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Abstract—The continuous growth of big data applications with
high computational and scalability demands has resulted in
increasing popularity of cloud computing. Optimizing the per-
formance and power consumption of cloud resources is therefore
crucial to relieve the costs of data centers. In recent years, multi-
FPGA platforms have gained traction in data centers as low-
cost yet high-performance solutions particularly as acceleration
engines, thanks to the high degree of parallelism they provide.
Nonetheless, the size of data centers workloads varies during
service time, leading to significant underutilization of computing
resources while consuming a large amount of power, which turns
out as a key factor of data center inefficiency, regardless of
the underlying hardware structure. In this paper, we propose
an efficient framework to throttle the power consumption of
multi-FPGA platforms by dynamically scaling the voltage and
hereby frequency during runtime according to prediction of, and
adjustment to the workload level, while maintaining the desired
Quality of Service (QoS). This is in contrast to, and more efficient
than, conventional approaches that merely scale (i.e., power-gate)
the computing nodes or frequency. The proposed framework
carefully exploits a pre-characterized library of delay-voltage,
and power-voltage information of FPGA resources, which we
show is indispensable to obtain the efficient operating point due
to the different sensitivity of resources w.r.t. voltage scaling,
particularly considering multiple power rails residing in these
devices. Our evaluations by implementing state-of-the-art deep
neural network accelerators revealed that, providing an average
power reduction of 4.0×, the proposed framework surpasses the
previous works by 33.6% (up to 83%).

I. INTRODUCTION

The emergence and prevalence of big data and related analysis
methods, e.g., machine learning on the one hand, and the demand
for a cost-efficient, fast, and scalable computing platform on
the other hand, have resulted in an ever-increasing popularity of
cloud services where services of the majority of large businesses
nowadays rely on cloud resources [1]. In a highly competitive
market, cloud infrastructure providers such as Amazon Web Ser-
vices, Microsoft Azure, and Google Compute Engine, offer high
computational power with affordable price, releasing individual
users and corporations from setting up and updating hardware and
software infrastructures. Increase of cloud computation demand
and capability results in growing hyperscale cloud servers that
consume a huge amount of energy. In 2010, data centers accounted
for 1.1-1.5% of the world’s total electricity consumption [2], with a
spike to 4% in 2014 [3] raised by the move of localized computing
to cloud facilities. It is anticipated that the energy consumption of
data centers will double every five years [4].

The huge power consumption of cloud data centers has several
adverse consequences [5]: (i) operational cost of cloud servers

obliges the providers to rise the price of services, (ii) high power
consumption increases the working temperature which leads to a
significant reduction in the system reliability as well as the data
center lifetime, and (iii) producing the energy required for cloud
servers emits an enormous amount of environmentally hostile
carbon dioxide. Therefore, improving the power efficiency of cloud
servers is a critical obligation.

That being said, several specialized hardware accelerators [6],
[7] or ASIC-ish solutions [8], [9] have been developed to increase
the performance per watt efficiency of data centers. Unfortunately,
they are limited to a specific subset of applications while the appli-
cations and/or implementation of data centers evolve with a high
pace. Thanks to their relatively lower power consumption, fine-
grained parallelism, and programmability, in the last few years,
Field-Programmable Gate Arrays (FPGAs) have shown great per-
formance in various applications[10], [11], [12], [13], [14]. There-
fore, they have been integrated in data centers to accelerate the data
center applications. Cloud service providers offer FPGAs as Infras-
tructure as a Service (IaaS) or use them to provide Software as a
Service (SaaS). Amazon and Azure provide multi-FPGA platforms
for cloud users to implement their own applications. Microsoft
and Google are other big names of corporations/companies that
also provide applications as a services, e.g., convolutional neural
networks [15], search engines [16], text analysis [17], etc. using
multi-FPGA platforms.

Having all the benefits blessed by FPGAs, underutilization of
computing resources is still the main contributor to energy loss
in data centers. Data centers are expected to provide the required
QoS of users while the size of the incoming workload varies
temporally. Typically, the size of the workload is less than 30%
of the users’ expected maximum, directly translating to the fact
that servers run at less than 30% of their maximum capacity [5].
Several works have attempted to tackle the underutilization in
FPGA clouds by leveraging the concept of virtual machines to
minimize the amount of required resources and turn off the unused
resources [18]. In these approaches, FPGA floorplan is split into
smaller chunks, called virtual FPGAs, each of which hosts a virtual
machine. FPGA virtualization, however, degrades the performance
of applications, congests routing, and more importantly, limits the
area of applications [19]. This scheme also suffers from security
challenges [20].

