.3	 Gb/s)	
OCS-‐IDEAL	 (9.5	 Gb/s)	
OCS-‐UDP	 (8.4	 Gb/s)	
OCS-‐TCP	 (5.5	 Gb/s)	

Figure 4.18. Throughput delivered over the OCS. The fundamental difference between
ideal and observed is due to the OCS duty cycle. Further deviations are due to our system
artifacts, namely the lack of segmentation offloading in the NIC, NIC-induced delay,
and synchronization packet jitter. The minimum circuit day length is 61 µs. The legend
shows the maximum average receive rate for each switch and protocol combination.

fundamentally limited by the OCS duty cycle.

Starting from the baseline, the EPS can deliver UDP traffic (EPS-UDP) at an

average receive rate of 8.83 Gb/s to each of the 23 hosts. We find that as the number of

hosts increases from 2 to 23, the average receive rate degrades from 9.81 Gb/s, which

we attribute to the kernel and NIC. The EPS is capable of delivering TCP traffic at

8.69 Gb/s, which is within 1.6% of UDP traffic. However, this throughout relies on

TCP segmentation offloading (TSO) support in the NIC, which is incompatible with our

Mordia kernel module. The happens because, when circuits are reconfigured, any packets

in flight are runted by the link going down, and we lose control over the transmission of

packets when relying on TSO. Consequently, Mordia requires disabling TSO support.

On an all-electrical packet network, TCP without TSO support is limited to 6.26 Gb/s

(EPS-TCP), which we use as an upper bound on the performance we expect to see over

144

the OCS.

Figure 4.18 shows the raw bandwidth available to each host (calculated as the duty

cycle) from the OCS as OCS-IDEAL. It is important to remember that this line does not

account for the 23.5 µs NIC delay which acts to reduce measured duty cycle even more.

For the experiments, we varied the OCS day duration between 61–300 µs to observe the

effect of different duty cycles.12 The OCS’s UDP throughput (OCS-UDP) ranges from

5.726-8.429 Gb/s, or within 4.6% of EPS-UDP. The major reasons for the discrepancy

are duty cycle, NIC delay, the OS’s delay in handling a softirq, and synchronization jitter

(see discussion below).

TCP throughput on the OCS (OCS-TCP) ranges from 2.231–5.501 Gb/s, or

within 12.1% of EPS-TCP for large day durations. TCP throughput has all of the same

issues as UDP throughput, in addition to two new problems. First, TCP traffic cannot

use TSO to offload, and so the TCP/IP stack becomes CPU-bound handling the required

506 connections. Second, the observed 0.5% loss rate invokes congestion control, which

decreases throughput. However, TCP does show an upward trend in bandwidth with

increasing duty cycle. We attempted the kernel bypass techniques from Vattikonda et

al. [112] to eliminate NIC delay and the softirq variance, but found that it was difficult to

minimize loss rate below 5% due to interruptions from the OS that would cause packets

to be sent to the wrong host during reconfiguration.

We mention above that synchronization jitter causes a reduction in throughput,

and is also responsible for packet loss. Synchronization packets are generated in hardware

to minimize latency and jitter, but the OS can add jitter in how its devices receive the

packets and schedule softirqs. To measure this jitter, we set the day and night to 106 µs

and 6 µs, respectively, and capture 1,922,507 synchronization packets across 3 random

hosts. We compute the difference in timestamps between each packet and expect to

12Due to the programming time of the WSSs, the smallest day duration we support is 61 µs

145

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

1

0 25 50 75 10
0

52
5

55
0

57
5

60
0

62
5

Timestamp Deltas (µs)

F
re
qu
en
cy

(l
og
sc
al
e)

N=1,922,507

6±1 µs
(49.69%)

0 µs
(0.47%)

522 to 624 µs
(0.06%)

100±1µs
(49.62%)

Figure 4.19. Synchronization jitter as seen by our software TOR’s OS.

see packets arriving with timestamp deltas of either 6±1 µs or 100±1 µs. We found

that 99.31% of synchronization packets arrive at their expected times, 0.47% of packets

arrive with timestamp deltas of zero, and 0.06% packets arrive with timestamp deltas

between 522 µs and 624 µs (see Figure 4.19). The remaining 0.16% of packets arrive

between 7–99 µs. We also point out that the 0.53% (0.47% + 0.06%) of synchronization

packets that arrive at unexpected times is very close to our measured loss rate. Our

attempts to detect bad synchronization events in the Qdisc did not change the loss rate

measurably. Firmware changes in the NIC could be used to entirely avoid the need for

these synchronization packets by directly measuring the link up/down events.

To summarize, despite the non-realtime behavior inherent in emulating TORs

with commodity PCs, we are able to achieve 95.4% of the bandwidth of a comparable

EPS with UDP traffic, and 87.9% of an EPS, sending non-TSO TCP traffic. We are

encouraged by these results, which we consider to be lower bounds of what would be

possible with more precise control over the TOR.

146

4.6 Summary

Network bandwith demand is likely to increase from software techniques that

leverage memory for storage, improved disk technologies, and faster server NICs. Hence

the network is a very likely source of inefficiency for future data center applications,

causing both increased energy consumption and straining QoS agreements. Optics has

the potential to improve data center bandwidth by an order of magnitude, while also

allowing the switch to use two orders of magnitude less power per port. This chapter’s

analysis indicates that an OCS network can reduce data center power by 24.7%, if the

network needs to provide full bisection bandwidth at 100 Gb/s to non-energy proportional

servers.

