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Abstract—We live in a world where technological advances
are continually creating more data than what we can deal
with. Machine learning algorithms, in particular Deep Neural
Networks (DNNs), are essential to process such large data.
Computation of DNNs requires loading the trained network
on the processing element and storing the result in memory.
Therefore, running these applications need a high memory
bandwidth. Traditional cores are memory limited in terms of the
memory bandwidth. Hence, running DNNs on traditional cores
results in high energy consumption and slows down processing
speed due to a large amount of data movement between memory
and processing units. Several prior works tried to address data
movement issue by enabling Processing In-Memory (PIM) using
crossbar analog multiplication. However, these designs suffer
from the large overhead of data conversion between analog
and digital domains. In this work, we propose RNSnet, which
uses Residue Number System (RNS) to execute neural network
completely in the digital domain in memory. RNSnet simplifies
the fundamental neural network operations and maps them to
in-memory addition and data access. We test the efficiency of the
proposed design on several popular neural network applications.
Our experimental result shows that RNSnet consumes 145.5×
less energy and obtains 35.4× speedup as compared to NVIDIA
GPU GTX 1080. In addition, our results show that RNSnet can
achieve 8.5× higher energy-delay product as compared to the
state-of-the-art neural network accelerators.

I. INTRODUCTION

As Internet of Things (IoT) becomes a reality, humans
will be significantly outnumbered by the networked devices
ready to respond to our every need. These IoT systems,
in near future, will generate a large amount of data and
put enormous pressure on computing nodes to analyze un-
reasonable quantities of data. IoT applications often process
raw data by running machine learning algorithms. However,
neural networks (NNs), the most common machine learning
applications, are computationally expensive as it requires a
large amount of resources to execute [1]. Most of the NNs are
executed on mobile and embedded devices which have limited
resources and energy budget. In addition, most of the NNs
require a real-time response. Hence, they need to be executed
with high performance while keeping the energy consumption
to the lowest possible amount.

Several prior works tried to accelerate NN applications on
general purpose processors such as CPUs and GPUs [2]. Addi-
tionally, works on approximate computing accelerate different
applications, and in particular NNs. These works use bitwidth
reduction [3], approximate synthesis [4, 5], to name but two.
All these platforms, however, still suffer from data movement

issue. Looking at the power consumption of NN applications,
the main inefficiency in running these applications on tra-
ditional cores comes from the data movement between the
processor and off-chip memory. Most of the NN applications
need quite a large memory to store the trained weights,
Moreover, NN computations need many memory accesses to
load the stored data and store the generated results.

Processing In-Memory (PIM) is a promising solution to
address the data movement issue by implementing data opera-
tions within the memory [6, 7, 8]. PIM architecture have been
used to accelerate different applications including machine
learning [9, 10], graph processing [11, 12], brain-inspired com-
puting [13, 14], and approximate computing [15, 16]. Instead
of sending a large amount of data to the processing cores
for computations, PIM performs a part of computation tasks,
e.g., bit-wise computations, inside the memory. Therefore,
the application performance can be accelerated significantly
by bypassing the memory access bottleneck. Several existing
works have proposed PIM-based neural network accelerators
which keep the input data and trained weights inside mem-
ory [6]. For example, the work in [7] showed that memristor
devices can model multiplications and additions for each
neuron. The authors of [7] store trained weights of each neuron
as device resistance values, and pass currents corresponding to
the digital input values in a similar way to spiking neuromor-
phic computing [17]. Although these approaches improve the
efficiency of the design, these designs use analog execution
blocks which are not scalable with technology.

Residue Number System (RNS) is an unorthodox number
representation which is based on the Chinese Remainder
Theorem (CRT) [18]. RNS is defined by a set of k integer
numbers which are relatively prime, called modulis. Each
binary number is divided by each moduli and the remainders
of the divisions are representative of the binary number in
RNS. RNS decomposes each number to the remainders of
the number when divided by a set of predefined modulis
instead of representing the binary number. Each residue is
always less than the corresponding moduli; thus, for rep-
resenting each residue we need fewer bits. RNS simplifies
the operations by breaking down any operation to the same
operation on the residues which have less bit width than the
binary representation. Reducing the operands bit width leads
to simpler arithmetic units which are easier, and more efficient
to implement in memory.

In this paper, we exploit the benefits provided by RNS to



execute the NN in memory. We propose RNSnet, a novel
neural network accelerator based on RNS. Instead of working
with long 32-bit values, RNSnet maps all inputs and weights
of NN to RNS. Therefore, it simplifies the operations to
PIM friendly ones, then executes the NN in-memory. RNSnet
models: (i) input-weight multiplication using additions and
memory accesses; (ii) weighted input accumulation using
local in-memory addition; (iii) activation function and pooling
by using a novel comparison method. Our new RNS-based
comparison method results in modeling both linear and non-
linear activation functions. We evaluate the efficiency of the
proposed RNSnet on several NN applications. Our evaluations
show that the proposed RNSnet can achieve 145.5× energy
efficiency and 35.4 speedup as compared to GPU implemen-
tation. Comparing the proposed design with the state-of-the-
art accelerators shows that RNSnet can provide 2.2× faster
and 3.9× higher energy efficiency while providing the same
classification accuracy.

The rest of the paper is organized as the following. Sec-
tion II reviews the related works. Section III proposes an
RNS-based in-memory NN execution as well as the required
background. Section IV depicts the architecture of proposed
in-memory hardware. The experimental results are presented
in Section V. Finally, Section VI concludes the paper.

