
1586 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 29, NO. 10, OCTOBER 2010

Accurate Direct and Indirect On-Chip Temperature
Sensing for Efficient Dynamic

Thermal Management
Shervin Sharifi Student Member, IEEE, and Tajana Šimunić Rosing, Member, IEEE

Abstract—Dynamic thermal management techniques require
accurate runtime temperature information in order to operate
effectively and efficiently. In this paper, we propose two novel
solutions for accurate sensing of on-chip temperature. Our first
technique is used at design time for sensor allocation and
placement to minimize the number of sensors while maintaining
the desired accuracy. The experimental results show that this
technique can improve the efficiency and accuracy of sensor
allocation and placement compared to previous work and can
reduce the number of required thermal sensors by about 16%
on average. Secondly, we propose indirect temperature sensing
to accurately estimate the temperature at arbitrary locations on
the die based on the noisy temperature readings from a limited
number of sensors which are located further away from the
locations of interest. Our runtime technique for temperature
estimation reduces the standard deviation and maximum value
of temperature estimation errors by an order of magnitude.

Index Terms—Multiprocessor SoC, sensor placement, temper-
ature difference, thermal management, thermal sensor.

I. Introduction

H IGH TEMPERATURES and temperature variations
cause degraded reliability, slower devices, increasing

resistances and leakage power, and so on [2]. More than 50%
of all integrated circuit failures are related to thermal issues
[2]. Due to such problems, high temperatures caused by ever
increasing miniaturization and increased power densities in
new generations of very large scale integrated circuits require
that thermal considerations be taken into account during de-
sign, manufacturing, test, and at runtime [2]. Dynamic thermal
management (DTM) techniques adapt runtime behavior of
the chip to achieve the highest performance under thermal
constraints [3]. One of the most important aspects of DTM
is to capture the runtime variations in the temperature caused
by power consumption variations due to workload changes.

Manuscript received September 27, 2009; revised January 11, 2010;
accepted May 3, 2010. Date of current version September 22, 2010. This
work was funded by the NSF Project GreenLight, under Grant 0821155,
NSF Grants 0916127 and 1029783, SRC Grant P11816, MuSyC, DARPA,
UC Micro, IBM, Texas Instruments, Oracle, Qualcomm, Cisco, and UCSD
Center for Networked Systems. This paper was recommended by Associate
Editor N. Chang.

The authors are with the Department of Computer Science and Engi-
neering, University of California, San Diego, CA 92093 USA (e-mail:
shervin@ucsd.edu; tajana@ucsd.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2010.2061310

This is necessary for accurate and timely responses to thermal
emergencies.

Accuracy of thermal measurements directly affects the effi-
ciency of thermal management as well as the performance of
the CPU [8]. Temperature estimations lower or higher than the
actual temperature may cause late or early activation of DTM
techniques. Late activation of DTM can result in degraded
reliability since the temperature may exceed the designated
thresholds. Early activation of DTM can have significant
impact on performance, especially in the case of response
mechanisms with high invocation times and overhead (e.g.,
dynamic voltage and frequency scaling). DTM techniques
usually rely on temperature information obtained from on-chip
thermal sensors or on online thermal models which estimate
the temperature based on power consumption of different
units. On-chip thermal sensors are the most popular means of
obtaining runtime temperature information required for DTM.
Different numbers of sensors are deployed on various modern
processors. Cell processor with 9 cores contains 11 thermal
sensors [38] and Dunnington Xeon processor with 6 cores
contains two thermal sensors per core [39]. An analog on-
chip thermal sensor usually consists of a temperature-sensing
diode, a calibrated reference current source, and a current
comparator. Components other than the thermal diode (e.g.,
current source) must be placed as far as possible to the hotspot
due to their temperature sensitivity. Moreover, the sensed
temperature values must be routed to where they are used.
Routing overheads associated with these can significantly
contribute to the overall cost [34].