We follow this analysis with the design of the Mordia OCS architecture, and

evaluate it on a 24-port prototype. A key contribution of this chapter is how to modify a

commodity OS to act as a microsecond TOR, capable of supporting a traditional TCP/IP

stack on top of an OCS prototype that reduces switching time by 3 orders of magnitude.

The software TOR is capable of reacting within a microsecond to the reconfiguration

of the Mordia OCS. Further, the microsecond TOR demonstrates that UDP and TCP

protocols can achieve up to 95.4% and 87.9% of bandwidth offered by the OCS prototype,

enabling data center applications to run more efficiently on a hybrid electrical/optical

network.

4.7 Acknowledgments

Chapter 4 was supported by the National Science Foundation through NSF MRI

grant CNS-0923523 and through CIAN NSF ERC under grant EEC-0812072. Portions

of this chapter were funded through a Google Focused Research Award. Electrical packet

switches were provided through a donation from Cisco Systems. Chapter 4 was also

147

supported by Microsoft and Ericsson.

Chapter 4 contains material from “Integrating Microsecond Circuit Switching

into the Data Center”, by George Porter, Richard Strong, Nathan Farrington, Alex

Forencich, Pang-Chen Sun, Tajana S. Rosing, Yeshaiahu Fainman, George Papen, and

Amin Vahdat, which will appear in the proceedings of The Special Interest Group on

Data Communications, 2013. The dissertation author was the secondary investigator and

author of this paper.

Chapter 5

Summary

Demand for cloud services, big data, and the data centers that support them

will likely grow for the foreseeable future. Today, a single data center can draw as

much as 100 MW. A major source of this power draw is the servers, which lack energy

proportionality. Even when a server is fully utilized as measured by CPU utilization, it

may still not be executing efficiently. Moore’s Law will not resolve the problem on its

own, demanding new hardware and software techniques.

For these reasons, this dissertation presents low-latency techniques that use

hardware and/or software to improve the energy efficiency of data centers. Chapter 2

explores a technique that combines power gating, slave latches, and source biasing. The

result is a core that can wake up from a power-gated state in as little as 8.06 ns, while

being able to retain critical state. We apply power gating to cores stalled on a memory

access. We propose MAPG-Counter, which employs a predictive scheme to estimate

the duration of memory accesses. We also propose TAP that uses tokens transmitted on

the cache interconnect to avoid any performance overhead. This technique tracks the

lower-bound duration of each access to allow cores to wake up just before they are needed.

For applications that stall often from accessing the memory subsystem, TAP achieves

up to 22.4% energy savings for out-of-order cores. As the number of cores trying to

access the memory subsystem at once increases from 1 to 32, TAP can detect the longer

148

149

duration of core stalls, and power gate the core 3.7× longer. However, MAPG-Counter

can save more energy on average (4.1%) for in-order cores. In addition, both TAP and

MAPG-Counter scale to many core designs through the introduction of wake-up stagger

and wake-up slots.

Chapter 3 aims to reduce the latency of core switching to enable improvements

in techniques that rely on it. Such techniques include software data spreading [66],

load-balancing, VM migration, and fast thread switching between asymmetric cores.

Specifically, we cut Linux core-switching latencies in half or better, by avoiding extra

context switches, unnecessary scheduler calculations, the long code latency of IPI inter-

rupts, and by waking up target cores early. We show core switching has no performance

impact on macrobenchmarks for a real server. Simulations show that core switching can

sometimes reduce and sometimes improve performance for macrobenchmarks, but yet

can offer energy savings of 3.37× on average for asymmetric hardware.

Techniques like those in Chapters 2 and 3 act to improve the energy proportional-

ity of server processors, but assume that the network can always provide the server with

data to process. Contrary to this view, data center networks are often oversubscribed and

network bandwidth demands will likely grow in the near future. Optics can increase data

center network bandwidth by an order of magnitude, while reducing the power per port

of switch infrastructure by two orders of magnitude. However, current OCS prototypes

switch circuits instead of packets, which raises concerns over whether an OCS can switch

fast enough to support all data center traffic patterns.

Chapter 4 discusses the experience of integrating a prototype, microsecond OCS

into the data center. The OCS can reconfigure circuits in 11.5 µs, three orders of magni-

tude faster that previous work [43, 115]. In order to support system level experiments,

Chapter 4 shows how to modify a commodity operating system to respond to circuit re-

configuration within a microsecond. The modifications still support a traditional TCP/IP

150

stack, allowing us to demonstrate up to 95.4% UDP and 87.9% TCP throughput across

the OCS prototype. Further, the chapter analytically shows that an OCS could reduce

data center power by 24.7% compared to an EPS at 100 Gb/s per host with non-energy

proportional servers.

Although this dissertation contributes to the energy efficiency of the data center

for both the server processor and data center networks, the problem is still far from solved.

There are several questions related to the techniques of Chapters 2, 3, and 4. We now

discuss some of these questions that are left for future work.

In the case of server CPU-level power gating, one big question is whether it is

necessary to avoid any performance overhead. TAP currently wakes up the core for the

soonest memory response. However, should the core stall while more than one memory

access is ongoing, it is quite possible that more energy would be saved by waiting for

the last memory response. The reasoning is that not many instructions can execute if

an instructional dependency exists for the last memory response; in comparison, a core

with all memory requests satisfied may achieve higher instructional level parallelism. In

addition, TAP is extremely conservative about its power-gating intervals, while MAPG-

Counter is willing to trade a small performance hit for the chance of better energy savings.