II. RELATED WORK

A. Neural Network Acceleration

Modern neural network algorithms are executed on diverse
types of platforms such as CPUs, GPUs, and FPGAs [19,
20, 21]. However, in these designs the main computation still
relies on CMOS-based cores, thus, it still suffers from the data
movement issue. Additionally, Several recent works binarize
the networks weights and inputs to reduce the complexity
of the NN operations [22, 23, 24]. Binarizing the network
simplifies the multiplication and addition operations to XOR
and population count. However, Binarized Neural Networks
(BNNs) cannot provide a comparable accuracy as the NNs
using fixed/floating point weights. Moreover the training time
of BNNs is higher than that of DNNs. To address data
movement issue, prior works accelerate NNs by enabling in-
memory computation [7, 25]. These designs use multi-level
memristor devices which operate the multiplication and addi-
tion operations by converting digital values to analog signals.
Therefore, They need to use Analog to Digital Converters
(ADCs) and Digital to Analog Converters (DACs) which take
more than 61% of the chip power consumption. Moreover,
these approaches have potential design issues. For example,
their designs require analog and digital-mixed circuits, e.g.,
ADC and DAC, which do not scale as the CMOS technology.
In contrast, we design the RNSnet accelerator based on digital
technology, which supports the neural network computations
inside the memory.

B. RNS

To convert a binary number to RNS the remainder of divid-
ing the binary number to the modulis must calculated. Several

works, as[26, 27, 28, 29, 30], exploit the effect of selecting the
moduliset on complexity of the conversion. Several works such
as [31, 32] investigate the effect of selecting the modulis on
the complexity of implementing the operations on hardware.
After converting each binary number into RNS the operations
can perform in RNS domain; therefore, RNS operations should
be introduced and modified for the given moduli set. RNS can
reduce the bit width of the numbers at the cost of increasing the
number of operations. After converting the binary numbers to
RNS the operations need to be applied on each residue instead
of the binary number.

Using RNS simplifies the hardware implementation and
increases the ability of parallelism. RNS is used to implement
compute-intensive applications, such as DSP [33, 34, 35], and
NNs [36, 37]. These applications are implemented on different
platforms such as ASIC, FPGA, GPU, and CPUs [31, 33, 38].
Several works including [39, 40, 41] take the advantage
of RNS to detect and correct system errors. The work in
[42] instead of using RNS representation to accelerate the
hardware, improves the reliability of the hardware. By using
Redundant RNS representation (RRNS) they enable detection
and correction of errors caused due to both faulty storage and
compute units.

Several recent efforts [43, 44, 45] have been focused on
optimizing and simplifying the architecture of RNS operations,
the work in [46] focuses on accelerating multipliers for neural
network applications on FPGA. To accelerate the neural net-
work applications, the authors in [47] propose a platform to
interpolate the lost information by using convolutional neural
networks (CNNs). They propose an FPGA implementation
and a performance evaluation of CNN-based super-resolution
system, which can process moving images in real time. Works
in [36, 48] use nested RNS to reduce the bit width of numbers
to enable lookup-table-based implementation. Although nested
RNS improves the efficacy, it still has the drawback of data
transfer between processing units and memory which is the
main disadvantage of all CMOS-based designs.

Work in [37] implements an artificial neural network on
ROM using RNS. In this work, a functionality of a neuron is
modeled by several layers of ROMs. However, this technique
suffers from the scalability. In this approach, increasing the
number neuron inputs by one, increases the design memory
requirement by a power of two. Therefore, this technique is
not applicable to even the smallest neural networks.

III. PROPOSED RNSNET

A. RNS background

Consider ModuliSet = {M1,M2, ...,Mk} where each Mk in
the ModuliSet has no common factor with the others. The
remainder of dividing the binary number by each member of
the ModuliSet represents that RNS value. By using RNS we
can uniquely represent range of numbers called the Dynamic

Range (DR) which is equal to DR =
k
∏
i=1

Mi. It means that,

BinaryNumber ∈ [T,T +DR) can be represented uniquely as
{R1,R2, ...,Rk} where Rk is |X |Mk (X mod Mk). Converting



the binary number to the RNS is called forward conversion
which is equal to finding the R1,R2, . . . ,Rk. In order to have
a hardware friendly forward conversion [32], in this work we
select ModuliSet = {2t − 1,2t ,2t + 1}. In the following, we
describe the forward conversion for the selected ModuliSet.
Consider X as an n-bit binary number and ModuliSet as a
set of moduli with three relative prime numbers. The number
is represented in RNS as {R1,R2,R3}. Note that, if the bit
width of the binary number is not a factor of 3, then we add
zeros to the leftmost bits.

X ≡ n bits binary number input

ModuliSet = {2
d
n
3
e
−1,2

d
n
3
e
,2
d
n
3
e
+1}, t ≡ dn

3
e

X = {Xn−1,Xn−2, ...,X1,X0}
a1 ≡ Xt−1,Xt−2, ...,X0

a2 ≡ X2t−1,X2t−2, ...,Xt

a3 ≡ Xn−1,Xn−2, ...,X2t

⇒ X = a3×22t +a2×22t +a1 (1)


R1 = |X |2t−1= |a3×22t +a2×2t +a1|2t−1

R1 = |a3×22t |2t−1+|a2×2t |2t−1+|a1|2t−1
|22t |2t−1=1
−−−−−−→
|2t |2t−1=1

R1 = |a1 +a2 +a3|2t−1

(2)


R2 = |X |2t= |a3×22t +a2×2t +a1|2t

R2 = |a3×22t |2t+|a2×2t |2t+|a1|2t

|22t |2t =0
−−−−−→
|2t |2t =0

R2 = a1

(3)