One of the major problems in direct use of on-chip tem-
perature sensors is the sensor imprecision and noise [5], [6].
There are several factors that cause inaccuracy in temperature
measurements. The sensor placement error is one of the
most important sources of inaccuracy in values obtained from
thermal sensors. Typically, sensors cannot be placed right at
the locations they are supposed to monitor, since hotspots
usually happen at high-performance and high-density areas
where silicon is at a premium. This causes a disparity between
the actual temperature at the location of interest and the
sensor. Increasing the number of sensors can resolve this
issue, but the cost of adding a large number of sensors is
prohibitive. Moreover, even without considering the cost of
sensors, various other limitations such as the need for more

0278-0070/$26.00 c© 2010 IEEE

SHARIFI AND ROSING: ACCURATE DIRECT AND INDIRECT ON-CHIP TEMPERATURE SENSING FOR EFFICIENT DYNAMIC THERMAL MANAGEMENT 1587

channels for routing and input/output may not allow placement
of thermal sensors right on the locations of interest.

There are also other factors affecting the accuracy of sensor
readings. Variations in process parameters introduced during
manufacturing can result in sensor reading inaccuracies (e.g.,
threshold voltage variation on the die) [6]. Errors are also
introduced in the process of analog to digital conversion due to
quantization, and due to limitations of design and technology.
Changes in power supply voltage can affect sensor readings.
Finally, the statistical characteristics of sensor inaccuracy
change during the lifetime of the chip [7].

Recent work reports thermal sensor accuracy of around
±1 °C [34], however, this is achievable only through accu-
rate calibration [35]. Many microprocessors use un-calibrated
thermal sensors [35]. This is mainly due to the high cost
and overhead associated with the thermal sensor calibration,
particularly in the systems featuring multiple sensors. The
calibration is usually done at test time and thus incurs overhead
in design and test cost and silicon area [6]. It requires pre-
heating and testing the sensors to detect various errors. Once
these errors and sources of inaccuracy are known, the sensing
unit is calibrated using A/D converters and look-up tables.
Even well calibrated sensors are not capable of accurately
reporting the actual hot spot temperature on the die due to
their location, as explained before. Even when the average
sensor error is low, the sensor might deliver single readings
that are quite different from the actual temperature. If the
readings from the sensors are directly used with complete
trust, such variations may cause problems such as performance
degradation due to early activation of DTM, or reliability
degradation due to its late activation.

In this paper, we propose techniques which address different
sources of inaccuracies in sensing temperature using thermal
sensors. The first technique we propose in this paper is a
design time technique which addresses the problem of efficient
placement of on-chip temperature sensors on the die while
guaranteeing the desired accuracy at each location of interest.
It finds the minimum number of sensors and their locations
to cover a number of locations of interest with a maximum
acceptable sensor placement error. This technique is based
on our analytical model for finding the upper bound of on-
chip temperature differences. Our second technique, indirect
temperature sensing, is a runtime technique to address issues
such as unavailability of enough sensors, degradation or failure
of existing sensors and dynamic change of hotspot locations.
This technique accurately estimates the temperature at differ-
ent locations on the die using noisy readings obtained from a
few available sensors and power estimates of functional units.
It also complements our design time technique by allowing a
trade-off between hardware cost and computation cost. Now
we can use fewer sensors at the cost of slightly increased
computation at runtime. Due to its low overhead it can be used
for temperature aware scheduling and other online thermal
management techniques. Indirect temperature sensing can be
activated as needed rather than continuously; for example
when the temperature at a unit on the chip is approaching
a threshold. In this way, it provides an easy trade off between
accuracy and overhead. Finally, it can adapt to changes in

measurement noise characteristics, which is very important
since mean time to failure of thermal sensors is shorter
than that of assets they are supposed to protect. We have
implemented and assessed these techniques. Our experimental
results show that our sensor placement algorithm results in an
average of 16% reduction in number of sensors compared to
the previous techniques at no cost. Our indirect temperature
sensing technique also shows an order of magnitude reduction
in the standard deviation and maximum value of temperature
estimation error relative to measured temperature values.

