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ABSTRACT

Hyperdimensional (HD) computing is a novel computational para-
digm that emulates the brain functionality in performing cognitive
tasks. The underlying computation of HD involves a substantial
number of element-wise operations (e.g., addition and multiplica-
tions) on ultra-wise hypervectors, in the granularities of as small
as a single bit, which can be effectively parallelized and pipelined.
In addition, though different HD applications might vary in terms
of number of input features and output classes (labels), they gen-
erally follow the same computation flow. Such characteristics of
HD computing inimitably matches with the intrinsic capabilities
of FPGAs, making these devices a unique solution for accelerating
these applications.

In this paper, we propose F5-HD, a fast and flexible FPGA-based
framework for refreshing the performance of HD computing. F5-
HD eliminates the arduous task of handcrafted designing of hard-
ware accelerators by automatically generating an FPGA imple-
mentation of HD accelerator leveraging a template of optimized
processing elements, according to the applications specification
and user’s constraint. Our evaluations using different classification
benchmarks revealed that F5-HD provides 86.9x and 7.8% (11.9X
and 1.7x) higher energy efficiency improvement and faster training
(inference) as compared to an optimized implementation of HD on
AMD R9 390 GPU, respectively.
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1 INTRODUCTION

Hyperdimensional (HD) computing is a novel computational ap-
proach that builds upon imitating the brain functionality in per-
forming cognitive tasks [1, 2]. In fact, brain computes with patterns
of neural activity, which can be realized by points in a hyperdimen-
sional space, called hypervectors. By leveraging a non-complex and
parallel set of operations on such ultra-wide vectors, HD affords
promising capabilities in learning and classification applications in-
cluding but not limited to language, speech, activity, and face recog-
nition as well as classification of time-series signals [3-9]. In addi-
tion to its inclusive cognitive application space and comparatively
simpler computation model than other learning paradigms[10, 11],
HD computing is inherently robust against failures as the infor-
mation in a hypervector is uniformly distributed over all of its
comprising dimensions [1]. Moreover, HD is able to yield the accu-
racy of state-of-the-art while learning from only a small portion of
the original training data [12, 13].

In a nutshell, HD computing is involved with constituting of
and processing on hypervectors, wherein a hypervector comprises
thousands of bits. For training, first, it generates a fixed set of or-
thogonal hypervectors each of which represents a specific feature
level. Afterward, for a given input (as a preprocessed set/vector of
features), it maps each feature of the input vector to the correspond-
ing predetermined hypervector. Eventually, all the hypervectors are
aggregated, which is basically performed by adding them up [3, 14].
Since the spatial or temporal location of the features does matter,
the aggregation also incorporates shift operation on the represent-
ing vectors to retain the indices of the input features. After all input
data are mapped to a final encoded hypervector, all encoded hy-
pervectors belonging to the same class (label) are summed up to
form the final representative hypervector of the class. Inference
in HD computing is analogous; albeit the encoded hypervector
passes through an associative search (a.k.a similarity check) with
the representative hypervectors to identify the associated class [1].

The encoding and classifying stages of HD computing require a
substantial number of bit-level addition and multiplication opera-
tions, which can be effectively parallelized [13]. These operations
can also be segregated (and hence, pipelined) in the granularity
of dimension level. Though they may vary in the number of in-
put features and output classes, all HD applications follow the
same computation flow, albeit with a controllable degree of paral-
lelism and pipeline. Such characteristics of HD computing inim-
itably matches with the intrinsic capabilities of FPGAs [15], making
these devices a unique solution for accelerating these applications;
however, implementing applications on FPGAs is a time consuming
process[10, 16].

In this paper, we propose F5-HD, an automated FPGA-based
framework for accelerating HD computing that abstracts away the
implementation complexities and long design cycles associated with
hardware design from the user. F5-HD generates a synthesizable
Verilog implementation of HD accelerator while taking the high-
level user and target FPGA parameters into account. Essentially,
F5-HD customizes upon a hand-optimized, fully-pipelined template



processing element that can be parallelized according to the user-
specified constraints (viz., accuracy and power). F5-HD supports
both training and inference as well as model refinement through
online, simultaneous, training and inference, so the model can be
calibrated without interrupting the normal operation of the system.
Specifically, this paper makes the following contributions:

e Proposes F5-HD, a template-based framework that generates
FPGA-based synthesizable architectures for accelerating HD
computing.

e Proposes a novel hardware-friendly encoding approach that
reduces the required Block RAM accesses, hence, enhances
resource utilization

e Provides the flexibility of customized accuracy by supporting
different data-types (viz., fixed-point, binary, and power-
of-two), and of customized power consumption bound by
trading the parallelism.

e Enables simultaneous training and inference to refine the
model without interrupting the system functionality.

Our evaluations using different classification benchmarks re-
vealed that, in high-accuracy mode, F5-HD can provide 86.9% and
7.8% (11.9% and 1.7x) higher energy efficiency improvement and
faster training (inference) as compared to an optimized implemen-
tation of HD on AMD R9 390 GPU, respectively. In the fastest mode
in which each dimension is represented by a single bit (i.e., binary),
F5-HD achieves 4.3% higher throughput and 2.1x throughput/Watt
as compared to the baseline F5-HD using fixed-point values, while
providing in average 16.5% lower classification accuracy. In ad-
dition, we observe that F5-HD framework can ensure the power
consumption to be within 9.0% of the user-defined constraint, on
average.

2 BACKGROUND AND RELATED WORK

In this section, we first articulate the operations behind HD com-
puting, including encoding, training, inference, and retraining. Af-
terward, we review the previous work regarding the utilization and
implementation of the HD computing.

2.1 Hyperdimensional Computing

HD computing builds on the fact that the cognitive tasks of the
human brain can be explained by mathematical operations on ultra-
wide hypervectors [1]. In other words, brain computes with patterns
of neural activity, which can be better represented by hypervectors
rather than scalar numbers. A hypervector comprises Dy, e.g.,
10,000 bits, independent components (dimensions) whereby the
enclosed information is distributed uniformly among all Dy, di-
mensions. This makes hypervectors robust to failure as the system
remains functional under a certain number of component failings,
and as degradation of information does not depend on the position
of the failing components [3, 14, 17].