R3 = |X |2t+1= |a3×22t +a2×2t +a1|2t+1

R3 = |a3×22t |2t+1+|a2×2t |2t+1+|a1|2t+1
|22t |2t+1=1
−−−−−−−→
|2t |2t+1=−1

R3 = |a1−a2 +a3|2t+1

(4)

Binary numbers are converted to RNS using the above
equations and 2t − 1,2t ,2t + 1 residues are calculated using
Equations (2), (3), (4) respectively. In order to calculate the
residues, first, we split the binary number X into three parts.
The first t bits of X are called a1 and the second t bits are
called a2 and the remaining bits of X are called a3. To calculate
R1 = |a1 +a2 +a3|2t−1, the a1, a2 and a3 are added together
and if the result is greater than the moduli(2t−1), we subtract
the moduli from the result of the addition, we call this addition
as modulo-addition. Additionally, Modulo-adder is an adder
whose output is the remainder of the addition divided by the
moduli. The 2t residue is equal to the a2 and the 2t +1residue
is calculated in a similar way to calculating the R1. Therefore,
our design requires two additions, that each has three inputs,
to perform forward conversion. For each number, two modulo-
adders are used to calculate the residue of the binary number
in the pre-defined ModuliSet. After converting binary numbers
to RNS, operations, such as addition and multiplication, can
be executed similarly to binary numbers. However, whenever
the result exceeds the moduli,the corresponding residue is
calculated. Moreover, after executing the application, the result
should be converted back to binary using backward conversion
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Fig. 1. Neural Network structure

methods such as [32]. In RNSnet instead of the complex
backward, we map each RNS number to the corresponding
binary number using lookup tables. Considering the fact that
the RNSnet is calculated in memory and the input bit width as
well as the modulis are fixed the look-up-based conversion is
in-memory friendly and also it does not need a large memory.

B. NN background

Fig 1 depicts the functionality of a Neural Network. Each
NN contains multiple layers of neurons which are connected to
the neurons of the previous layer (the neurons of the first layer
are directly connected to the inputs) using a weighted link.
The output of each neuron in the previous layer is multiplied
by the weight of the corresponding link and the summation
of these values is calculated in the neuron and thereafter, an
activation function is applied to the result of the summation.
As illustrated in Fig 1, aL denotes the layer l neurons and
W L denotes a 2D weight matrix which links each neuron of
layer l-1 to every neuron of layer l. Each node of layer l is
linked to all neurons of the layer l-1 and each link requires a
multiplication resulting in an immense amount of calculations.
Additionally, the W is are stored in memory and thus, each
execution requires a memory access. Considering two above
facts, in-memory computation would be a great solution for
NN applications. However, only simple processes can be done
in memory while most of the required calculations in NNs
are multiplications and additions with usually 16 to 48 bits.
Thanks to using RNS system all the bit width of numbers
are reduced(16 to 48 bits numbers are mapped to 6 to 16 bit
numbers).

C. NN using RNS

Neural networks consist of multiple layers of neurons. Each
neuron is connected to all available neurons in the next layer
using pre-trained weights. In NNs, each neuron accumulates
all the weighted-values received from neurons in the previous
layer and then pass the output through an activation function
as shown in Fig 2a. In this work, we propose RNS-based
neural network (RNSnet) which can support all neural network
operations in an efficient and scalable way in RNS domain.

Our design uses a forward conversion logic to convert all
input data and all trained weights of the neural network to
RNS. All neurons in the input layer of the NN will take the
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input values in RNS form. Then, the entire neuron functional-
ity is implemented in RNS without any backward conversion.
Figure 2 shows the overview of the proposed RNSnet. This
figure shows how RNSnet models each neuron using additions
and memory accesses. Our design models multiplication be-
tween neuron inputs and weights, by adding, subtracting and
memory lookup. Since each neuron multiplies several inputs
and weights, the results of all multiplications accumulate in
the memory block. As the result of RNS accumulation can
be out of the RNS range, our Ranging block (shown in
Figure 2c), converts the value to a valid RNS format. Finally,
this value is passed through the activation function (shown in
Fig 2d, e), which can be a linear function, e.g. Sigmoid, or a
compare-based function, e.g. rectified linear unit (ReLU). We
approximate the linear/non-linear activation functions by their
equivalent Taylor expansion terms, which are implemented
using the proposed RNS addition and multiplication. Addi-
tionally, the compare-based activation functions and pooling
layers are implemented using the proposed compare method.

Now, we explain how RNSnet models the above-mentioned
fundamental neural network operations in RNS, and in the
following section we propose the in-memory implementation
of the operations.

Addition
As illustrated in equation (5), in order to add the binary

numbers we can add their RNS representation. To add RNS
numbers, it is enough to add the residues of each moduli. In
case of using ModuliSet with the size three, RNS requires
three additions, modulo-2t −1, modulo-2t , and modulo-2t +1
addition.

A+B RNS−−→

RA+B
1 = |A+B|2t−1= |A|2t−1+|B|2t−1= |RA

1 +RB
1 |2t−1

RA+B
2 = |A+B|2t= |A|2t+|B|2t= |RA

2 +RB
2 |2t

RA+B
3 = |A+B|2t+1= |A|2t+1+|B|2t+1= |RA

3 +RB
3 |2t+1

(5)

As shown in Figure 3, when the result of the addition is greater
than the moduli we subtract the moduli from the addition
result. To compare the result of the addition with the moduli,
we subtract the moduli from the addition result and the sign

bit of the subtraction represents the greater number. When
the sign bit of the subtraction result is ’0’ the addition result
is greater than the moduli and therefore the result of the
modulo-2t−1 addition is A2t−1+B2t−1−2t−1. The structure
of modulo-2t + 1 adder is completely similar to that of the
modulo-2t −1 adder. The remainder of dividing each number
on 2t is the t least significant bits of the number; thus, The
modulo-2t adder uses the t rightmost bits. In fully connected
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Fig. 3. RNS addition implementation and Modulo-2t −1 adder structure.