A straightforward technique to get around with the underuti-
lization of computing nodes is to adjust the operating frequency
in tandem with workload variation where all nodes are still re-
sponsible for processing a portion of input data. This reduces
the dynamic power consumption proportional to the workload,
and resolves the problem of wake-up and reconfiguration time
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that come with power gating of nodes. Nonetheless, as all nodes
are active, the static power remains a challenge especially in
elevated temperatures near FPGA boards in data centers [16] that
exponentially increase the leakage current. Dynamic voltage and
frequency scaling (DVFS) is a promising technique to resolve
this problem by scaling the voltage according to the available
performance headroom. That is, the circuit does not need to use
the nominal voltage when it is not required to deliver the maximum
performance [21].

Optimum voltage and frequency scaling in FPGAs, however,
is sophisticated. The critical path in FPGA-based designs is
application-dependent. Therefore, employing prefabricated repre-
sentative critical path sensors (e.g., ring oscillators) to examine the
timing of designs as done for ASICs and processors is not practical
[22]. Moreover, FPGAs comprise a heterogeneous set of compo-
nents, e.g., logic look-up tables (LUTs), interconnection resources,
DSPs, on-chip block RAMs and I/Os with separate voltage rails.
Obtaining the optimal point of voltages that minimizes the power
while meets the (scaled) performance constraint is challenging.
As we investigate later in this paper, optimal operating voltages
depend on critical path(s) resources, utilized (i.e., application)
resources and their activity as well as total available resources, and
the workload.

The main focus of this work is optimizing the energy consump-
tion of multi-FPGA data center platforms, accounting for the fact
that the workload is often considerably less than the maximum
anticipated. We leverage this opportunity to still use the available
resources while efficiently scale the voltage of the entire system
such that the projected throughput (i.e., QoS) is delivered. We
utilize a light-weight predictor for proactive estimation of the
incoming workload and incorporate it to our power-aware timing
analysis framework that adjusts the frequency and finds optimal
voltages, keeping the process transparent to users. Analytically
and empirically, we show the proposed technique is significantly
more efficient than conventional power-gating approaches and
memory/core voltage scaling techniques that merely check timing
closure, overlooking the attributes of implemented application.

II. RELATED WORK

The use of FPGAs in modern data centers have been gained at-
tention recently as a response to rapid evolution pace of data center
services in tandem with the inflexibility of application-specific ac-
celerators and unaffordable power requirement of GPUs [19], [17].
Data center FPGAs are offered in various ways, Infrastructure as a
Service for FPGA rental, Platform as a Service to offer acceleration
services, and Software as a service to offer accelerated vendor
services/software [23]. Though primary works deploy FPGAs as
tightly-coupled server addendum, recent works provision FPGAs
as an ordinary standalone network-connected server-class node
with memory, computation and networking capabilities [23], [17].
Various ways of utilizing FPGA devices in data centers have been
well elaborated in [19].

FPGA data centers, in parts, address the problem of programma-
bility with comparatively less power consumption than GPUs.
Nonetheless, the significant resource underutilization in non-peak
workload yet wastes a high amount of data centers energy. FPGA
virtualization attempted to resolve this issue by splitting the FPGA
fabric into multiple chunks and implementing applications in the

so-called virtual FPGAs. Yazdanshenas et al. have quantified the
cost of FPGA virtualization in [19], revealing up to 46% perfor-
mance degradation with 2.6× increase in wire length of the shell,
i.e., the static region responsible to connect the virtual FPGAs
to external resources such as PCI and DDR. This hinders the
routability of the shell as the number of virtual FPGAs increase.
These overheads excluded the area overhead of the shell itself,
which occupies up to 44% of FPGA area. FPGA virtualization is
also not practical for large data center applications such as deep
neural networks that occupy a whole or multiple devices [15].