Encoding: As demonstrated in Figure 1, training an HD model
involves a three-step procedure as follows. First, it initializes base
hypervectors, each of which corresponds to a specific input feature
level. Indeed, input of the HD algorithm is a feature vector Vi with
Dj,, dimensions (elements) wherein each dimension represents a
feature value ¥ that has ¢;,, levels:

Viv = (v0, 01, ,vp,,)
[vil € (Fo, F1.- -+ Fe,,,)

Though it is application-dependent, typical values for D;,, and ;,,
might be, respectively, 100s and four—eight for which ¢;;, can be
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Figure 1: Overview of hyperdimensional learning and inference.

represented by two-three bits. Each of D;,, features in the feature
vector needs to be mapped to a base hypervector with Dj,,, dimen-
sions for subsequent processing. Therefore, to represent all possible
iy values of features, {;,, different hypervectors with Dy, dimen-
sions, namely base hypervectors, are needed. The base hypervectors
are generated according to the attribute of the feature vector. In the
cases that feature levels are independent and irrelevant, base hyper-
vectors can be selected randomly, hence orthogonal. In such cases,
the expected Hamming distance between two (out of {;;) base
hypervectors is ~ Pre /2. However, for the cases that each feature
level is a meaningful quantity, e.g., a continuous signal quantized
to {;y levels, the distance between the hypervectors of two feature
levels should correspond to their actual difference. For these cases,
the base hypervector associated with the lowest feature level is
generated randomly. Afterward, a random half (2#e/2) of its bits are
flipped to produce an orthogonal base hypervector representing
the other side of the horizon, i.e., the highest level of a feature. The
7Ly of
each consecutive hypervector pair, starting from the initial base
hypervector.

After specifying the base hypervectors, each element v; of a
given input feature vector is mapped to its associated base hyper-
vector hvy, for subsequent processing. Nonetheless, as in most
applications the spatial and/or temporal position of an input fea-
ture often do matter, i.e., whenever a sequence of the input features
should be traced such as image and speech inputs, the encoding
procedure takes the locality into account by introducing permu-
tation operation P (which denotes i-bits cyclic left shift) on the
input features before aggregation. Due to the large dimension and
randomness of the base hypervectors, P keeps a hypervector
and its resultant shift orthogonal. Eventually, the mapped hyper-
vectors are aggregated according to Equation 2 to build the query
hypervector:

remaining base hypervectors are generated by flipping

ho(Vio) = hvg, + (hve, < 1)+ + (hve, < Diy)  (2)

Which can be reformulated as:

Div
H = ho(Vio) = . PO(hoy,) 3)
i=0

Training: After mapping each training input Vio to hypervector
H as above, all hypervectors belonging to the same class (label)
are simply summed to form the final representative hypervectors.
Thus, assuming H! = (ho, h1, - -+ ’hD;w>l denotes a generated
class hypervector for an input data with label I, the final (repre-
sentative) class hypervectors are obtained as Equation 4, in which
each dimension ¢y is obtained through dimension-wise addition of



all his, and 7 is the number of input data with label /.
Ci = (eosc1,+ semy,) = ) H )
=0

All dimensions of a class hypervector (é ) have the same bit-
width which can have various representation, e.g., binary (hence
one bit), power-of-two (2"), fixed-point (integer), etc. This makes a
trade-off between accuracy, performance, and hardware complexity.
The base of hypervectors are converted through thresholding. For

instance, for J hypervectors ‘]:{'jl constituting class él, the binarized
class can be obtained as follows.

=/ ’ ,
G = (c) el

J
’ ’ 0 ¢ < 2
,C , € = X 5

th> k {l otherwise ©)

Inference: The first steps of inference in HD computing is simi-
lar to training; an input feature vector is encoded to Dy,,,—dimension

query hypervector H following Equation 3. This is followed by a
similarity check between the query hypervector H and all represen-

tative class hypervectors, C;. The similarity in the fixed-point and
power-of-two number representations is defined as calculating the
cosine similarity, which is obtained by multiplying each dimension
in the query vector to the corresponding dimension of the class
hypervectors, and adding up the partial products:
. Do
similarity(H, C;) = Z hy - ek (6)
Jj=0
The class with the highest similarity with the query hypervector in-
dicates the classification result. The number of classes is application-
dependent and determined by the user. This can be as simple as two
classes, denoting face vs. non-face in a face-detection algorithm.
Similarity checking in binarized HD model (i.e., 1-bit dimensions)
simplifies to the Hamming distance between the query and class
vectors, which can be carried out by a bitwise XNOR, followed by a
reduction (population counter!) operation.

Retraining: Retraining might be used to enhance the model ac-
curacy by calibrating it either via new training data or by multiple
iterations on the same training data. Retraining is basically done
by removing the mispredicted query hypervectors from the mispre-
dicted class and adding it to the right class. Thus, for a new input

feature vector Vi, with query hypervector H belonging actually
to class with hypervector Cy, if the current model predicts the class
Cy where Cpr # Cy, the model updates itself as follows:

é[ = é ]+ ﬂ

. . - (7)
Cr=Cr—-H

This, indeed, reduces the similarity between H and mispredicted
class Cy, and adds H to the correct class C; to increase their simi-
larity and the model will be able to correctly classify such query
hypervectors.

2.2 Related Studies

HD computing is gaining traction as an alternative solution to
perform cognitive tasks in a light-weight fashion that uses sig-
nificantly simpler operations compared to conventional machine

1A population counter basically counts the number of ’1’s (ones) in the given
binary input.

learning techniques that deal with complex learning procedures
with substantial number of costly operations. So far, successful
application of HD computing in varied domains has been demon-
strated. language identification [18], DNA sequencing [19], physical
activity prediction [5, 20], speech recognition [6, 21], and gesture
recognition [12, 22], clustering [23] are just a few examples.