NN structures, each neuron is connected to all neurons in the
previous layer. Therefore, each neuron adds several numbers
together in RNS form. To calculate the summation of all
weighted-values, we use parallel in-memory adder. Our design
assigns a single crossbar memory to each neuron and supports
in-memory addition in a tree-based structure. We explain
the details of the hardware in Section IV. To achieve fast
summation, instead of using modulo adders which are costlier
than normal adders, our design uses normal adders and avoids
ranging the addition result to RNS form in the intermediate
stages. Our design adds all values together in a tree-based
structure and converts the addition result to RNS form in the
end. Generally, adding m t-bit numbers results in a value with
t+dlog2 me bits. In order to return this number to RNS range,
it is necessary to find the remainder of dividing the result by
the moduli. However, the division is a costly function which
is very difficult to be implemented in-memory. In this work,
we simplify finding the remainder of division to a function
similar to the forward conversion. Our design works based on
the fact that the remainder of 2t divided by 2t −1 and 2t +1
is +1 and -1 respectively. In general, the addition result can
be written as S2× 22t + S1× 2t + S0. Therefore, we can use
the same conversion as the forward conversion to return the
addition result to the RNS range. When the weights and the



inputs are 18 bits, the ModuliSet is {26− 1,26,26 + 1}, thus
the summation result of 2048 numbers has 6+ log2 2048 = 17
bits for 26 and 26−1 modulis. Similarly, for 26+1 moduli the
summation result has 18 bits. Based on the value of t, we can
simplify the summation result to S17:12×212+S11:6×26+S5:0.
Therefore, S mod 26−1 is equal to S17:12+S11:6+S5:0. Using
this technique, the residue of 26 and 26+1 is calculated to be
S5:0 and S17:12−S11:6 +S5:0 respectively.

Multiplication
A Neural network involves several multiplications. The

output of each neural network layer multiplies by a weighted
network to generate inputs for the next layer. Although con-
verting the binary numbers to RNS reduces the bit width, the
multiplication is still costly. additionally, similar to addition,
after the multiplication, a division is required to back the mul-
tiplication result to the RNS range (calculating the remainder).

In this work, we replace the multiplication between two
RNS values (e,g, ∀k

i=1Ra
Mi

2 × Rb
Mi

2 which we call it a× b

briefly ), by an equivalent term (a+b)2

4 − (a−b)2

4 . Consider-
ing the square of binomial, (a + b)2 = a2 + b2 + 2ab, and
(a−b)2 = a2 +b−2 ab. We can calculate the terms a+b and
a− b using in-memory addition. The result of either a + b
or a− b is a t + 1-bit number (a and b are t-bit numbers).
Then, our design pre-stores all possibilities for x2 where x is
a t+1-bit number in a crossbar memory. Therefore, the result
of (a+b)2

4 and (a−b)2

4 is pre-stored in the memory. Thus, to
calculate the result of a multiplication, for each residue, first,
we calculate a+b and a−b. The result of these additions are
directly an address to a memory which stores the result of the
square binomial. Two memory accesses gives us the values
of (a+b)2

4 and (a−b)2

4 . Considering the architecture of neural
networks, the multiplied values are accumulated. Therefore,
instead of Σ( (Xi+Wi)

2

4 − (Xi−Wi)
2

4 ) we calculate the equivalent

term Σ
(Xi+Wi)

2

4 − Σ
(Xi−Wi)

2

4 . In this way, as it is illustrated
in Fig 2b, we eliminate a subtraction in each multiplication,
thereby, increasing the efficacy of the proposed RNSnet.

Figure 4 shows the multiplication in RNS format. As we
are using three modulis in this work, we require six additions,
six memory reads, and three subtractions to perform the
multiplication. However, as we discussed, we do not do the
subtraction for each multiplication and we subtract the results
of the summations at the end. The main advantage of using
square-based calculation is its low memory requirement. For
instance, for multiplication of RNS values using square-based
multiplication, we require 3× 2t + 1 rows of memory (each
memory has 2 read ports) to pre-store the result of the RNS
multiplication, where t is the bit width of the numbers in
RNS. While, without square-based multiplication technique,
if we want to lookup the multiplication result using a and b
combination as a memory address, the required memory is
3× 22×t rows, which is 2t−1 times more than square-based
technique. Moreover, without using RNS the memory-based
implementation of the multiplication needs 22×3×t memory
rows, which is significantly higher than the RNS-based mul-
tiplication.

Activation Function and Pooling
In a neural network, each neuron accumulates the weighted

signals from the neurons in the previous layer. Then, it passes
the result of the summation through an activation function
f (ΣW l

i, j×al−1
j ). There are several types of linear or non-linear

activation functions. Linear functions such as ax+b are totally
supported using RNS addition and multiplication explained in
previous parts.