Another foray for FPGA power optimization includes ap-
proaches that exploit dynamic frequency and/or voltage scaling.
The main goal of these studies is to utilize the available timing
headroom conservatively considered for worst-case temperature,
aging, variation, etc. and scale the frequency for performance
boosting, or voltage reduction without performance degradation,
though a few of them consider workload. Chow et al. [21] propose
a dynamic voltage scaling scheme that exploits a ring-oscillator
based logic delay measurement circuit to mimic the timing behav-
ior of application critical path and adjust the voltage accordingly.
However, the inaccuracy of path monitor circuitries in FPGAs and
even ASICs has been well elaborated [24], [25], [26], [27]. Levine
et al. employ timing error detectors inserted as capture registers
with a phase-shifted clock at the end of critical paths to find
out the timing slack of FPGA-mapped designs through a gradual
reduction of voltage [24]. Their approach adds extra area and
power overhead, cannot be implemented in paths heading to hard
blocks such as memories, and assumes the corresponding paths
will be exercised at runtime. Zhao et al. propose an elaborated two-
step approach by extracting the critical paths of the design using
the static timing analysis tool and sequentially mapping into the
FPGA [25]. Thence, they vary the FPGA core voltage to obtain
the voltage-delay (Vcore − D) relation of the paths for online
adjustment during the operation time. It requires analyzing a huge
number of paths, especially originally non-critical paths might
become critical when the voltage changes. Salami et al. evaluate
the impact of block RAM (BRAM) voltage (Vbram) scaling on
the power and accuracy of a neural network application [28]. They
observed that Vbram can be reduced by 39% of the nominal value,
which saves the BRAM dynamic power by one order of magnitude,
with a negligible error at the output. Their approach is intuitive
and does not examine timing violation, i.e., it is not known if the
timing will not be eventually violated in a particular voltage level.
Similarly, Khaleghi et al. leverage the thermal margin of FPGAs
for frequency boosting though they integrate it in the conventional
flow of FPGA using the pre-characterizition of resources [29].
Eventually, Jones et al. propose a workload-aware frequency scal-
ing approach that temporarily allows over-clocking of applications
when the temperature is safe enough, i.e., the workload is not
bursty [30]. They assume the design has inherently sufficient slack
to tolerate the frequency boosting without overscaling the voltage.

As mentioned earlier, the primary goal of the latter studies is
to leverage the pessimistic timing headrooms for efficiency, while
they struggle in guaranteeing timing safety. More importantly, the
utmost effort of previous works is to satisfy the timing of critical
or near-critical paths under either (and mainly) Vcore scaling, or
Vbram scaling. Nevertheless, unlike single voltage scaling where
there is only one minimal voltage level for a target frequency,
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Fig. 1: Delay of FPGA resources versus voltage ↓
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Fig. 2: Dynamic power of FPGA resources versus voltage.

for simultaneous scaling of Vcore and Vbram, numerous ‘Vcore,
Vbram’ pairs will minimally yield the target frequency while only
one pair of this solution space has the minimum power dissipation.
Therefore, accurate timing and power analysis under multiple
voltage scaling is inevitable.

III. MOTIVATIONAL ANALYSIS

In this section, we use a simplified example to justify the neces-
sity of the proposed scheme and how it surpasses the conventional
approaches in power efficiency. Figures 1, 2, 3 shows the relation
of delay and power consumption of FPGA resources when voltage
scales down. Experimental results will be elaborated in Section VI,
but concisely, routing and logic delay and power indicate the aver-
age delay and power of individual routing resources (e.g., switch
boxes and connection block multiplexers) and logic resources
(e.g., LUTs). Memory stands for the on-chip BRAMs, and DSP
is the digital signal processing hard macro block. Except memory
blocks, the other resources share the same Vcore power rail. Since
FPGA memories incorporate high-threshold process technology,
they utilize a Vbram voltage that is initially higher than nominal
core voltage Vcore to enhance the performance [31]. We assumed a
nominal memory and core voltage of 0.95V and 0.8V, respectively
[31].

The different sensitivity of resources’ delay and power with
respect to voltage scaling implies cautious considerations when
scaling the voltage. For instance, by comparing Figure 1 and Figure
3, we can understand that reducing the memory voltage from 0.95V
down to 0.80V has a relatively small effect on its delay, while its
static power decreases by more than 75%. Then we see a spike
in memory delay with trivial improvement of its power, meaning
that it is not beneficial to scale Vbram anymore. Similarly, routing
resources show good delay tolerance versus voltage scaling. It
is mainly because of their simple two-level pass-transistor based
structure with boosted configuration SRAM voltage that alleviates
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Fig. 3: Static power of FPGA resources versus voltage.

the drop of drain voltages [32]. Notice that we assume a separate
power rail for configuration SRAM cells and do not change their
voltages as they are made up of thick high-threshold transistors
that have already throttled their leakage current by two orders of
magnitude though have a crucial impact on FPGA performance.
Nor we do scale the auxiliary voltage of I/O rails to facile standard
interfacing. While low sensitivity of routing resources against
voltage implied Vcore is a prosperous candidate in interconnection-
bound designs, the large increase of logic delay with voltage
scaling hinders Vcore scaling when the critical path consists of
mostly LUTs. In the following we show how varying parameters of
workload, critical path(s), and application affect optimum ‘Vcore,
Vbram’ point and energy saving.