On par with studies investigating the HD applications, several
studies have attempted to propose hardware and algorithmic so-
lutions to enhance the efficacy of HD computing. The study in
[17] proposes logical operations to generate the hypervector corre-
sponding to each feature on the fly, in order to reduce the costly
BRAM accesses. They also propose approximate majority gate to
compose the binary class hypervectors without requiring to hold
the summation on hypervector components in a multi-bit format
in the course of training. This is, however, limited to low-accuracy
binarized HD computing wherein each dimension of the query and
class hypervectors is one bit. The authors of [13] propose hierar-
chical HD computing solution that consists of a main stage with
multiple classifiers each can trade between efficiency and accuracy.
There is also a decider stage that learns and selects the appropriate
encoder within the main stage based on a so-called difficulty met-
ric of the input data. The work in [21] clusters class hypervectors
dimensions to reduce the number of multiplications. Additionally,
by assuming the encoded input hypervector is stored in memory,
they implemented the associative search of clustered HD on FPGA.

Other works leverage advances of emerging technologies in HD
computing [24-26]. In [24], the authors leverage CNT-FET and
Resistive RAM to fabricate an end-to-end HD computing solution.
They exploit the variations in RRAM resistance and CNT-FET drives
current to project the input features to query hypervectors as well
as propose approximate accumulation circuit using gradual RRAM
reset operation. The work in [25] demonstrates HD computing
with 3D vertical RRAM in-memory kernels capable of performing
multiplication, addition, and permutation by analog operations on
RRAM cells.

To the best of our knowledge, F5-HD is the first automated FPGA-
based framework that implements HD computing with varied model
precision, capable of meeting user constraints on different FPGA
platforms.

3 F5-HD FRAMEWORK OVERVIEW

F5-HD aims to abstract away the complexities behind employing
FPGAs for accelerating Al applications [27]. F5-HD is an automated
framework that generates synthesizable FPGA-based HD implemen-
tation in Verilog, considering the user-specified criteria, e.g., power
budget, performance-accuracy trade-off, and FPGA model (avail-
able resources). F5-HD combines the advantages of hand-optimized
HDL design with the bit-level yet flexible manageability of FPGA re-
sources, which is in concordance with bitwise operations associated
with HD computing, to accelerate these applications.

3.1 F5-HD Workflow

Figure 2 demonstrates F5-HD’s workflow, explained as follows.
(1) Model Specification: The framework starts with specifying
the application specifications, viz., the number of classes, features
(i.e., input vector dimensions Dj,, as well as the number of fea-
tures different levels, {;;) and the number of training data. The
user also determines the target FPGA model, hence F5-HD can get
the number of available resources from a predefined library. F5-
HD currently supports Xilinx 7-series FPGAs, including Virtex-7,
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Figure 2: Overview of the proposed framework, F5-HD.

Spartan-7, and Kintex-7 families. This can be readily extended to
other FPGA families. In addition, the user can dictate constraints
on the power as well as performance-accuracy trading, which will
be explained in the following subsections.

(2) Design Analyzer: Thereafter, F5-HD’s design analyzer de-
termines the number of resources according to the user’s spec-
ification. F5-HD exploits a parameterized template architecture,
mainly composed of an encoder; an associative search unit, in-
cluding Processing Units and Processing Elements; as well as an
HD model module that stores and updates the class hypervectors.
The hardware architecture of F5-HD will be detailed in Section
4. The design analyzer determines the number of Processing Units
(PUs), Processing Elements (PEs) as well as the type and number
of dimension-wise functional units within each PE, according to
the desired accuracy level and available resources. All the function
units, e.g., encoder and PUs, utilize a specific set of building blocks
with foreknown resource utilization. Thus, F5-HD design analyzer
can readily figure out the parameters of the template architecture,
e.g., maximum parallelization level of the encoder (see Section 4.1)
and number of PEs per PU, based on their required resources (LUT,
BRAM, and DSP) and the available resources.

In the case a power budget is defined by the user, the design
analyzer tries to find out the maximum number of PEs that can be
generated, without violating the constraints. For this regard, F5-
HD estimates the power of resources, e.g., LUTs, flip-flops, DSPs,
BRAMs, etc. using Xilinx Power Estimator (XPE) [28]. This re-
quires calculating the expected activity of the resources, which
is straightforward owing to the foreknown homogeneous struc-
ture of the generated architectures and the expected probability
of the hypervectors at the level of the dimension. Another con-
straint is performance-accuracy trade-off wherein the user chooses
between the highest performance with relatively lower accuracy,
mediocre, and low performance with the highest accuracy. The
available modes are currently fixed-point (8-bits integer representa-
tion), power-of-two in which hypervector dimensions are four-bits
values that represent the exponent, and binary (i.e., each dimension
is represented by one bit). It is noteworthy that the power and
accuracy constraints can be applied concurrently, which provides
the user with the flexibility to adapt F5-HD based on their appli-
cation criteria. For instance, for real-time low-power applications,
the user might specify their power budget with the binary mode of
operation. The output of design analyzer is basically the number
of PUs and PEs (per PU), the number of multipliers (in the case
of fixed-point model) per PE, and the parallelization level of the
encoder, i.e., the number of hypervector dimensions it can produce
at each cycle.

(3) Model Generator: After the design analyzer specified the
parameters of the template architecture, F5-HD’s model genera-
tor, automatically generates the Verilog implementation of F5-HD
using hand-optimized template blocks. This includes instantiat-
ing the PUs, PEs, the Block RAMs, and off-chip memory interface.

Table 1: Classification accuracy and performance of binary,
power-of-two, and 8-bits fixed-point HD models running on
CPU.

Binary Power-of-two Fixed-point

Application Accuracy Exe.time Accuracy Exe.time Accuracy Exe.time

Speech Recognition 88.1% 1.6ms 90.3% 3.4ms 95.5% 10.5ms
Activity Recognition  77.4% 0.6ms 88.0% 1.3ms 94.6% 3.4ms
Face Recognition 48.5% 0.7ms 89.6% 1.6ms 96.9% 4.6ms
Physical Monitoring  85.7% 1.1ms 90.8% 2.4ms 94.5% 7.8ms

The model generator also initializes the BRAMs with the base hy-
pervectors. For this end, F5-HD exploits a fixed, predetermined
hypervector as the seed vector, and generates the remaining ;;, — 1
hypervectors according to the procedure explained in Section 2.1.
In the cases the user already has a trained model (i.e., base and class
hypervectors), F5-HD allows direct initializing of these hypervec-
tors.