RNSnet supports also nonlinear activation functions. we can
approximate the nonlinear activation functions using a few
first terms of the Taylor expansion (Fig 2d). To implement
compared-based activation functions, such as Rectified Linear
Unit (ReLU), defining a comparison operator is necessary.
For convolutional layers, our design needs to support Pool-
ing layers most of which need comparison operations. Min
and Max pooling are two common types of pooling layers.
However, the comparison operation in RNS is not as straight
forward as the multiplication and addition operations[49]. In
RNSnet we implement the compared-based activation function
and pooling layers as shown in (Fig 2e) which is described
hereunder. Most of the implemented compare operators use
backward conversion to bring the data back to binary and then
compare the numbers in binary format [50]. These methods
impose a significant cost to the system, especially in NNs
where the comparison operation is required for each neuron.
In this work, we propose a technique to compare numbers in
RNS. In our design each RNS number is represented by three
residues {R1,R2,R3} and as illustrated in Equation below. In
our RNS, adding (2t + 1)× (2t − 1) (which is a repetition
period of R1 and R3) to each RNS number, results in a number
with the same value for the 2t +1 and 2t −1 residues, while
the 2t residue is decremented by one. This pattern is shown
below:

X
ModuliSet={2t+1,2t ,2t−1}−−−−−−−−−−−−−−−→

RNS
= {R1,R2,R3}

|X |2t−1= R1, |X |2t= R2, |X |2t+1= R3{
R′1 ≡ |X +((2t −1)× (2t +1))|2t−1

|(2t −1)× (2t +1)|2t−1= 0−→ R′1 = |X |2t−1= R1{
R′3 ≡ |X +((2t −1)× (2t +1))|2t+1

|(2t −1)× (2t +1)|2t+1= 0−→ R′3 = |X |2t+1= R3
R′2 ≡ |X +((2t −1)× (2t +1))|2t

R′2 = |X |2t+1+|(2t −1)× (2t +1)|2t

R′2 = R2 + |(2t −1)|2t×|(2t +1)|2t

R′2 = R2 +(−1×+1) = R2−1

Table I shows the trend of the values in RNS using {7,8,9}
as the ModuliSet. The left half of the Table I shows how RNS
values change when the binary value increases from 1 to 66.
As we can see, the value of R1 and R3 change periodically
in 7× 9 = 63 step while in each period the value of the
R2 decrements by one. The right half of the Table I shows
how the RNS values change over periodic binary numbers. In
order to compare RNS numbers, first, we need to define two
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parameters: for a given R1, R2, and R3 (i) The Least Possible
Number (LPN) is the least number that has the same R1 and
R3 as its 2t −1 and 2t +1 residues respectively, and (ii) The
Reference Residue is defined as R2 of the corresponding LPN.

For instance, considering ModuliSet={7,8,9}, the LPN for
every RNS number with R1 = 2 and R3 = 3 is 30. Additionally,
the RR for every RNS number that has R1 = 2 and R3 = 3 is
6, since |30|8= 6→ R2 = 6. Therefore, We can define each
binary number as:

X
ModuliSet={2t+1,2t ,2t−1}−−−−−−−−−−−−−−−→

RNS
= {R1,R2,R3}

X ′≡ (2t +1)× (2t −1)× (RRX −R2)+LPNX

X ′
ModuliSet={2t+1,2t ,2t−1}−−−−−−−−−−−−−−−→

RNS
= {R′1,R′2,R′3}

R′1 = |X ′|2t−1= |LPNX |2t−1= RRX = R1

R′2 = |X ′|2t= |−1× (RR−R2)|2t+|LPNX |2t−→
R′2 = R2−RRX +RRX = R2

R′3 = |X ′|2t+1= |LPNX |2t+1= RRX = R3

X ′= X −→ X = (2t +1)× (2t −1)× (RRX −R2)+LPNX

As far as the comparison is concerned, due to the fact that
2t + 1× 2t − 1 is greater than the maximum possible LPN,
each number that has a greater value of (R2−RR) is greater.
Therefore, to compare two numbers, first, we subtract their R2
from the RR, then, we compare these results for both numbers
and the number with the greater difference is the greater one. If
the difference is equal for two numbers, the number that has a
larger LPN is the greater one. In order to compare the numbers
in RNS, first, we generate a memory that stores the LPN, and
RR for each possible values of R1 and R3. To compare RNS
numbers, we use both R1 and R3 as the memory address. Then,
we read the LPN and RR from the memory and we compare
the numbers using the above-mentioned technique.

TABLE I
TREND OF RNS REPRESENTATION OVER ORDERED AND PERIODIC BINARY

NUMBERS

ordered numbers Periodic Numbers
Binary R1 R2 R3 Binary R1 R2 R3

1 1 1 1 30 2 6 3
2 2 2 2 93 2 5 3
3 3 3 3 156 2 4 3

. . . . . . . . . . . . 219 2 3 3
63 0 7 0 282 2 2 3
64 1 0 1 345 2 1 3
65 2 1 2 408 2 0 3
66 3 2 3 471 2 7 3

IV. HARDWARE SUPPORT

A. RNS Addition

As shown in Section III-C, RNS addition requires an integer
addition, a comparison and final selection. We first add the two
inputs. We then perform the comparison by adding (−)moduli
to the previous output. We then select the appropriate output
based on the sign bit of the comparison output. If the sign bit is
‘0,’ the output of comparison is selected otherwise the output
before comparison is selected as the result of RNS addition.

We use Memristor Aided loGIC (MAGIC) NOR [51, 52, 53]
to execute logic functions in memory due to its simplicity and
independence of execution from the data stored in memory.
Applying voltages to wordlines to execute logic within a
particular column triggers same operation in other columns
as well. This allows execution of logic in parallel, thereby
improving the speed of the process. Figure 5 shows a simple
NOR operation in memory. A row driver applies an execution
voltage, V0, to the output row in which the NOR result is to be
written while the rows that NOR operates on are grounded.
Using this in-memory NOR operation, the design proposed
in [52] evaluates sum (S) and carry (Cout ) bits of 1-bit full
addition (inputs being A,B,C) as following:

Cout = ((A+B)′+(B+C)′+(C+A)′)′

S = (((A′+B′+C′)′+((A+B+C)′+Cout)
′)′)′

Here, Cout is realized as a series of 4 NOR operations while
S is obtained by 3 NOT operations (evaluation of A′,B′,
and C′) followed by 5 NOR operations. A NOT operation is
implemented as a NOR operation with 1 input. From this point
onward, a NOR operation by default implies a MAGIC NOR
operation. This design takes 12N +1 cycles to add two N-bit
numbers.