Let us consider the critical path delay of an arbitrary application
as Equation (1).

dcp = dl0 · Dl(Vcore) + dm0 · Dm(Vbram) (1)

Where dl0 stands for the initial delay of the logic and routing
part of the critical path, and Dl(Vcore) denotes the voltage scal-
ing factor, i.e., information of Figure 1. Analogously, dm0 and
Dm(Vbram) are the memory counterparts. The original delay of the
application is dl0+dm0, which can be stretched by (dl0+dm0)×Sw
where Sw ≥ 1 indicates the workload factor, meaning that in
an 80% workload, the delay of all nodes can be increased up to
Sw = 1

0.8 = 1.25×. Defining α = dm0
dl0

as the relative delay of
memory block(s) in the critical path to logic/routing resources, the
applications need to meet the following:

dcp ∝ Dl(Vcore) + α · Dm(Vbram) ≤ (1 + α) · Sw (2)

We can derive a similar model for power consumption as a
function of Vcore and Vbram shown by Equation (3).

pcir ∝ Pl(Vcore, dcp) + β · Pm(Vbram, dcp) (3)

where Pl(Vcore, dcp) is for the total power drawn from the core rail
by logic, routing, and DSP resources as a function of voltage Vcore
and frequency (delay) dcp, and β is an application-dependent factor
to determine the contribution of BRAM power. In the following,
we initially assume α = 0.2 (i.e., BRAM contributes to 0.2

1+0.2 of
critical path delay [32]) and β = 0.4 (i.e., BRAM power initially is
∼ 25% of device total power [28]).

Figures 4, 5, 6 demonstrates the efficiency of different voltage
scaling schemes under varying workloads, applications’ critical
paths (‘α’s), and applications’ power characteristics (i.e., β, the
ratio of memory to chip power). Prop means the proposed approach
that simultaneously determines Vcore and Vbram, core-only is
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Fig. 5: Comparing DVFS techniques in different critical paths.

the technique that only scales Vcore [25], [24], and bram-only is
similar to [28]. Dashed lines of Vcore and Vbram in the figures
show the magnitude of the Vcore and Vbram in the proposed
approach, Prop (for the sake of clarity, we do not show voltages
of the other methods). According to Figure 4, in high workloads
(> 90%, or Sw < 1.1), our proposed approach mostly reduces
the Vbram voltage because slight reduction of the memory power
in high voltages significantly improves the power efficiency, es-
pecially because the contribution of memory delay in the critical
path is small (α = 0.2), leaving room for Vbram scaling. For the
same reason, core-only scheme has small gains there. The Figure
also reveals the sophisticated relation of the minimum voltage
points and the size of workload; each workload level requires re-
estimation of ‘Vcore, Vbram’. In all cases, the proposed approach
yields the lowest power consumption. It is noteworthy that the
conventional power-gating approach (denoted by PG in Figure 4)
scales the number of computing nodes linearly with workload,
though, the other approaches scale both frequency and voltage,
leading to twofold power saving. In very low workloads, power-
gating works better than the other two approaches because the
crash voltage (∼ 0.50V ) prevents further power reduction.

Similar insights can also be grasped from Figure 5 and 6.
A constant workload of 50% is assumed here while α and β

parameters change. When the contribution of BRAM delay in
total reduces, the proposed approach tends to scale the Vbram.
For α = 0 highest power saving is achieved as the proposed
method can scale the voltage to the minimum possible, i.e., the
crash voltage. Analogously in Figure 6, the effectiveness of the
core-only (bram-only) method degrades (improves) when BRAM
contributes to a significant ratio of total power, while our proposed
method can adjust both voltages cautiously to provide minimum
power consumption. It is worth to note that the efficiency of the
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Fig. 7: Overview of an FPGA-based datacenter platform.

proposed method increases in high BRAM powers because in these
scenarios a minor reduction of BRAM power saves huge power
with a small increase of delay (compare Figure4 and 6).