(4) Scheduler: The next step generates the controller, which
statically schedules F5-HD operations. The main scheduling tasks
include loading the training or inference data from off-chip memory
into local BRAMs, switching between the training, inference, and/or
retraining modes. It also generates a controller to allocating and
deallocating PUs for retraining, and essentially controlling the
enabler of different processing units in the granularity of clock
cycle. Eventually, the logic and controller are merged to realize the
concrete accelerator architecture.

3.2 Accuracy-Performance Trade-off

The majority of existing HD computing methods use binarized
class hypervectors to substitute the costly Cosine similarity op-
eration in inference phase with the simpler Hamming distance
operation. Although binary representation increases the through-
put, in the majority of classification problems, the accuracy of the
binarized HD model is not comparable to that of the HD using fixed-
point dimensions [13]. In addition to the fixed-point and binary
HD models, we provide power-of-two representation in the class
hypervectors which replaces the costly multiplication operations
with shift operations in the hardware level. Though power-of-two
representation covers discrete values, it supports a larger range of
numbers which helps to compensate for the accuracy drop. Table 1
compares the accuracy and execution time of HD models for four
different datasets on CPU. Fixed-point model, on average, attains
5.7% and 20.5% higher accuracy compared to, respectively, power-
of-two and binary models. The binary model surpasses in terms
of the throughput, wherein it yields 6.5% and 2.2X performance
improvement over the fixed-point and power-of-two models.

3.3 Training Modes

Similar to the training of Deep Neural Networks (DNNs), training
of HD model can be enhanced by iterating over the input data,
as described in Section 2.1. Note that, as in the case of DNNs, to
avoid overfitting, a learned model does not necessarily predict the
correct class for all data of the same training dataset, however, the
accuracy can be improved by multiple iterations (equivalent to



multiple epochs in the context of deep learning). The first epoch of
F5-HD generates all query hypervectors (one per each input data)
and aggregates the hypervectors with the same label [ as the class
hypervector él. We denote this single-epoch learning as model
initialization. During the subsequent optional epochs (referred to
as retraining), which either can be specified by the user or F5-HD
itself continues until the accuracy improvement diminishes, under
the management of the scheduler, F5-HD enhances the model by
discarding the attributes of the mispredicted query hypervector

H from the mispredicted class hypervector C., and adding it to

the correct class hypervector é‘H' Retraining can be carried out
immediately after model initialization, or enabled later by halting
the inference phase. The principal difference between the model
initialization and retraining is the latter requires prediction (i.e.,
inference) as well while the former simply performs aggregation.
This is supported by F5-HD architecture, which is further described
in Section 4.

Depending on the generality of the training data and the HD
model, in certain cases, the accuracy of the classifier for real-world
data might drop. To resolve this issue, F5-HD provides an online
retraining solution which can be enabled during the runtime by
user. During the online retraining, F5-HD updates the class hy-
pervectors based on a new set of training data in real-time. Thus,
F5-HD is capable of conducting model initialization, retraining,
inference, and simultaneous retraining-inference (online retrain-
ing). In the inference mode, the system works normally and all
the resources are assigned to calculate the similarity metric. In the
online hybrid retraining mode, the system executes both inference
and retraining and allocates a portion of the resources for each
task. In this mode, the part of the FPGA that executes the inference
task always uses the updated model during the online retraining.
Therefore, in each retraining iteration, the model is updated and
the inference employs the recently updated class hypervectors for
prediction. Upon finishing the online retraining, all FPGA resources
will be reallocated back for inference purpose.

3.4 Flow of Data

Inputs of F5-HD are vectors of extracted features, namely feature
maps, which are stored in the off-chip memory. The scheduler par-
tially loads the feature maps to the input buffer memory, distributed
in FPGA local memory (Block RAMs). The encoding module gen-
erates the encoded query hypervectors of the input vector and
stores them in the encoding buffer. The generated query hypervec-
tors are then pipelined in a segregated (dimensional-wise) manner,
fed to the associative search module to perform parallel similar-
ity check with all class hypervectors, yet in a dimensional-wise
manner. This requires to store the partial sums of the dimensions
products. The encoding and associative search work in a synchro-
nous manner to avoid logic starvation and maximize the physical
resource utilization. Thus, in F5-HD, the encoding module outputs
the same number of query hypervector dimensions that the associa-
tive search processes per cycle. Since the classification of an input
vector takes multiple cycles and utilizes all the FPGA resources,
the parallelization is in per-input level. That is, classification oper-
ations for a single input are pipelined and parallelized among all
FPGA resources, and the subsequent input vector is loaded after
the process of the current input accomplishes. Increasing F5-HD’s
throughput necessitates increasing the degree of parallelism in the
associative search, which, in turn, demands reading higher encoded
dimension per cycle. Therefore, owing to the high supported degree

of parallelism in HD computing, the only performance barriers of
F5-HD are the available resources and power budget.

4 F5-HD ARCHITECTURE

In this section, we articulate the contributions of F5-HD in more
details. We begin with elaborating the proposed encoding scheme
that reduces the number of BRAM accesses. Afterwards, we illus-
trate the architecture overview and detail the functionality and
structure of the building blocks in the course of training and in-
ference. We also formulate the required resources by which the
design analyzer specifies the (parametric) number of resources for
the model generator.

4.1 Proposed Encoding Scheme
Both training and inference processes in HD computing need to
encode the input feature hypervector, V;,, to the query hypervector

H, using basic permutation and addition on the base hypervectors.
As previously shown by Equation 3, each element v; of the input
hypervector, based on its value |v;| € (%o, F1,- - F¢,, ), selects

the corresponding base hypervector hvyi (out of ¢;, possible base

hypervectors), rotated left by i bits, to make up the query H. Figure
3(a) illustrates the encoding scheme, in which the constituting bits

of each dimension d; of the query hypervector H are distinguished
by the same color. Accordingly, to build up e.g., dimension dy (d;)

from H, v of the input hypervector chooses among by (b;) of the
base hypervectors, vq selects from bgy,  (bo), vz selects from by, 1
(bp,, ), etc. Recall that the dimensions of hypervectors are 1-bit
wide (denoted by b;s in the figure) that aggregate in a dimension-
wise scheme and form d;s, which can be in various widths and
representations, e.g., fixed-point, binary, and power-of-two.