Figure 6 shows the in-memory execution of RNS addition.
The result of in-memory addition of the two inputs is stored
in Result Row 1 (RR1). This addition requires 12t +1 cycles
for the addition of inputs corresponding to modulis 2t−1 and
2t , and 12 ∗ (t + 1) + 1 cycles for the 2t + 1 moduli. Then
−(moduli) is added to RR1 and the result is stored in RR2.
This addition take the same number of cycles as in the previous
step, resulting in effective latency of 2∗(12t+1) and 2∗(12t+
13) respectively. Then the sign bit of RR2 is read out. If the
read bit is ‘1,’ RR2 is selected otherwise RR1 is selected. The
selected row is copied to RR3, which acts as the output of RNS
addition. The memory also contains 11 additional rows, which
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are required to store the intermediate output of MAGIC-based
addition.

B. RNS Multiplication

The RNS multiplication discussed in Section III-C simpli-
fies RNS multiplication a× b to an equivalent term (a+b)2

4 −
(a−b)2

4 . This can be implemented using additions and memory
accesses. First, we perform in-memory RNS addition (a+ b)
and subtraction (a− b) for each residue. We have two data
memories where each address location, k, stores the value
k2/4. The values a+b and a−b are used to address the mem-
ories, which generates (a+b)2

4 and (a−b)2

4 . Now, as explained

in Section III-C, we accumulate (ai+bi)
2

4 and (ai−bi)
2

4 for all
the residues. Then we subtract the two accumulated results to
obtain Σ( (a+b)2

4 − (a−b)2

4 ). This is followed by RNS ranging,
which converts the accumulated values back to RNS domain.

1) Parallelism in Multiplication: Since, the operations cor-
responding to all the residues are same, we discuss the imple-
mentation for the 2t +1 residue. The same implementation is
used for other residues as well. As explained previously, each
RNS addition/subtraction takes tadd = 2 ∗ (12t + 13) cycles.
Many such additions/subtractions, say p, can be parallelized,
generating p outputs at the end of tadd cycles. This can be
done with no extra latency overhead since MAGIC inherently
supports in-memory parallelism [52].

Then, each output is used to read a value from the data
memory, which is then stored in the accumulator. This requires
three cycles in total, one cycle to access the data memory and
two cycles to write the read value in the accumulator. For p
outputs, it takes tma p = 3∗ p cycles.
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Accumulator The accumulator adds the p outputs of data
memory. PIM addition is slow when adding several numbers
together. This PIM inefficiency comes from slow carry prop-
agation among all bits when adding all three inputs together.
Our design exploits the idea of carry save adder to add inputs
together in a tree structure [53, 54]. In carry save adder,
the inputs are added together in groups of three without
propagating the carry bit, generating two outputs for three
inputs.

For example, when we add nine numbers together (e.g. 32-
bit each), we require three adder groups to add such numbers
together in the first stage. In the second stage, the results of
adder blocks are again added together in a tree structure. This
continues until the numbers to be added reduces to 2. The
last stage adds the final two numbers while propagating the
carry bit. All these stages except the last stage can perform
in-memory addition in 13 cycles each. The adder in last stage
of carry save adder needs to propagate the carry bit, and thus
it requires 12N+1 cycles, where N is the size of the final two
numbers. The work in [53] details the hardware execution of
this adder.

The number of carry save addition (3:2 reduction) stages
required are given by dlog3/2 pe, each requiring 13 cycles. Ad-
dition of p numbers of size t+1 bits each results in two outputs
of size y= (t+1)+dlog2 pe bits. The last stage hence requires
12∗ (y)+1 cycles for generating the final output. In total, the
accumulator requires tacc p = 13∗dlog3/2 pe+12∗ (y)+1.

2) Pipelining Multiplication: The above discussion implies
that the latencies of the three major parts of RNS multi-
plication behave with p in different ways. The latency of
RNS addition remains constant, while the latency of memory
access increases linearly, and that of the accumulator increases
logarithmically. In this subsection, we present a multi-level
pipelined design, as shown in Figure 7, which increases the
throughput of the design, while balancing the different parts
of the multiplication.

First, we balance the time taken by RNS addition and
memory access stages. We select p such that tma p ≈ tadd ,
giving p = btadd/3c. This ensures that the time taken by the
memory access stage is almost equal to the RNS addition
stage. A register of size p×(t+1) is added after RNS addition
block. After every RNS addition, the p outputs are stored in
the register. Then, the RNS addition block operates on the
next batch of inputs. In parallel, the memory access stage
operates on the values stored in the register. Hence, except the
first iteration, after every tadd cycles, the accumulator contains



TABLE II
NEURAL NETWORK MODELS AND BASELINE ERROR RATES FOR 4

APPLICATIONS

Dataset Network Topology Error
MNIST 784, 512, 512, 10 1.5%
ISOLET 617, 512, 512, 26 3.6%
INDOOR 520, 512, 512, 13 4.2%
CIFAR-10 32×32×3,Conv : 32×3×3,Pooling : 2×2,

Conv : 64×3×3, ConvV : 64×3×3,512, 10
14.4%

a new set of p values. Now, tacc p is significantly greater
than tma p. Instead, we accumulate q values together such that
tacc q ≈ tma p ∗dq/pe. This requires r = dq/pe iterations of the
p-input RNS addition and memory access stages.