A technique that switches between the two strategies may save more energy on a larger

variety of architectures. Functional unit power gating is a complimentary technique

to both TAP and MAPG-Counter. Cooperation between functional unit and memory

access power gating would likely result in higher overall energy savings. In the case of a

communication intensive parallel benchmark, Chapter 2 leaves open the question of how

best to allow core power gating to coexist with frequent coherency actions. Currently, we

always source bias the core’s instruction and data cache, and wake it for any coherency

action. It may be better to leave on the instruction and data cache if a coherence action is

likely, as the result is lower communication delay and wake-up energy.

151

Very fast core switching from Chapter 3 also raises numerous questions. When

core switching on an asymmetric multicore, it is not clear which core best suits the OS

specific code. A study is necessary to test core switching on various core architectures

in order to find out which components most correlate with good performance. Once a

good OS core-switching architecture is found, the issue of cache state migration arises.

Chapter 3 avoids this issue by assuming frequent system calls, which can keep the cache

warm if it is reasonably sized. However, if we combine fast core switching with a

technique that predicts and migrates the cache working set [22], core switching could

be applicable to more situations. A clear follow on question would be how to add cache

working set prediction and migration to the OS with minimal hardware support. This

could lead to even lower latencies for thread migration in today’s servers.

Finally, Chapter 4 delivers an OCS prototype that can reconfigure circuits in

11.5 µs, is compatible with a traditional Linux TCP/IP stack, and can run system level

experiments. The immediate question is how will different data center applications

behave on this prototype. To answer this question, it will also be necessary to implement

an OCS scheduler that can configure the OCS to offer circuits most needed each 100 µs

or less. If the OCS cannot support all types of applications, then it would be worthwhile

to consider what should change about the OCS to broaden the number of supported

applications.

In conclusion, this dissertation presents several low-latency techniques that can

improve the energy efficiency of the data center. We believe that low-latency tecniques

are critical to this effort so as to avoid impacting the QoS that users demand from their

data center providers. Further, we have shown that there is significant room in both the

hardware and software domain to address data center energy efficiency challenges. It is

the hope of this author that efforts on both the hardware and software front will continue

until the entire data center becomes energy proprotional.

Bibliography

[1] Cisco Data Center Infrastructure 2.5 Design Guide. http://www.cisco.com/
en/US/docs/solutions/Enterprise/Data Center/DC Infra2 5/DCI SRND 2 5a
book.html.

[2] CloudEngine 12800 Series High-Performance Core Switches. http://enterprise.
huawei.com/us/products/network/switch/data-center-switch/hw-133602.htm.

[3] Glimmerglass 80x80 MEMS Switch. http://www.glimmerglass.com/products/
technology/.

[4] Hadoop: Open Source Implementation of Map Reduce. http://hadoop.apache.org/.

[5] EPA Report on Server and Data Center Energy Efficiency. U.S. Environmental
Protection Agency, Energy Star Program, 2007.

[6] International Technology Roadmap for Semiconductors. http://www.itrs.net/Links/
2010ITRS/2010Update, 2010.

[7] Myricom Sniffer10G – Cybersecurity Software. https://www.myricom.com/sniffer.
html, 2011.

[8] Thinkmate RAX QS3-4110. http://www.thinkmate.com/System/RAX QS3-4110,
2013.

[9] J. Aas. Understanding the Linux 2.6.8.1 CPU Scheduler. http://josh.trancesoftware.
com/linux/, 2005.

[10] D. Abts, M. R. Marty, P. M. Wells, P. Klausler, and H. Liu. Energy Proportional
Datacenter Networks. In Proc. International Symposium on Computer Architecture,
pages 338–347, 2010.

[11] K. Agarwal, K. Nowka, H. Deogun, and D. Sylvester. Power Gating with Multiple
Sleep Modes. In Proc. International Symposium on Quality Electronic Design,

152

http://www.cisco.com/en/US/docs/solutions/Enterprise/Data_Center/DC_Infra2_5/DCI_SRND_2_5a_book.html
http://www.cisco.com/en/US/docs/solutions/Enterprise/Data_Center/DC_Infra2_5/DCI_SRND_2_5a_book.html
http://www.cisco.com/en/US/docs/solutions/Enterprise/Data_Center/DC_Infra2_5/DCI_SRND_2_5a_book.html
http://enterprise.huawei.com/us/products/network/switch/data-center-switch/hw-133602.htm
http://enterprise.huawei.com/us/products/network/switch/data-center-switch/hw-133602.htm
http://www.glimmerglass.com/products/technology/
http://www.glimmerglass.com/products/technology/
http://hadoop.apache.org/
http://www.itrs.net/Links/2010ITRS/2010Update
http://www.itrs.net/Links/2010ITRS/2010Update
https://www.myricom.com/sniffer.html
https://www.myricom.com/sniffer.html
http://www.thinkmate.com/System/RAX_QS3-4110
http://josh.trancesoftware.com/linux/
http://josh.trancesoftware.com/linux/

153

pages 633–637, 2006.

[12] M. Al-Fares, A. Loukissas, and A. Vahdat. A Scalable, Commodity, Data Center
Network Architecture. In Proc. Special Interest Group on Data Communications,
2008.

[13] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat. Hed-
era: Dynamic Flow Scheduling for Data Center Networks. In Proc. USENIX
Conference on Networked Systems Design and Implementation, pages 19–19,
2010.

[14] M. Annavaram. A Case for Guarded Power Gating for Multi-Core Processors.
In Proc. International Symposium on High Performance Computer Architecture,
pages 291–300, 2011.