IV. PROPOSED METHOD

In practice, the generated data from different users are processed
in a centralized FPGA platform located in datacenters. The com-
puting resources of the data centers are rarely completely idle and
sporadically operate near their maximum capacity. In fact, most
of the time the incoming workload is between 10% to 50% of
the maximum nominal workload. Multiple FPGA instances are
designed to deliver the maximum nominal workload when running
on the nominal frequency to provide the users’ desired quality
of service. However, since the incoming FPGA workloads are
often lower than the maximum nominal workload, FPGA become
underutilized. By scaling the operating frequency proportional to
the incoming workload, the power dissipation will be reduced
without violating the desired throughput. It is noteworthy that if an
application has specific latency restrictions, it should be considered
in the voltage and frequency scaling. The maximum operating
frequency of the FPGA can be set depending on the delay of
the critical path such that it guarantees the reliability and the
correctness of the computation. By underscaling the frequency, i.e.,
stretching the clock period, delay of the critical path becomes less
than the clock toggle rate. This extra timing room can be leveraged
to underscale the voltage to minimize the energy consumption
untill the critical path delay again reaches the clock delay.

Figure 7 abstracts an FPGA cloud platform consisting of n
FPGA instances where all of them are processing the input data
gathered from one or different users. FPGA instances are provided
with the ability to modify their operating frequency and voltage.
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In the following we explain the workload prediction, dynamic
frequency scaling and dynamic voltage scaling implementations.

A. Workload Prediction

We divide the FPGA execution time to steps with the length of τ ,
where the energy is minimized separately for each time step. At the
ith time step (τi−1), our approach predicts the size of the workload
for the i+ 1 time step. Accordingly, we set the working frequency
of the platform such that it can complete the the predicted workload
for the τi time step.

To provide the desired QoS as well as minimizing the FPGA
idle time, the size of the incoming workload needs to be predicted
at each time step. The operating voltage and frequency of the
platform is set based on the predicted workload. Generally, to
predict and allocate resources for dynamic workloads, two differ-
ent approaches have been established: reactive, and proactive. In
reactive approach, resources are allocated to the workload based on
a predefined thresholds [33], [34], while in proactive approach, the
future size of the workload is predicted and resources are allocated
based on this prediction [35], [36], [37].

In this work, we use a light-weight online workload prediction
method similar to the one proposed in [37] which is able to extract
short-term features. In the cases the service provider knows the
periodic signatures of the incoming workload, the predictor can be
loaded with this information. Workloads with repeating patterns
are divided into time intervals which are repeated with the period.
The average of the intervals represents a bias for the short-term
prediction. For applications without repeating patterns, we use
a discrete-time Markov chain with a finite number of states to
represents the short-term characteristics of the incoming workload.

The size of the workload is discretized into M bins, each repre-
sented by a state in the Markov chain; all the states are connected
through a directed edge. Pi,j shows the transition probability from
state i to state j. Therefore, there are M ×M edges between states
where each edge has a probability learned during the training steps
to predict the size of the incoming workload. Figure 8 represents
a Markov chain model with 4 states, {S0, S1, S2, S3}, in which a
directed edge with label Pi,j shows the transition from Si to Sj
which happens with the probability of Pi,j . Considering the The
total probability of the outgoing edges of state Si has to be 1 as
probability of selecting the next state is one.

Starting from S0 with probability of P0,i the next state will
be Si. In the next time step, the third state will be again S1
with P1,1 probability. If a pre-trained model of the workload is
available, it can be loaded on FPGA, otherwise, the model needs
to be trained during the runtime. During system initialization, the
platform runs with the maximum frequency and works with the

nominal frequency for the first I time steps. In the training phase,
the Markov model learns the patterns of the incoming workload
and the probability of transitions between states are set during this
phase.

After I time steps, the Markov model predicts the incoming
input of the next time step and the frequency of the platform is
selected accordingly, with a t% throughput margin to offset the
likelihood of workload under-estimation as well as to preclude
consecutive mispredictions. Mispredictions can be either under-
estimations or over-estimations. In case of over-estimation, QoS
is meet, however, some power is wasted as the frequency (and
voltage) is set to a unnecessarily higher value. In case of workload
under-estimation the desired QoS may be violated. The work in
[37] tackles most of the underestimations by t = 5% margin.