The naive encoding scheme abstracted in Figure 3 is, however,
both computationally and communicationally intractable: at each
cycle it requires ;5 X Dy, bits (multiples of 10K) of the base hyper-
vectors to be read from the BRAMs, and Dy, population counters
(PopCounters), each with input bitwidth of D;,,. To resolve this,

as the dimensions of the query hypervector H can be calculated

independently, we segregate the output query vector H into the
segments of S dimensions whereby at each clock cycle one segment

is processed. Thus, processing the entire H takes Die[s cycles. This
is conceptualized in Figure 3(b), which shows the physical locations
of the hypervectors bits required to build up the first S dimensions

of H. Accordingly, £i, X (S + Dijy) different bits are needed to be

read to create the query . Notice that this approach retains the
alignments of the bits; for every S + D;,, consecutive bits (per base
hypervector) read from the BRAM(s) at each cycle, bits 0 to D;, are
conveyed to oth PopCounter to form dp, bits 1 to D, + 1 form the
dy via the 1%t PopCounter, and so on. Therefore, no logic or routing
overhead is associated to align the read data.

Beside segmented processing, we further reduce the number of
BRAM accesses by proposing a novel encoding scheme. The pro-
posed encoding, first, permutes the bits of the base hypervectors
locally, i.e., intra-segment, rather than the entire hypervector. After
S permutations, e.g., after the first S features (v;s) in the input
hypervector, the segments accomplish an entire permutation; hence
the base hypervector for the 0" and 'S + 1’!! features essentially
become the same. This removes the information associated with
local and/or temporal locality of the input features. In such case,
we perform inter-segment permutation in which the segments are
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Figure 3: (a) The naive encoding scheme (b) Baseline segmented encoding (c) The proposed encoding scheme (d) Implementa-

tion of the population counter

permuted to left globally, whereby bit by takes the place of bit bg k.
In this scenario, the first S features (v;s) need S bits of the first
segment, the second S input features require S bits of the right
segment (which will be shifted to left by one segment), and so on.
Thereby, the proposed encoding needs €, X (S X Piv/s) = L, X Diy
bits (S bits of all £;,, base hypervectors per every /s input fea-
tures) to produce an output segment. This needs S D;,-width Pop-
Counter. Figure 3(c) conceptualizes the proposed encoding scheme.

The hand-crafted hardware realization of the proposed Pop-
Counter, which contributes to significant portion of the encoder
and overall area footprint, is demonstrated by Figure 3(d). The main
building block of the implemented PopCounter is Pop36 that pro-
duces 6-bit output for a given 36-bit input. It is made up of bunches
of three LUT6 that share six inputs and output the 3-bit resultants,
which are summed up together in the subsequent stage according to
their bit order (position). We instantiated FPGA primitive resources,
e.g., LUT6 and FDSE to build up the pipelined PopCounter, which
is ~20% area efficient than simple HDL description. The impact of
PopCounter intensifies further in binary HD models wherein the
associative search module is relatively small.

4.2 F5-HD Architecture

The architecture overview of F5-HD is illustrated in Figure 4, which
incorporates the required modules for training, inference and online
retraining of the HD computing. The main template architecture
of F5-HD includes two levels of hierarchy: a cluster of Processing
Units (PUs), each comprises specific number of Processing Elements
(PEs). The assignment of PUs and PEs are selected in a way that
maximizes the data reusability.

Processing Units (PUs): F5-HD contains 2 X |C| PUs where
|C| is the number of classes (labels). In the course of inference, all C
PUs perform similarity checking. Every cycle, each PU receives $/z
of the query hypervector’s dimensions (recall that S is the segment
length generated by encoder at each clock cycle, as discussed in
Section 4.1). Thus, together, a pair of PUs process all S dimensions
of the segment, and hence, 2 X |C| PUs are able to check similarity
between all |C| classes in parallel. Every PUy also contains a local
buffer to prefetch (a portion of) the associated class hypervector
Cy in advance to suppress the BRAM’s read delay. Additionally, PU
includes a pipelined accumulator to sum up and store the results of
PEs, to be aggregated with the results of the next $/> dimensions.

Processing Elements (PEs): Each PE contains a predetermined
number of multipliers and adders (based on the FPGA size, normally
eight fixed-point multipliers). However, the number of PEs in each
PU which together with the PopCounters of encoder determine
the level of parallelism (value of S), is specified according to the

available FPGA resources. The available resources may be restricted
by the power budget, as well. PEs generally perform the similarity
check through calculating the dot-product of the query and class
hypervectors, though it requires different type of operations for
different model precision (different representations of dimensions).
Typically, PEs consist of fixed-point multipliers, which we map
them to FPGA DSPs. Utilizing power-of-two HD model replaces the
multiplications with shift operations in which each dimension of

the query H is shifted by the value specified by the corresponding
element of the class hypervector. Using binary HD model further
simplifies this to element-wise XNOR operations, followed by reduc-
tion or population count, in F5-HD XNOR and population count
operation is combined and implemented in XS LUTs followed by a
layer of 6-input population count logic (P6 LUTs). Therefore, the
advantage of a hand-crafted PopCounter gets further noticed in
the binarized HD models. To generate HD architectures of differ-
ent accuracy, F5-HD produces PEs with the specific structure, the
template architecture is retained.

In the following, we explain how F5-HD architecture splits the
processes during the model initialization, inference, and retraining
procedures.