[15] S. Balakrishnan, R. Rajwar, M. Upton, and K. Lai. The Impact of Performance
Asymmetry in Emerging Multicore Architectures. In Proc. International Sympo-
sium on Computer Architecture, pages 506–517, 2005.

[16] L. A. Barroso and A. Hölzle. The Case for Energy-Proportional Computing. IEEE
Computer, 40(12):33–37, December 2007.

[17] D. Beaver, S. Kumar, H. C. Li, J. Sobel, and P. Vajgel. Finding a Needle in
Haystack: Facebook’s Photo Storage. In Proc. USENIX Conference on Operating
Systems Design and Implementation, pages 1–8, 2010.

[18] M. Becchi and P. Crowley. Dynamic Thread Assignment on Heterogeneous
Multiprocessor Architectures. Journal on Instruction-Level Parallelism, pages
1–26, 2008.

[19] C. Benvenuti. Understanding Linux Network Internals. O’Reilly Media, Inc.,
2006.

[20] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, A. G. Saidi, and S. K.
Reinhardt. The M5 Simulator: Modeling Networked Systems. IEEE Micro,
26(4):52–60, 2006.

[21] G. Birkhoff. Tres Observaciones Sobre el Algebra Lineal. Universidad Nacional
de Tucuman Revista, 5:147–151, 1946.

[22] J. A. Brown, L. Porter, and D. M. Tullsen. Fast Thread Migration via Cache
Working Set Prediction. In Proc. International Conference on High-Performance

154

Computer Architecture, pages 193–204, 2011.

[23] J. A. Brown and D. M. Tullsen. The Shared-Thread Multiprocessor. In Proc.
International Conference on Supercomputing, pages 73–82, 2008.

[24] J. Brutlag. Speed Matters for Google Web Search. http://services.google.com/fh/
files/blogs/google delayexp.pdf, 2009.

[25] C. Castellanos. PCI-SIG Announces PCI EXPRESS 4.0 Evolution to 16GT/S,
Twice the Throughput of PCI EXPRESS 3.0 Technology. http://www.pcisig.com/
news room/Press Releases/PCIe 4 0 BitRate Release 11 29 11.pdf, 2011.

[26] A. M. Caulfield, A. De, J. Coburn, T. I. Mollow, R. K. Gupta, and S. Swanson.
Moneta: A High-Performance Storage Array Architecture for Next-Generation,
Non-Volatile Memories. In Proc. International Symposium on Microarchitecture,
pages 385–395, 2010.

[27] K. Chakraborty, P. M. Wells, and G. S. Sohi. Computation Spreading: Employing
Hardware Migration to Specialize CMP Cores On-the-fly. In Proc. International
Conference on Architectural Support for Programming Languages and Operating
Systems, 2006.

[28] P. Chaparro, J. Gonzalez, and A. Gonzalez. Thermal-Aware Clustered Microarchi-
tectures. In Proc. International Conference on Computer Design, pages 48–53,
2004.

[29] K. Chen, A. Singlay, A. Singhz, K. Ramachandranz, L. Xuz, Y. Zhangz, X. Wen,
and Y. Chen. OSA: An Optical Switching Architecture for Data Center Networks
with Unprecedented Flexibility. In Proc. USENIX Conference on Networked
Systems Design and Implementation, pages 18–18, 2012.

[30] M. Cho, N. Sathe, M. Gupta, S. Kumar, S. Yalamanchilli, and S. Mukhopadhyay.
Proactive Power Migration to Reduce Maximum Value and Spatiotemporal Non-
Uniformity of On-Chip Temperature Distribution in Homogeneous Many-Core
Processors. In Proc. Semiconductor Thermal Measurement and Management
Symposium, pages 180–186, 2010.

[31] B. Choi, L. Porter, and D. M. Tullsen. Accurate Branch Prediction for Short
Threads. In Proc. International Conference on Architectural Support for Program-
ming Languages and Operating Systems, 2008.

[32] M. H. Chowdhury, J. Gjanci, and P. Khaled. Innovative Power Gating for Leakage

http://services.google.com/fh/files/blogs/google_delayexp.pdf
http://services.google.com/fh/files/blogs/google_delayexp.pdf
http://www.pcisig.com/news_room/Press_Releases/PCIe_4_0_BitRate_Release_11_29_11.pdf
http://www.pcisig.com/news_room/Press_Releases/PCIe_4_0_BitRate_Release_11_29_11.pdf

155

Reduction. In Proc. International Symposium on Circuits and Systems, pages
1568–1571, 2008.

[33] T. Constantinou, Y Sazeides, P. Michaud, D. Fetis, and A. Seznec. Performance
Implications of Single Thread Migration on a Chip Multi-Core. In Workshop on
Design, Architecture, and Simulation of Chip Multiprocessors, 2005.

[34] G. Cook and J. Horn. How Dirty Is Your Data? A Look at the Energy Choices
that Power Cloud Computing. Greenpeace International, 2011.

[35] A. K. Coskun, R. Strong, D. M. Tullsen, and T. S. Rosing. Evaluating the
Impact of Job Scheduling and Power Management on Processor Lifetime for Chip
Multiprocessors. In Proc. Conference on Measurement and Modeling of Computer
Systems, pages 169–180, 2009.

[36] M. DeVuyst, A. Venkat, and D. M. Tullsen. Execution Migration in a
Heterogeneous-ISA Chip Multiprocessor. In Proc. International Conference
on Architectural Support for Programming Languages and Operating Systems,
pages 261–272, 2012.

[37] G. Dhiman, K. Pusukuri, and T. Rosing. Analysis of Dynamic Voltage Scaling
for System Level Energy Management. In Proc. Conference on Power Aware
Computing and Systems, pages 9–9, 2008.