B. Frequency Scaling Flow

To achieve high energy efficiency, the operating FPGA fre-
quency needs to be adjusted according to the size of the incoming
workload. To scale the frequency of FPGAs, Intel (Altera) FPGAs
enable Phase-Locked Loop (PLL) hard-macros (Xilinx also pro-
vide a similar feature). Each PLL generates up to 10 output clock
signals from a reference clock. Each clock signal can have an inde-
pendent frequency and phase as compared to the reference clock.
PLLs support runtime reconfiguration through a Reconfiguration
Port (RP). The reconfiguration process is capable of updating most
of the PLL specifications, including clock frequency parameters
sets (e.g. frequency and phase). To update the PLL parameters,
a state machine controls the RP signals to all the FPGA PLL
modules.

PLL module has a Lock signal that represents when the output
clock signal is stable. The lock signal activates whenever there is a
change in PLL inputs or parameters. After stabling the PLL inputs
and the output clock signal, the lock signal is asserted again. The
lock signal is de-asserted during the PLL reprogramming and will
be issued again in, at most, 100µSec. Each of the FPGA instances
in the proposed DFS module has its own PLL modules to generate
the clock signal from the reference clock provided in the FPGA
board. For simplicity of explanations, we assume the design works
with one clock frequency, however, our design supports multiple
clock signals with the same procedure. Each PLL generates one
clock output, CLK0. At the start-up, the PLL is initialized to
generate the output clock equal to the reference clock. When the
platform modifies the clock frequency, at τi based on the predicted
workload for τi+1, the PLL is reconfigured to generate the output
clock that meets the QoS for τi+1.

C. Voltage Scaling Flow

To implement the dynamic voltage scaling for both Vcore and
Vbram, Texas Instruments (TI) PMBUS USB Adapter can be used
[38] for different FPGA vendors. TI adapter provides a C-based
Application Programming Interface (API), which eases adjusting
the board voltage rails and reading the chip currents to measure the
power consumption through Power Management Bus (PMBUS)
standard. To scale the FPGA voltage rails, the required PMBUS
commands are sent to the adapter to set the Vbram and Vcore to
certain values. This adopter is used as a proof of concept, while
in industry fast DC-DC converters are used to change the voltage
rails. The work in [39] has shown a latency of 3-5 nSec, and is able



to generate voltages between 0.45V to 1V with 25mV resolution.
As these converters are faster than the FPGAs clock frequency, we
neglect the performance overhead of the DVS module in the rest of
the paper.

V. PROPOSED ARCHITECTURE

Figure 9(a) demonstrates the architecture of the proposed energy
efficient multi-FPGA platform. Our platform consists of n FPGAs
where one of them is a central FPGA. The central FPGA has
Central Controller (CC) and DFS blocks and is responsible to
control the frequency and voltage of all other FPGAs. Figure 9(b)
shows the details of the CC managing the voltage/frequency of
all FPGA instances. The CC predicts the workload size and ac-
cordingly scales the voltage and frequency of all other FPGAs. A
Workload Counter computes the number of incoming inputs in a
central FPGA, assuming all other FPGAs have the similar input
rate. The Workload Predictor module compares the counter value
with the predicted workload at the previous time step. Based on
the current state, the workload predictor estimates the workload
size in the next time step. Next, Freq. Selector module determines
the frequency of all FPGA instances depending on the workload
size. Finally, the Voltage Selector module sets the working voltages
of different blocks based on the clock frequency, design timing
characteristics (e.g., critical paths), and FPGA resources charac-
teristics. This voltage selection happens for logic elements, switch
boxes, and DSP cores (Vcore); as well as the operating voltage of
BRAM cells (Vbram). The obtained voltages not only guarantee
timing (which has a large solution space), but also minimizes the
power as discussed in Section III. The optimal operating voltage(s)
of each frequency is calculated during the design synthesis stage
and are stored in the memory, where the DVS module is pro-
grammed to fetch the voltage levels of FPGAs instances.

Misprediction Detection: In CC, the misprediction happens
when the workload bin for time step ith is not equal to the bin
achieved by the workload counter. To detect mispredictions, the
value of t% should be greater than 1/m, where m is the number of
bins. Therefore, the system discriminates each bin with the higher
level bin. For example, if the size of the incoming workload is
predicted to be in bin ith while it actually belongs to i+1th bin, the
system is able to process the workload with the size of i+ 1th bin.
After each misprediction, the state of the Markov model is updated
to the correct state. If the number of mispredictions exceeded a
threshold, the probabilities of the corresponding edges are updated.