This is followed by the subtraction of the two accumu-
lated values as discussed in Section III-C. The result is then
converted to RNS domain. Since, this happens only once for
a neuron, we implement it in periphery using CMOS logic.
Similarly, the activation function is also implemented using
simple peripheral circuits.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

We exploit HSPICE design tool for circuit-level simulations
and calculate energy consumption and performance of all the
RNSnet memory blocks. The energy consumption and perfor-
mance are also cross-validated using NVSIM [55]. We adopt
memristor device with a large OFF/ON resistance [56] for the
memory devices. The robustness of all proposed circuits has
been verified by considering 10% process variations on the size
and threshold voltage of transistors using 5000 Monte Carlo
simulations. The RNSnet controller has been designed using
System Verilog and synthesized using Synopsys Design com-
piler in 45nm TSMC technology. We compare the proposed
RNSnet accelerator with GPU-based DNN implementations,
running on NVIDIA GPU GTX 1080. The performance and
energy of GPU are measured by the nvidia-smi tool.

Tensorflow [57] is used to realize the NN in the customiza-
tion unit. We evaluate RNSnet on four applications described
below.
Handwritten Digits (MNIST): MNIST is a popular machine
learning data set including images of handwritten digits [58].
The objective is to classify an input picture to one of the ten
digits {0 . . . 9}.
Voice Recognition (ISOLET): Many mobile applications
require online processing of vocal data. We evaluate RNSnet
with the Isolet dataset [59] which consists of speech collected
from 150 speakers. The goal of this task is to classify the vocal
signal to one of the 26 English letters.
Indoor Localization (INDOOR) [60]: We designed a DNN
model for the indoor localization dataset. This DNN localizes
into one of 13 places where there is a high loss in GPS signals.
Object Recognition (CIFAR) [61]: CIFAR-10 dataset in-
cludes 50000 training and 10000 testing images belonging to
10 classes. The goal is to classify an input image to the correct
category, e.g., animals, airplane, automobile, ship, truck, etc.

We use stochastic gradient descent with momentum [62] to
train each network. The momentum is set to 0.1, the learning

rate is set to 0.001, and a batch size of 10 is used. Table
II presents the baseline NN Topologies and their error rates
running four applications. The activation functions are set to
“Rectified Linear Unit” clamped at 6. A “Softmax” function
is applied to the output layer.

B. RNSnet Exploration

Although machine learning algorithms such as neural net-
works require the precision of floating point unit in training
phase, in inference, these algorithms are working with fixed
point values. Even in integer values, reducing the number bit
width, from 32-bit, usually does not affect the final classi-
fication accuracy. Figure 8 shows the classification accuracy
of different neural network applications to the bit width. As
result shows, applications have different sensitivity to reducing
the bit width. For instance, MNIST application works with
maximum accuracy when the bit width of numbers is reduced
to 12. In this configuration, the MNIST using 12-bit numbers
can provide 5.7× and 4.9× higher energy efficiency improve-
ment and speedup as compared to the network with full 32-
bit values. Figure 8 depicts the effects of reducing the bit
width on energy efficacy and the performance of applications.
The bottom x-axis shows the bit width of numbers which
sweeps from 24-bit to 4-bit and the top x-axis shows the
Quality Loss of applications in the corresponding bit width.
The y-axis shows the energy efficiency improvement and
performance speedup of each application using different bit
width as compared to GPU core. Our evaluation shows that
using 16-bit numbers, leads to 145.5×, and 35.4 energy effi-
cacy improvement and speed up respectively, while providing
the maximum classification accuracy. Accepting less than 1%
(2%) quality loss, improves the energy efficiency and speedup
to 188.7× and 42.1× (202.3× and 59.7×) respectively.

Reducing the bit width not only improves the performance
of the RNSnet, but also reduces the memory requirement. Ta-
ble III shows the average memory requirement of each neuron
in RNSnet when the bit width changes. In general, decreasing
the bit width of the binary numbers reduces the required
dynamic range; therefore, we can represent the binary numbers
in RNS with fewer bits. For instance, for implementing 16-bit

binary numbers we select {26− 1,26,26 + 1} (t = d16
3
e = 6)

as our ModuliSet. While, for 12-bit binary number we use
ModuliSet = {24 − 1,24,24 + 1}(t = 4), since we need less
dynamic range to represent a 12-bit binary number than a 16-
bit number. The memory required by RNSnet consists of two
parts: (i) memory required to implement the multiplication.
We pre-store the square of RNS numbers to implement the
multiplication and therefore the size of this memory is doubled
when the bit width of RNS increments by one. (ii) the memory
required to implement the activation function. The number of
rows in this memory is equal to (2t −1)× (2t +1).

Our result shows that using 24 bits numbers, RNSnet
models each neuron in average using 43.4KB memory size.
Reducing the bit width of numbers to 16-bit improves the
neuron memory efficiency to 10.1KB while all applications
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Fig. 8. Energy efficiency improvement, speedup and quality loss of the RNSnet in different bit width.

TABLE III
AVERAGE MEMORY REQUIREMENT OF EACH NEURON IN DIFFERENT

APPLICATIONS USING DIFFERENT BIT WIDTH

4-bit 8-bit 12-bit 16-bit 20-bit 24-bit
MNIST 0.24KB 0.76KB 1.9KB 11.2KB 26.8KB 49.7KB
ISOLET 0.22KB 0.71KB 1.8KB 10.5KB 25.0KB 46.1KB
INDOOR 0.21KB 0.67KB 1.7KB 10.1KB 23.9KB 44.7KB
CIFAR-10 0.18KB 0.59KB 1.3KB 8.6KB 17.1KB 33.2KB

can provide the maximum classification accuracy. Accepting
less than 1% quality loss on applications, RNSnet can further
reduce memory requirement to 1KB. Note that the RNSnet
memory requirement is negligible as compared to prior RNS
works. For instance, work in [37] used 5,681,237 to model a
neuron with 12 inputs. In addition, their memory requirement
increases exponentially with the number of inputs, while
RNSnet memory linearly depends on the number of inputs.