[38] G. Dhiman and T. Rosing. Dynamic Voltage Frequency Scaling for Multi-Tasking
Systems Using Online Learning. In Proc. International Symposium on Low Power
Electronics and Design, pages 207–212, 2007.

[39] S. Dobre. Qualcomm CDMA Technologies, Inc. Personal communication, Septem-
ber 2011.

[40] X. Fan, W. D. Weber, and L. A. Barroso. Power Provisioning for a Warehouse-
Sized Computer. In Proc. International Symposium on Computer Architecture,
pages 13–23, 2007.

[41] N. Farrington. Optics in Data Center Network Architecture. PhD thesis, University
of California at San Diego, 2013.

[42] N. Farrington, G. Porter, Y. Fainman, G. Papen, and A. Vahdat. Hunting Mice
with Microsecond Circuit Switches. In Proc. Workshop on Hot Topics in Networks,
pages 115–120, 2012.

156

[43] N. Farrington, G. Porter, S. Radhakrishnan, H. H. Bazzaz, V. Subramanya, Y. Fain-
man, G. Papen, and A. Vahdat. Helios: A Hybrid Electrical/Optical Switch
Architecture for Modular Data Centers. In Proc. Special Interest Group on Data
Communications, pages 339–350, 2010.

[44] A. Fedorova. Personal communication, 2009.

[45] A. Fedorova, D. Vengerov, and D. Doucette. Operating System Scheduling On
Heterogeneous Core Systems. In Proc. Workshop on Operating Systems Support
for Heterogeneous Multicore Architectures, 2007.

[46] B. Fitzpatrick. Distributed Caching with Memcached. Linux Journal, 2004(124):5–
5, 2004.

[47] J. E. Ford, V. A. Aksyuk, D. J. Bishop, and J. A.Walker. Wavelength Add-Drop
Switching using Tilting Micromirrors. IEEE Journal of Lightwave Technology,
17:904–911, 1999.

[48] R. E. Grant and A. Afsahi. Power-Performance Efficiency of Asymmetric Mul-
tiprocessors for Multi-Threaded Scientific Applications. In Proc. International
Parallel and Distributed Processing Symposium, April 2006.

[49] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri, D. A. Maltz,
P. Patel, and S. Sengupta. VL2: A Scalable and Flexible Data Center Network. In
Proc. Special Interest Group on Data Communications, pages 51–62, 2009.

[50] D. Halperin, S. Kandula, J. Padhye, P. Bahl, and D. Wetherall. Augmenting Data
Center Networks with Multi-Gigabit Wireless Links. In Proc. Special Interest
Group on Data Communications, 2011.

[51] K. He, R. Luo, and Y. Wang. A Power Gating Scheme for Ground Bounce Re-
duction During Mode Transition. In Proc. International Conference on Computer
Design, pages 388–394, 2007.

[52] S. Heo, K. Barr, and K. Asanovic. Reducing Power Density through Activity
Migration. In Proc. International Symposium on Low Power Electronic Design,
2003.

[53] Hewlett-Packard Company. Netperf: A Network Performance Benchmark. http:
//www.netperf.org.

[54] M. D. Hill and M. R. Marty. Amdahl’s Law in the Multicore Era. IEEE Computer,

http://www.netperf.org
http://www.netperf.org

157

41(7):33–38, July 2008.

[55] U. Hoelzle and L. A. Barroso. The Datacenter as a Computer: An Introduction to
the Design of Warehouse-Scale Machines. Morgan and Claypool Publishers, 1st
edition, 2009.

[56] M. Horiguchi, T. Sakata, and K. Itoh. Switched-Source-Impedance CMOS Circuit
for Low Standby Subthreshold Current Giga-Scale LSI’s. IEEE Journal of Solid-
State Circuits, 28(11):1131–1135, November 1993.

[57] L. R. Hsu, A. G. Saidi, N. L. Binkert, and S. K. Reinhardt. Sampling and Stability
in TCP/IP Workloads. In Proc. Workshop on Modeling, Benchmarking, and
Simulation, 2005.

[58] Z. Hu, A. Buyuktosunoglu, V. Srinivasan, V. Zyuban, H. Jacobson, and P. Bose.
Microarchitectural Techniques for Power Gating of Execution Units. In Proc.
International Symposium on Low Power Electronics and Design, pages 32–37,
2004.

[59] G. Huang, D. Sekar, A. Naeemi, K. Shakeri, and J. D. Meindl. Physical Model
for Power Supply Noise and Chip/Package Co-Design in Gigascale Systems with
the Consideration of Hot Spots. In Proc. Custom Integrated Circuits Conference,
pages 841–844, 2007.

[60] B. Hubert, T. Graf, G. Maxwell, R. van Mook, M. van Oosterhout, P. B. Schroeder,
J. Spaans, and P. Larroy. Linux Advanced Routing & Traffic Control HOWTO.
http://www.lartc.org/lartc.html, 2002.

[61] Intel Corp. Intel Core 2 Duo Processors and Intel Core 2 Extreme Processors on
45-nm Process: Datasheet. Document Number 320120, July 2008.

[62] C. Isci, A. Buyuktosunoglu, C.-Y. Chen, P. Bose, and M. Martonosi. An Anal-
ysis of Efficient Multi-Core Global Power Management Policies: Maximizing
Performance for a Given Power Budget. In Proc. International Symposium on
Microarchitecture, pages 347–358, 2006.