PLL Overhead: The CC issues the required signals to repro-
gram the PLL blocks in each FPGA. To reprogram the PLL mod-
ules, the DVF reprogramming FSM issues the RP signal serially.
After reprogramming the PLL module, the generated clock output
is unreliable until the lock signal is issued, which takes no longer
than 100 µSec. In the cases the framework changes the frequency
and voltage very frequently, the overhead of stalling the FPGA
instances for the stable output clock signal limits the performance
and energy improvement. Therefore, we use two PLL modules to
eliminate the overhead of frequency adjustion. In this platform,
as shown in Figure 9(c), the outputs of two PLL modules pass
through a multiplexer, one of them is generating the current clock
frequency, while the other is being programmed to generate the
clock for the next time step. Thus, in the next clock, the platform
will not be halted waiting for a stable clock frequency.

In case of having one PLL, each time step with duration τ

requires tlock extra time for generating a stable clock signal. There-
fore, using one PLL has tlock set up overhead. Since tlock � τ ,
we assume the PLL overhead, tlock, does not affect the frequency
selection. The energy overhead of using one PLL is:

PDesign × tlock︸ ︷︷ ︸
Design energy during tlock

+PPLL × (τ + tlock)︸ ︷︷ ︸
PLL energy

(4)

In case of using two PLLs, there is no performance overhead.
The energy overhead would be equal to power consumption of
two PLLs multiplied by τ . The performance overhead is negligible
since tlock < 100µSec � τ . Therefore, it is more efficient to use
two PLLs when the following condition is hold:

Pdesign × tlock + PPLL × (τ + tlock) > 2× PPLL × τ (5)

Since tlock � τ , we should have Pdesign × tLock > PPLL × τ .
Our evaluation shows that this condition can be always satisfied
over all our experiments. In practice, the fully utilized FPGA power
consumption is around 20W while the PLL consumes about 0.1W,
and tlock ' 10µSec. Therefore, when τ > 2mSec, the overhead
of using two PLL becomes less than using one PLL. In practice,
τ is at least in order of seconds or minutes; thus it is always more
beneficial to use two PLLs.

VI. EXPERIMENTAL RESULTS

A. General Setup

We evaluated the efficiency of the proposed method by im-
plementing several state-of-the-art neural network acceleration
frameworks on a commercial FPGA architecture. To generate and
characterize the SPICE netlist of FPGA resources from delay and
power perspectives, we used the latest version of COFFE [40] with
22nm predictive technology model (PTM) [41] and an architectural
description file similar to Stratix IV devices due to their well-
provided architectural details [42]. COFFE does not model DSPs,
so we hand-crafted a Verilog HDL of Stratix IV DSPs [43] and
characterized with Synopsys Design Compiler using NanGate
45nm Open-Cell Library [44] tailored for libraries with different
voltages by the means of Synopsys SiliconSmart. Eventually we
scaled the 45nm DSP characterization to 22nm following the
scaling factors of a subset of combinational and sequential cells
obtained through SPICE simulations.

We synthesized the benchmarks using Intel (Altera) Quartus II
software targeting Stratix IV devices and converted the resulted
VQM (Verilog Quartus Mapping) file format to Berkeley Logic
Interchange Format (BLIF) format, recognizable by our placement
and routing VTR (Verilog-to-Routing) toolset [42]. VTR gets a
synthesized design in BLIF format along with the architectural
description of the device (e.g., number of LUTs per slice, routing
network information such as wire length, delays, etc.) and maps
(i.e., performs place and routing) on the smallest possible FPGA
device and simultaneously tries to minimize the delay. The only
amendment we made in the device architecture was to increase the
capacity of I/O pads from 2 to 4 as our benchmarks are heavily
I/O bound. Our benchmarks include Tabla [13], DnnWeaver [14],
DianNao [9], Stripes [45], and Proteus [46] which are general neu-
ral network acceleration frameworks capable of optimizing various
objective functions through gradient descent by supporting huge
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TABLE I: Post place and route resource utilization and timing
of the benchmarks.