Model Initialization: Model initialization starts with randomly
initializing of the class hypervectors as well as generating the or-
thogonal, base hypervectors. Since model initialization is carried
out only once in the entire course of the HD computing, we try to
simplify this stage and do not allocate specialized resources. There-
fore, we load both the base hypervectors and initial (random) class
hypervectors during initial programming of the FPGA. Thereafter,
all training input data is encoded and then added to the initial class
hypervector. We use the same encoding module used for gener-
ating the query hypervectors, which, at each cycle, generates S
dimensions of the encoded input vector and adds it back to the cor-
responding class hypervector using the S-wide adder incorporated
in the model module (see Figure 4).

Inference: Figure 4 demonstrates the structure of the inference

block in F5-HD architecture. The encoded query hypervector H
is broadcast to all PUs, each of which shares $/2 corresponding
dimensions of its prefetched associated class hypervector between
its PEs. PUs accumulate the sum-of-the-products to be aggregated
with the subsequent segments’ results. After processing the entire
query hypervector accomplished, i.e., after P#/s cycles, the final
similarity resultant of each class is obtained by adding the accumu-
lated values of each PU pair. Eventually, the comparator outputs
the class index with the greatest similarity metric.

Retraining: Remember from Section 2.1 that during the retrain-
ing stage, the HD model performs inference on the same input data
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Figure 4: Overview of the HD classification, consisting of HD model, associative search, PUs and PEs structure.

and, in the case of misprediction, updates the necessary classes,
i.e., the correct and mispredicted classes. In F5-HD architecture,
it is performed by passing the mispredicted query hypervector to
the HD model module, which adds (subtracts) the query to (from)
the correct (mispredicted) class. The correct class index is specified
by the label of input data. In summary, retraining involves with
inference, followed by a potential model update.

Online Retraining/Inference: In this operating mode, the en-
coder generates S/> dimensions for the inference, and S/ for the
retraining data. Using the upper pairs of PUs (see Figure 4), infer-
ence executes by !/2 of its typical throughput and takes 2 x P# /s per
input. The other half of PUs perform retraining, which, as already
discussed, includes an inference followed by a potential model up-
date. In the case of a misprediction which demands a model update,
the inference should be halted to update the required classes. To
avoid this, we have dedicated two additional hypervectors to write
the updated classes (hypervectors). Upon a misprediction, the query
hypervector will be subtracted from the mispredicted class, which
is already being read by the inference module segment by segment,
so no additional read overhead will be imposed. Thereafter, the
hypervector will be added to the correct class. After updating each
of the correct and mispredicted hypervectors, the address translator
modifies the physical address of the two classes to point the right
hypervector. Note that till the mispredicted classes are updated, the
HD model works with the previous classes.

Resource Constraints: As the number of PUs are fixed, the
number and size of PEs (i.e., number of multipliers per PE) per each
PU affect the level of parallelism in HD computing. This, however,
is also restricted by the number and bandwidth of on-chip RAMs
as well as the dictated power budget. The following equations
summarize the constraint of different resources F5-HD assumes in
generating F5-HD architecture.

encoding Similairty checker

APopCounter X S+2X|C| X Npg X Apg < LUTmax  (8)

Similairty checker model updater

—
2 X |C| X Npg X DSPpg + S < DSPrax 9)
HD model read access  encoding
C| x S x bitwidth + Djy X ;
€l — 0 X0 BRAMpmax  (10)

In these equations, A y denotes the area of module X in terms of
number of LUTs, Npg is the number of PEs in each PU, DSPpp, is
the number of DSPs per PE (in the case of fixed-point models). We
also map the adder of the model updater into DSP blocks, as evident

from Equation 9. Notice that, in the proposed architecture, the com-
putation is limited by BRAM accesses (rather than BRAM memory).
Thus, we have assigned the constraint on BRAM bandwidth. It is
also noteworthy that our experiments revealed the design is barely
routable for LUT utilization rates above ~90%. Hence, LUT ;4 is
set to 90% of the device LUTs.

5 EXPERIMENTAL RESULTS

F5-HD is a flexible framework for efficient implementation of differ-
ent HD computing applications in FPGA hardware, respecting the
application specifications and user’s requirements. The entire F5-
HD software support including user interface and code generation
has been implemented in C++ on CPU. The software customizes
template blocks to generate an optimized hardware for each ap-
plication, based on the user’s optimization, accuracy, and power
preferences. The output of F5-HD framework is an FPGA-mapped
implementation of a given HD application in Verilog HDL. We ver-
ify the timing and the functionality of the F5-HD by synthesizing
it using Xilinx Vivado Design Suite[29]. The synthesized code has
been implemented on Kintex-7 FPGA KC705 Evaluation Kit. We
used Vivado XPower tool to estimate the device power.

We compare the performance and energy efficiency of F5-HD
accelerator running on FPGA with AMD R9 390 GPU and Intel
i7 7600 CPU with 16GB memory. For GPU, the HD code is imple-
mented using OpenCL and is optimized for performance. We used
Hioki 3334 and AMD CodeXL [30] for the power measurement of
CPU and GPU, respectively. We implement F5-HD on three FPGA
platforms including Virtex-7 (XC7VX485T), Kintex-7 (XC7k325T),
and Spartan-7 (XC7S5100) to evaluate the efficacy of F5-HD on var-
ious platforms with different available resources, power charac-
teristics and power budget. We evaluate the efficiency of F5-HD
on four practical workloads including Speech Recognition (ISO-
LET) [31]: the goal is to recognize voice audio of the 26 letters of
the English alphabet, Activity Recognition (UCIHAR) [32]: the
objective is to recognize human activity based on 3-axial linear
acceleration and 3-axial angular velocity, Physical Activity Mon-
itoring (PAMAP) [33]: the goal is to recognize 12 different human
activities such as lying, walking, etc., and Face Detection: the goal
is to detect faces among Caltech 10,000 web faces dataset [34] from
negative training images, i.e., non-face images which are selected
from CIFAR-100 and Pascal VOS 2012 datasets [35].