[63] C. Isci, A. Buyuktosunoglu, and M. Martonosi. Long-Term Workload Phases:
Duration Predictions and Applications to DVFS. IEEE Micro, 25(5):39–51, 2005.

[64] N. James, P. Restle, J. Friedrich, B. Huott, and B. McCredie. Comparison of
Split-Versus Connected-Core Supplies in the POWER6 Microprocessor. In Proc.
International Solid-State Circuits Conference, pages 298–604, 2007.

http://www.lartc.org/lartc.html

158

[65] K. Jeong, A. B. Kahng, S. Kang, T. S. Rosing, and R. Strong. MAPG: Memory
Access Power Gating. In Proc. Design, Automation, & Test in Europe Conference
& Exhibition, pages 1054–1059, 2012.

[66] M. Kamruzzaman, S. Swanson, and D. M. Tullsen. Software Data Spreading:
Leveraging Distributed Caches to Improve Single Thread Performance. SIGPLAN
Conference on Programming Language Design and Implementation, 45(6):460–
470, 2010.

[67] M. Keating, D. Flynn, R. Aitken, A. Gibbons, and K. Shi. Low Power Methodology
Manual: For System-on-Chip Design. Springer Publishing Company, Inc., 2007.

[68] N. S. Kim, J. Seomun, A. Sinkar, J. Lee, T. H. Han, K. Choi, and Y. Shin.
Frequency and Yield Optimization Using Power Gates in Power-Constrained
Designs. In Proc. International Symposium on Low Power Electronics and Design,
pages 121–126, 2009.

[69] S. Kim, S. V. Kosonocky, and D. R. Knebel. Understanding and Minimizing
Ground Bounce During Mode Transition of Power Gating Structures. In Proc.
International Symposium on Low Power Electronics and Design, pages 22–25,
August.

[70] S. Kim, S. V. Kosonocky, D. R. Knebel, K. Stawiasz, and M. C. Papaefthymiou.
A Multi-Mode Power Gating Structure for Low-Voltage Deep-Submicron CMOS
ICs. IEEE Transactions on Circuits and Systems II: Express Briefs, 54(7):586–590,
2007.

[71] A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka,
Guoliang L., I. Shubin, and J. E. Cunningham. Computer Systems Based on
Silicon Photonic Interconnects. IEEE, 97(7):1337–1361, 2009.

[72] R. Kumar, K. Farkas, N. Jouppi, P. Ranganathan, and D. Tullsen. Single-ISA
Heterogeneous Multi-core Architectures: The Potential for Processor Power Re-
duction. In Proc. International Symposium on Microarchitecture, 2003.

[73] R. Kumar and G. Hinton. A family of 45nm IA processors. In Proc. International
Solid-State Circuits Conference - Digest of Technical Papers, pages 58–59, 2009.

[74] R. Kumar, D. Tullsen, P. Ranganathan, N. Jouppi, and K. Farkas. Single-ISA
Heterogeneous Multi-core Architectures for Multithreaded Workload Performance.
In Proc. International Symposium of Computer Architecture, 2004.

159

[75] S. Kumar, C. J. Hughes, and A. Nguyen. Carbon: Architectural Support for Fine-
Grained Parallelism on Chip Multiprocessors. In Proc. International Symposium
on Computer Architecture, pages 162–173, 2007.

[76] J. Leverich, M. Monchiero, V. Talwar, P. Ranganathan, and C. Kozyrakis. Power
Management of Datacenter Workloads Using Per-Core Power Gating. IEEE
Computer Architecture Letters, 8(2):48–51, July 2009.

[77] H. Li, C. Cher, T. N. Vijaykumar, and K. Roy. VSV: L2-Miss-Driven Variable
Supply-Voltage Scaling for Low Power. In Proc. International Symposium on
Microarchitecture, pages 19–28, 2003.

[78] S. Li, J. Ahn, R. Strong, J. B. Brockman, D. M. Tullsen, and N. P. Jouppi. McPAT:
An Integrated Power, Area, and Timing Modeling Framework for Multicore and
Manycore Architectures. In Proc. International Symposium on Microarchitecture,
pages 469–480, 2009.

[79] T. Li, D. Baumberger, D. A. Koufaty, and S. Hahn. Efficient Operating System
Scheduling for Performance-Asymmetric Multi-Core Architectures. In Proc.
Supercomputing, pages 1–11, 2007.

[80] T. Li, P. Brett, B. Hohlt, R. Knauerhase, S. D. McElderry, and S. Hahn. Operat-
ing System Support for Shared-ISA Asymmetric Multi-Core Architectures. In
Proc. Workshop on the Interaction between Operating Systems and Computer
Architecture, 2008.

[81] Y. Lin, C. Yang, J. Huang, and N. Chang. Memory Access Aware Power Gating
for MPSoCs. In Proc. Asia and South Pacific Design Automation Conference,
pages 121–126, 2012.

[82] R. Love. Linux Kernel Development Second Edition. Pearson Education, Inc.,
2005.

[83] A. Lungu, P. Bose, A. Buyuktosunoglu, and D. J. Sorin. Dynamic Power Gat-
ing with Quality Guarantees. In Proc. International Symposium on Low Power
Electronics and Design, pages 377–382, 2009.

[84] J. D. McCalpin. Memory Bandwidth and Machine Balance in Current High Per-
formance Computers. IEEE Computer Society Technical Committee on Computer
Architecture Newsletter, pages 19–25, 1995.

[85] R. McDougall and J. Mauro. Solaris Internals: Solaris 10 and OpenSolaris Kernel

160

Architecture. Prentice Hall, 2nd edition, 2007.