Parameter Tabla DnnWeaver DianNao Stripes Proteus
LAB 127 730 3430 12343 2702
DSP 0 1 112 16 144
M9K 47 166 30 15 15
M144K 1 13 2 1 1
I/O 567 1655 4659 8797 5033
Freq. (MHz) 113 99 83 40 70
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Fig. 10: Comparing the efficiency of different voltage scaling
techniques under a varying workload for Tabla framework.

parallelism. The last two networks provide serial and variable-
precision acceleration for energy efficiency. Table I summarizes
the resource usage and post place and route frequencies of the
synthesized benchmarks. LAB stands for Logic Array Block and
includes 10 6-input LUTs. M9K and M144K show the number of
9Kb and 144Kb memories.

B. Results

Figure 10 compares the achieved power gain of different voltage
scaling approaches implemented the Tabla acceleration framework
under a varying workload. We considered a synthetic workload
with 40% average load (of the maximum) from [47] with λ =

1000, H = 0.76 and IDC = 500 where λ, 0.5 < H ≤ 1

and IDC denote the average arrival rate of the whole process,
Hurst exponent, and the index of dispersion, respectively. The
workload also has been shown in the same figure (in green line)
which is normalized to its expected peak load. We have showed
the corresponding Vcore and Vbram voltages of all approaches in
Figure 11. Note that we have not showed Vbram (Vcore) for the
core-only (bram-only) techniques as it is fixed 0.95V (0.8V) in this
approach. An average of 4.1× power reduction is achieved, while
this is 2.9× and 2.7× for the core-only and bram-only approaches.
This means that the proposed technique is 41% more efficient than
the best approach, i.e., only considering the core voltage rails. An
interesting point in Figure 11 is the reaction of bram-only approach
with respect to workload variation. It follows a similar scaling
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Fig. 11: Voltage adjustment in different voltage scaling tech-
niques under the varying workload for Tabla framework.
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Fig. 12: Power efficiency of the proposed technique in different
acceleration frameworks.

trend (i.e., slope) as Vbram in our approach. However, our method
also scales the Vcore to find more efficient energy point, thus Vbram
in our proposed approach is always greater than that of bram-only
approach.

Figure 12 compares the power saving of all accelerator frame-
works employing our proposed method, where they follow a
similar trend. This is due to the fact that the workload has con-
siderably higher impact on the opportunity of power saving. We
could also infer this from Figure 4 where the power efficiency is
significantly affected by workload load rather than the application
specifications (α and β parameters). In addition, we observed that
BRAM delay contributes to a similar portion of critical path delay
in all of our accelerators (i.e., α parameters are close). Lastly, the
accelerators are heavily I/O-bound which are obliged to be mapped
to a considerably larger device where static power of the unused
resources is large enough to cover the difference in applications
power characteristics. Nevertheless, we have also represented the
BRAM voltages of the Table (VTabla in dashed black line, the same
presented in Figure 11) and Proteus (VProteus) applications in 12.
As we can see, although the power trends of these applications
almost overlap, they have a noticeably different minimum Vbram



TABLE II: Comparison of power efficiency of different ap-
proaches.

Technique Tabla DianNao Stripes Proteus DNNWeav. Average
Core-only 2.9× 3.1× 3.1× 3.1× 2.9× 3.02×
Bram-only 2.7× 1.9× 1.8× 2.0× 2.9× 2.26×
The proposed 4.1× 3.9× 3.9× 3.8× 4.4× 4.02×
Efficiency 41-52% 26-105% 26-116% 23-90% 52% 33.6% − 83%

points.
Table II summarizes the average power reduction of different

voltage scaling schemes over the aforementioned workload. On
average, the proposed scheme reduces the power by 4.0×, which is
33.6% better than the previous core-only and 83% more effective
than scaling the Vbram. As elaborated in Section III, different
power saving in applications (while having the same workload)
arises from different factors including the distribution of resources
in their critical path where each resource exhibits a different
voltage-delay characteristics, as well as the relative utilization of
logic/routing and memory resources that affect the optimum point
in each approach.

VII. CONCLUSION

In this paper, we proposed an efficient framework to throttle
the power consumption of multi-FPGA platforms by effectively
scaling the voltage and frequency during runtime. We utilize a
light-weight predictor for proactive estimation of the incoming
workload and incorporate it to our power-aware timing analysis
framework that adjusts the frequency and finds optimal voltages
according to the available workload margin, while maintaining
the desired quality of service. We evaluated the efficiency of
our framework by implementing the state-of-the-art deep neural
network accelerators on a solid FPGA architecture. Experimental
results signified the efficiency of the proposed method, where we
observed 4.0× power improvement, which is 33.6% to 83% more
effective than previous approaches that merely consider a single
voltage rail.
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