5.1 Encoding

Encoding module is used in both training and inference. This en-
coder works in a pipeline stage with the initial training and associa-
tive search (similarity checking) modules. Thus, the more generated



Table 2: The maximum number of generated encoded di-
mensions per cycle using Kintex FPGA

#Features 64 128 256 432 512
Baseline 975 449 254 128 110
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Figure 5: Energy consumption and execution time of F5-HD
versus other platforms during (a) training and (b) one epoch
of retraining.

dimensions by the encoding module, the more throughput F5-HD
can achieve. To evaluate the effectiveness of our proposed encoding
algorithm, we compare the hardware implementation of F5-HD
encoding with a baseline HD computing encoding [13].

Table 2 compares the number of generated dimensions per cy-
cle in F5-HD and the baseline encoding modules. In the baseline
segmented encoding, to generate S dimensions of the encoded hy-
pervector, we showed that HD architecture needs to read S + D,
dimensions of each base hypervector, where S and D;,, are the
segment length and length of the input hypervector, respectively.
In contrast, as we explained in Section 4.1, F5-HD encoding module
is implemented using a hardware-friendly permutation as well as
LUT-based XNORand PopCount modules that reduces the resource
usage. Our evaluation on data points with 64 features shows that
F5-HD encoder can provide 1.5X higher throughput as compared to
the baseline segmented encoder. This throughput improvement in-
creases to 1.9% for data points with 512 features. This is because the
delay of the adder (population counter) dominates as the number
of features (hence, the size of the population counter) increases.

5.2 Training

Initial Model Training: HD generates the initial model by a
one-time passing through the training dataset. Regardless of the ex-
ploited models (viz., binary, power-of-two or fixed-point), in F5-HD
we train the HD model using fixed-point operations and eventually
we quantize the class hypervectors based on the defined model
precision. Figure 5(a) shows the energy consumption and execution
time of HD running on Intel i7 CPU, AMD R9 390 GPU, and Kintex-
7 FPGA platforms during the initial training. The initial training
consists of the encoding module which maps data points into high-
dimensional space and hypervectors aggregation which generates
a hypervector representing each class. In conventional computing
systems, e.g. CPU and GPU, the majority of training time is devoted
to the encoding module, since these architectures have not been
customized to process binary vectors in 10K dimensions. In contrast,

F5-HD can implement the encoding module effectively using FPGA
primitives. Our evaluation shows that F5-HD provides, on average,
86.9x and 7.8X (548.3x and 148.2x) higher energy efficiency and
faster training as compared to GPU (CPU) platform, respectively.
Retraining: Similarity checking (a.k.a associative search) is
the main contributor to HD energy consumption and execution
time during both retraining and inference. In retraining, associative
search checks the similarity between a fixed-point query hypervec-
tor with all stored class hypervectors using cosine metric. Since the
HD encoding is expensive on conventional computing units, in CPU
and GPU implementations, the retraining processes on the encoded
training data which are already stored in memory. In contrast, due
to the efficient F5-HD encoding functionality and in order to reduce
the off-chip memory access, F5-HD encodes the training data on
every iteration. Figure 5(b) compares the HD computing retraining
efficiency on three CPU, GPU, and FPGA platforms. The results are
reported for F5-HD retraining on a single epoch. Our evaluation
shows that F5-HD provides 1.6x and 10.1x faster computation as
compared to GPU and CPU platforms, respectively. Although the
GPU performance is comparable to F5-HD, F5-HD provides 7.6x
higher energy efficiency due to its lower power consumption.

5.3 Inference

Figure 6 compares the energy consumption and execution time
of HD inference running on different platforms. All results are
reported for the case of using the fixed-point model. The inference
includes the encoding and associative search modules. The encoding
module maps a test data into high-dimensional space, while the
associative search module checks the similarity of the encoded data
to pre-stored class hypervectors. The results show that the efficiency
of applications changes depending on the number of features and
the number of classes. For applications with a large feature size,
F5-HD requires a costly encoding module, while applications with
a large number of classes, e.g., ISOLET, devote the majority of
the energy/execution time to perform the associative search. Our
evaluation shows that F5-HD achieves 11.9% and 1.7X (616.8x and
259.9%) higher energy efficiency and faster inference as compared
to GPU (CPU) platform respectively.

F5-HD can have different design choices for inference. Using
fixed-point module F5-HD provides the maximum classification ac-
curacy but relatively slower computation. Using binary and power-
of-two model, the encoding dominates F5-HD energy/execution
time, while for the fixed-point model the majority of resources
are devoted to the associative search. F5-HD removes the multipli-
cations involved in cosine similarity using power-of-two model,
resulting in higher computation efficiency. Finally, the binary model
is the most efficient F5-HD model, where the similarity check can
be performed by using Hamming distance. Figure 7 shows the F5-
HD inference efficiency using power-of-two and binary models. All
results are normalized to the throughput and throughput/Watt of
F5-HD with fixed-point model. For applications with low feature
size, e.g., PAMAP, the encoding module maps a large number of
data points into high-dimensional space. This makes the associa-
tive search a dominant part of inference computation when using
fixed-point model. On the other hand, in face detection with a low
number of classes and high feature size, the encoding dominates the
F5-HD resource and efficiency. Our evaluation shows that F5-HD
using binary and power-of-two models can achieve on average
4.3% and 3.1x higher throughput than F5-HD using fixed-point
model. In addition, the binary and power-of-two models provide
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during inference running on different platforms.
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Table 3: Average resource utilization and power consump-
tion of F5-HD implemented on Kintex

Fixed-point Power-of-two Binary

Resource  LUT 46% 95% 82%
utilization BRAM 47% 46% >%
DSP 89% 26% 29%

Power(W) \ 9.8 14.8 13.9

2.1x and 1.5x higher throughput/Watt as compared to F5-HD using
fixed-point model.

5.4 Resource/Power Utilization

Table 3 lists the average Kintex FPGA resource utilization imple-
menting F5-HD using fixed-point, power-of-two, and binary mod-
els. The results are reported for F5-HD supporting both training
and inference. Our evaluation shows that the fixed-point model
utilizes the majority of the FPGA DSPs in order to perform the sim-
ilarity check of the inference/retraining. In contrast, with binary
and power-of-two models have much lower DSP utilization, as the
majority of their inference computation includes bitwise operations
that can be efficiently performed using LUTs and the PopCounter.
In addition, F5-HD with the binary model has the lowest BRAM
utilization as it can store the trained HD model using significantly
lower memory size. Table 3 also provides the average power dissipa-
tion of the Kintex FPGA. The results indicate that in the fixed-point
model, the number of DSPs limits the FPGA throughput, thus F5-
HD consumes lower power consumption due to its overall low LUT
utilization. In contrast, F5-HD using binary model highly utilizes
the available LUTs on the FPGA resulting in high throughput and
higher power consumption.