[86] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford,
S. Shenker, and J. Turner. OpenFlow: Enabling Innovation in Campus Networks.
SIGCOMM Computer Communications Review, 38(2):69–74, 2008.

[87] D. A. B. Miller and H. M. Ozaktas. Limit to the Bit-Rate Capacity of Electrical
Interconnects from the Aspect Ratio of the System Architecture. Journal of
Parallel and Distributed Computing, 41(1):42–52, 1997.

[88] J. C. Mogul. TCP Offload Is a Dumb Idea Whose Time Has Come. In Proc.
Conference on Hot Topics in Operating Systems, pages 5–5, 2003.

[89] J. C. Mogul, J. Mudigonda, N. Binkert, P. Ranganathan, and V. Talwar. Using
Asymmetric Single-ISA CMPs to Save Energy on Operating Systems. Micro,
8(3):26–41, May-June 2008.

[90] I. Molnar. Modular Scheduler Core and Completely Fair Scheduler. http://
kerneltrap.org/node/8059, April 2007.

[91] M. Monchiero. Personal communication, 2008.

[92] G. E. Moore. Cramming More Components onto Integrated Circuits, Reprinted
from Electronics, volume 38, number 8, April 19, 1965, pp.114 ff. IEEE Solid-
State Circuits Society Newsletter, 11(5):33–35, 2006.

[93] R. N. Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri, S. Radhakrishnan,
V. Subramanya, and A. Vahdat. PortLand: A Scalable Fault-Tolerant Layer 2 Data
Center Network Fabric. In Proc. Special Interest Group on Data Communications,
2009.

[94] D. Nellans, R. Balasubramonian, and E. Brunvand. A Case for Increased Operating
System Support in Chip Multi-Processors. In Proc. of 2nd IBM Watson P = ac2

Conference, 2005.

[95] D. Nellans, R. Balasubramonian, and E. Brunvand. OS Execution on Multi-Cores:
Is Out-Sourcing Worthwhile? Operating System Review, 43, April 2009.

[96] M. A. Olson, K. Bostic, and M. Seltzer. Berkeley DB. In Proc. FREENIX Track,
USENIX Annual Technology Conference, pages 183–191, 1999.

[97] J. Ousterhout, P. Agrawal, D. Erickson, C. Kozyrakis, J. Leverich, D. Mazières,

http://kerneltrap.org/node/8059
http://kerneltrap.org/node/8059

161

S. Mitra, A. Narayanan, G. Parulkar, M. Rosenblum, S. M. Rumble, E. Stratmann,
and R. Stutsman. The Case for RAMClouds: Scalable High-Performance Storage
Entirely in DRAM. SIGOPS Operating Systems Review, 43(4):92–105, 2010.

[98] E. Perelman, G. Hamerly, M. Van Biesbrouck, T. Sherwood, and B. Calder. Using
SimPoint for Accurate and Efficient Simulation. In Proc. International Conference
on Measurement and Modeling of Computer Systems, pages 318–319, 2003.

[99] B. Pfaff, J. Pettit, T. Koponen, K. Amidon, M. Casado, and S. Shenker. e.a.:
Extending Networking into the Virtualization Layer. In Proc. Workshop on Hot
Topics in Networks, 2009.

[100] C. Qiao and M. Yoo. Optical Burst Switching (OBS) - A New Paradigm for an
Optical Internet. Journal of High Speed Networks, 8(1):69, 1999.

[101] H. Qin, Y. Cao, D. Markovic, A. Vladimirescu, and J. Rabaey. SRAM Leakage
Suppression by Minimizing Standby Supply Voltage. In Proc. International
Symposium on Quality Electronic Design, pages 55–60, 2004.

[102] A. Rasmussen, G. Porter, M. Conley, H. V. Madhyastha, R. N. Mysore, A. Pucher,
and A. Vahdat. TritonSort: A Balanced Large-Scale Sorting System. In Proc.
Conference on Networked Systems Design and Implementation, pages 3–3, 2011.

[103] A. Rogers, D. Kaplan, E. Quinnell, and B. Kwan. The Core-C6 (CC6) Sleep State
of the AMD Bobcat x86 Microprocessor. In Proc. International Symposium on
Low Power Electronics and Design, pages 367–372, 2012.

[104] P. Rosenfeld, E. Cooper-Balis, and B. Jacob. DRAMSim2: A Cycle Accurate
Memory System Simulator. Computer Architecture Letters, 10(1):16–19, January-
June 2011.

[105] G. Semeraro, G. Magklis, R. Balasubramonian, D. H. Albonesi, S. Dwarkadas, and
M. L. Scott. Energy-Efficient Processor Design Using Multiple Clock Domains
with Dynamic Voltage and Frequency Scaling. In Proc. International Symposium
on High-Performance Computer Architecture, pages 29–40, 2002.

[106] Y. Shin, J. Seomun, K. Choi, and T. Sakurai. Power Gating: Circuits, Design
Methodologies, and Best Practice for Standard-Cell VLSI Designs. ACM Transac-
tions on Design Automation of Electronic Systems, 15(4):1–37, October 2010.

[107] H. Singh, K. Agarwal, D. Sylvester, and K. J. Nowka. Enhanced Leakage Reduc-
tion Techniques Using Intermediate Strength Power Gating. IEEE Transactions

162

on Very Large Scale Integration Systems,, 15(11):1215–1224, 2007.

[108] R. Sinkhorn. A Relationship Between Arbitrary Positive Matrices and Doubly
Stochastic Matrices. The Annals of Mathematical Statistics, 35(2):876–879, 1964.