C. RNS Efficiency

In this section we compare the energy consumption and ex-
ecution time of RNSnet with DaDianNao [63] and ISAAC [7].
All designs have been tested over four different applications.
For NN accelerators, we select the best configuration reported
in the papers [7, 63]. For instance, ISAAC design works at
1.2GHz and uses 8-bit ADC, 1-bit DAC, 128×128 array size
where each memristor cell stores 2 bits. DaDianNao works
at 600MHz, with 36MB eDRAM size (4 per tile), 16 neural
functional units, and 128-bit global bus. We see that of the
previously proposed designs, ISAAC performs better over all
datasets.

Table IV lists the energy improvement and speed up of Da-
DianNao, ISAAC and proposed design RNSnet as compared
to GPU architecture. The result shows that DaDianNao can
speeds up the GPU computation by 10.6× in average over four
tested applications. Our evaluation shows that RNSnet execute
3.7× faster and 8.4× more energy efficient as compared
to DaDianNao. This efficiency comes because DaDianNao
does not totally address data movement issue. Similarly, as
compare to ISAAC, the proposed RNSnet can provide 2.5×
and 1.6× higher energy efficiency and speedup respectively.
The advantage of RNSnet to ISAAC comes from RNSnet
digital based operation which removes the necessity of using
ADC and DAC blocks.

Accepting less than 1% quality loss, RNSnet energy effi-
ciency and speedup improve by 5×, 2.6× thanks to using
lower bit width values. Additionally, our RNSnet @1% ex-

TABLE IV
ENERGY EFFICIENCY IMPROVEMENT AND SPEEDUP OF THE PROPOSED

DESIGN AND OTHER NEURAL NETWORK ACCELERATORS (GPU=1).

Applications MNIST ISOLET INDOOR CIFAR10

DaDiano Energy Improv. 13.3× 17.2× 14.4× 24.6×
Speedup 11.0× 12.8× 5.9× 8.4×

ISAAC Energy Improv. 33.3× 51.5× 44.7× 98.6×
Speedup 26.5× 30.6× 14.0× 20.1×

RNSnet
Energy Improv. 71.5× 140.9× 95.6× 273.9×

Speedup 34.5× 37.8× 23.2× 46.1×

RNSnet @1% Energy Improv. 114.5× 197.2× 114.6× 328.7×
Speedup 35.2× 45.3× 32.6× 55.3×

TABLE V
COMPARISON OF DEEP AND BINARIZED NEURAL NETWORK IN TERMS OF

ACCURACY AND EFFICIENCY.
DNN BNN

Accuracy Training (s) Testing (s) Accuracy Training (s) Testing (s)
MNIST 98.5% 13.2 0.1712 98.0% 157.0 0.0176
ISOLET 97.3% 3.9 0.1379 94.8% 44.3 0.0210
INDOOR 96.4% 3.7 0.2324 95.6% 53.8 0.0215
CIFAR-10 85.6% 125.2 0.6921 83.4% 2035.1 0.1841

ecutes the application 1.3× more energy efficient and 1.2×
faster than our RNSnet. Increasing the network size, signifi-
cantly, increases the computation cost of the neural network
on conventional GPU core, however the RNSnet energy and
performance scales linearly with network size. Therefore, we
expect to see much higher efficiency of RNSnet on applica-
tions using large network.

Table V compares the classification accuracy and exe-
cution time of deep neural network and Binarized Neural
Networks (BNNs). The DNNs and BNNs are trained for 10
and 100 epochs respectively. The timing results are reported
for NVIDIA GTX 1080 GPU. Our evaluation shows that
although BNNs are efficient in testing, they are very slow in
training. As results in Table V shows, BNNs trained for 10
times more number of epochs still cannot provide the similar
accuracy that DNN provides. In contract, in this paper we
proposed RNSnet, which can provide the same accuracy as
DNN using fixed point values.

D. Energy-Execution Breakdown

Figure 9 shows the breakdown of the energy and execution
time of RNSnet over different applications. Our result shows
that in network using fully connected layers the weighted ac-
cumulations (multiplication and accumulations) takes 73% and
84% of DNN energy and execution time. After that, activation
function is taking 21% and 11% of energy and execution of
the DNN. Looking at the overhead of RNS conversion, we
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Fig. 9. Breakdown of RNSnet energy consumption and execution time on
differed applications.

observe that this conversion takes less than 6% of total energy
and execution of the neural network. In CNN network with
convolutional layers, the Pooling takes comparable energy and
execution time as compared to activation function. However,
the cost of weighted-accumulation still dominate the total
DNN/CNN energy consumption and execution time.

VI. CONCLUSION

Our proposed RNSnet takes the advantage of using Residue
Number System (RNS) to accelerate deep neural network
applications. Our approach addresses the data movement issue
by locally processing the data inside the memory blocks.
Thanks to the value representation in RNS, RNSnet simplifies
all DNN operations and compute them using memory-friendly
operations such as addition and memory access. We evaluate
the efficiency of the proposed RNSnet on wide range of DNN
applications. Our evaluations show that RNSnet can perform
35.4× faster and 145.5× more energy efficient as compared
to GPU implementation.
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