5.5 F5-HD on Different FPGA Platforms

To demonstrate the generality of F5-HD and further investigate
its efficiency, we implement it on three different FPGA platforms,
mentioned earlier in this section. Figure 8(a) compares the average
throughout of F5-HD running different HD applications on these
three platforms. Our evaluation shows that Virtex implementing
fixed-point model provides 12.0x and 2.5x higher throughput as
compared to Spartan and Kintex platforms. The efficiency of Virtex

comes from its large amount of available DSPs (2,800 DSPs with
485K LUTs), which can be used to accelerate associative search.
However, F5-HD using power-of-two and binary models mostly
exploit LUTs for FPGA implementation, resulting in higher through-
put especially on Spartan with few numbers of DSPs. For example,
Spartan using binary model can achieve on average 5.2x higher
throughput than F5-HD using fixed-point model. It should be noted
that in all FPGA platforms the throughput of the binary model is
proportional to the number of available LUTs in FPGAs.

To compare the computation efficiency of different FPGAs, we
eliminate the impact of available resources by using the through-
put/Watt as the comparison metric. Figure 8(b) shows the through-
put/Watt of F5-HD implemented in different platforms. As the
results show, Virtex with large number of DSPs provides the max-
imum throughput/Watt when implementing F5-HD using fixed-
point model. However, using power-of-two and binary models,
Spartan provides the higher computation efficiency since most of
F5-HD computation can be processed by LUTs. For example, using
the fixed-point model, Virtex can provide 2.0X and 1.5x higher
throughput/Watt as compared to Spartan and Kintex, respectively.
However, using the binary model, Spartan provides 1.2X and 1.5X
higher throughput/Watt than Virtex and Kintex respectively.

The efficiency of different FPGAs also depends on the applica-
tion, i.e., number of features and classes. For applications with small
feature size (e.g., PAMAP), F5-HD can encode a larger amount of
data at a time, thus the associative search in inference requires
higher number of DSPs and BRAM accesses to parallelize the sim-
ilarity check. This makes the number of DSPs the bottleneck of
computation when using a fixed-point model for PAMAP applica-
tion. PAMAP using power-of-two model eliminates the majority of
DSP utilization required to multiply a query and class hypervector,
thus the number of BRAMs becomes the computation bottleneck.
These results are more obvious on the Spartan FPGA with limited
BRAM blocks.

5.6 Power Budget

As we explained in Section 3, the desired power budget is an in-
put to F5-HD framework that can be dictated by the users be-
fore implementation of each application, which impacts the level
of parallelism. When the user defines a desired power budget
(Ptarget), F5-HD tries to determine the number of PEs per PU
such that the implementation satisfies the power constraint. In
practice, F5-HD may not precisely guarantee the desired power
due to the fact that the number of PEs per PU has discrete values
and the size of the application and its power consumption depend
on this discrete parameter. Additionally, our initial estimation of
the power consumption is according to the logical connectivity of
the building blocks and may not accurately estimate the impact of
signals power, which is routing-dependent?. Therefore, the mea-
sured power after implementation (Py,eqs) might have fluctuations
around the target power level. Here we define the power fluctuation
as AP = |Pmeas — Ptargel‘/Ptargez_

Table 4 lists the average throughput (TP) and AP after imposing
the power budget. The table also shows the normalized throughput
under power constraints to the nominal throughput when no power
budget is employed. The results are reported for the cases that the
power budget is defined as 25% and 50% of maximum power (power
of F5-HD running on the same device without power restriction) as
the desired power level. Our evaluations show that our framework

%In practice, we scale the power of the signal based on the measured signal power
of a base implementation
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Figure 8: (a) Average throughput of different FPGAs implementing F5-HD with fixed-point, power-of-two, and binary models.
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Table 4: F5-HD implementation under power constraints.

FPGA  Power Fixed-point Power-of-two Binary
model  budget TP AP TP AP TP AP
Virtex 50% 2.7(0.44x) 52% 5.1(0.53x) 52% 6.3(0.60x) 2.4%
25% 1.2(0.19x) 10.8% 1.6 (0.16X) 7.0% 2.6 (0.25X) 8.0%
spartan 0% | 02 (038x) 12.8% 0.7 (0.37%) 5.1% 1.0(0.40x) 5.1%
25% 0.1(0.21x) 9.1% 03 (0.17x) 16% 0.6 (0.21x) 17%
Kintex 50% 1.0 (0.41x) 52% 25(0.45x) 6.8% 4.8(0.65X) 4.0%
25% | 0.4(0.18x) 121% 13(0.24x) 18% 1.7(0.25x) 12%

can generate HD accelerator that lays within AP = 18% of the target
power. The power fluctuation becomes large when the targeted
power is low as the magnitude of misprediction (|Pmeas — Prarget|)
almost remains the same while the base power P;qrges reduces.

6 CONCLUSION

In this paper, we proposed F5-HD, an automated framework for
FPGA-based acceleration of HD computing. F5-HD abstracts away
the complexities behind designing hardware accelerators from the
user. The proposed framework enables the user to specify the HD
application specifications (e.g., the number of input features, classes
and training data) as well as the desired classification quality (i.e., ac-
curacy versus performance) and accordingly generates customized
FPGA-friendly Verilog implementation. In addition to training and
inference, F5-HD supports simultaneous training and inference,
hence the accuracy of the HD platform can be enhanced in the
field without, without interrupting its operation. We evaluated the
efficiency of F5-HD extensively, whereby it showed 86.9x and 7.8%
(11.9% and 1.7x) higher energy efficiency improvement and faster
training (inference) as compared to an optimized implementation
of HD on AMD R9 390 GPU, respectively.
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