[109] J. M. Smith. A Survey of Process Migration Mechanisms. ACM Operating System
Review, July 1998.

[110] T. A. Strasser and J. L. Wagener. Wavelength-Selective Switches for ROADM
Applications. IEEE Journal of Selected Topics in Quantum Electronics, 16:1150–
1157, 2010.

[111] J. S. Turner. Terabit Burst Switching. Journal of High Speed Networks, 8(1):3–16,
1999.

[112] B. C. Vattikonda, G. Porter, A. Vahdat, and A. C. Snoeren. Practical TDMA for
Datacenter Ethernet. In Proc. European Conference on Computer Systems, pages
225–238, 2012.

[113] G. Venkatesh, J. Sampson, N. Goulding, S. Garcia, V. Bryksin, J. Lugo-Martinez,
S. Swanson, and M. B. Taylor. Conservation Cores: Reducing the Energy of
Mature Computations. SIGARCH Computer Architecture News, 38(1):205–218,
2010.

[114] J. von Neumann. A Certain Zero-Sum Two-Person Game Equivalent to the
Optimal Assignment Problem. Contributions to the Theory of Games, 2:5–12,
1953.

[115] G. Wang, D. G. Andersen, M. Kaminsky, K. Papagiannaki, T. S. E. Ng, M. Kozuch,
and M. Ryan. c-Through: Part-Time Optics in Data Centers. SIGCOMM Computer
Communication Review, 40(4):327–338, 2010.

[116] O. Wechsler. Setting New Standards for Energy-Efficient Performance. Technol-
ogy@Intel Magazine, 2006.

[117] B. Wun and P. Crowley. Network I/O Acceleration in Heterogeneous Multicore
Processors. In Proc. Symposium on High-Performance Interconnects, pages 9–14,
2006.

[118] M. Zaharia. Personal communication, 2013.

[119] M. Zaharia, N. M. M. Chowdhury, M. Franklin, S. Shenker, and I. Stoica. Spark:

163

Cluster Computing with Working Sets. Technical Report, EECS Department,
University of California, Berkeley, May 2010.

[120] K. Zhang, T. Zhang, and S. Pande. Binary Translation to Improve Energy Effi-
ciency through Post-Pass Register Reallocation. In Proc. International Conference
on Embedded Software, pages 74–85, 2004.

[121] L. Zhang, G. Dhiman, and T. S. Rosing. vGreenNet: Managing Server and
Networking Resources of Co-Located Heterogeneous VMs. In Proc. IPDPS
High-Performance Grid and Cloud Computing Workshop, 2013.

[122] Z. Zhang, X. Kavousianos, K. Chakrabarty, and Y. Tsiatouhas. A Robust and
Reconfigurable Multi-Mode Power Gating Architecture. In Proc. International
Conference on VLSI Design, pages 280–285, 2011.

[123] H. Zheng and Z. Zhu. Power and Performance Trade-Offs in Contemporary DRAM
System Designs for Multicore Processors. IEEE Transactions on Computers,
59(8):1033–1046, August 2010.

[124] W. Zwaenepoel. Protocols for Large Data Transfers over Local Networks. In Proc.
Symposium on Data Communications, pages 22–32, 1985.

	Signature Page
	Dedication
	Epigraph
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Efficiency with Minimal Performance Impact
	Power Gating
	Fast Core Switching
	The Need for Efficient Network Bandwidth

	Memory Access Power Gating
	Related Work
	Power Gating and Power Distribution Network
	Programmable Power Gating Switch (PPGS) Design
	PDN Model for Power Estimation and Circuit Analysis
	Safe Wake-Up Mode Analysis and Equation
	Core Wake-Up Stagger

	System Design
	Centralized Wake-Up Controller (WUC)
	Distributed, Staggered Wake Up
	MAPG-Counter: Counter-Based Controller Design
	TAP: Token-Based Adaptive Power Gating
	Formal Analysis of In-Order Core Energy Savings
	Core State Retention and Restoration

	Simulation Methodology
	Results
	EV6 vs IO Power Gating Energy Savings
	Execution Time and Overheads
	Energy Savings as a Function of Wake-up Latency
	Adapting to Memory Contention
	Distributed, Staggered Wake Up

	Summary
	Acknowledgments

	Very Fast Core Switching
	Related Work
	Thread Migration Techniques
	Scheduling for Heterogeneous Multicores

	Software Approaches to Core Switching
	Modified System Calls
	V1: Linux's Thread-Migration Mechanism
	V2: Modified Scheduler
	V3: Scheduler Fast Paths
	V4: Addressing IPI Costs
	V5: Cross-Core Wake Up from Quiesce

	Simulation Environment and Workloads
	Modeling Core Power Up
	Workloads
	Organization of Experiments

	Microbenchmark Results
	Results on Real x86 Hardware
	Results on Simulated Hardware

	Effects of Architectural Parameters
	L1 Cache Sizes
	Core Wake-Up Delay

	Macrobenchmark Results
	Web Benchmark
	Database Benchmark
	Network Streaming Benchmarks
	Energy Efficiency

	Summary

	Integrating Microsecond Circuit Switching into the Data Center
	Related Work
	Motivation: Reducing Network Cost via Faster Switching
	Multi-layer Switching Networks
	OCS Power Advantages
	OCS Model

	OCS Throughput and Latency
	Throughput
	Latency

	Implementation
	Mordia Prototype
	Emulating TORs with Commodity Servers
	All-to-All Traffic Generator

	Evaluation
	Emulated TOR Software
	Throughput

	Summary
	Acknowledgments

	Summary
	Bibliography