The next section describes the related work. Section III
explains the details of our analytical model for upper bound
on temperature difference that is then used in Section IV for
the proposed sensor placement method. Section V explains
our indirect temperature sensing. Experimental results are
provided in Section VI and Section VII concludes this paper.

II. Related Work

One of the most widely used models for temperature estima-
tion at micro-architectural level is HotSpot [8], which is based
on building a multilayer thermal RC network of the given
chip. The differential equations used to describe the heat flow
have a form similar to that of electrical current. This duality
is the basis for the micro-architectural level thermal model
of HotSpot which was proposed in [8] and further described
in [9] and [1]. Temperature modeling techniques such as
HotSpot incur too high-computation cost during runtime. In
[11], a technique is proposed which performs runtime thermal
simulation based on the observation that the average power
consumption of architecture level modules in microprocessors
is the major contributor to the variations in the temperature.
Therefore, piecewise constant average power inputs can be
used to speed up the thermal analysis. Techniques such as
those introduced in [11] need to continually perform tempera-
ture estimation, thus causing significant overhead. In addition,
since these on-chip temperature estimation techniques are not
combined with thermal sensor measurements, the estimates
can easily deviate from the actual values. Due to these issues,
temperature information for DTM is usually obtained from
thermal sensors at runtime.

In [36], the authors address the problem of estimating
the accurate sensor temperatures given noisy sensor readings.
This paper focuses on steady-state temperature and doesn’t
consider transient temperature changes, which is necessary
for dynamic thermal management techniques. Temperature is
assumed to depend only on the current power consumption of
the functional blocks and dependence of current temperature
on previous temperature is ignored. In [37], the authors present
a thermal characterization approach which reconstructs the
thermal map of the die based on limited sensor measurements
using spectral Fourier analysis techniques. This approach is
able to reconstruct the thermal map using limited sensor data,
but the effect of inaccurate and noisy sensors is not considered.
The information about the thermal map is extracted only
based on the thermal sensor readings and thermal dynamics
of the chip. Power consumption of different cores are not
exploited. None of the previously published techniques provide

1588 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 29, NO. 10, OCTOBER 2010

Fig. 1. Contour map of maximum temperature difference to a point of
interest.

any results on their execution times to show practicality of
these techniques for thermal estimation at runtime.

Different techniques have been proposed for efficient
placement of on-chip thermal sensors. These techniques are
usually based on identification of the hotspots and placing the
minimum number of sensors such that they appropriately cover
these hotspots. A sensor placement method is proposed in
[21] which is based on the concept of range around a hotspot.
This is the maximum distance from the hotspot within which
a sensor can be placed while still maintaining the intended
accuracy. This technique estimates the maximum temperature
difference between a heat source and its surrounding locations
based on their distance. The model is based on the assumption
that the temperature decays exponentially with this distance
from a hotspot. A maximum distance from the hotspot is
calculated where temperature difference of all of the points
within this distance to the hotspot is less than a maximum
acceptable temperature error. Sensors are placed within this
distance from the hotspot in order to maintain a desired level
of accuracy. Selection of activity factor parameter in this
technique is not easy and also depends on the application.
Therefore, the results will not be exact and a pessimistic
estimation must be used to guarantee the maximum
error. Moreover, when calculating the maximum temperature
difference to a hotspot, the result depends only on the distance
from the hotspot. In other words, it implies that for all of
the points at equal distance from the hotspot, the maximum
temperature difference to the hotspot is the same, which is not
correct. This can be due to the effect of the location and power
consumptions of other power sources on the temperature
around a hotspot. Fig. 1 shows the contour map of maximum
temperature difference relative to a point of interest in a multi-
processor SoC which is used in our experiments and consists
of 6 XScale cores [16]. This figure clearly shows that the
maximum temperature differences around the region of interest
are not the same for equidistant points from the hotspot.

In [20], the authors introduce a systematic technique for
thermal sensor allocation and placement in microprocessors.
This technique identifies an optimal physical location for
each sensor such that the sensor’s attraction toward steep
thermal gradient is maximized. However, this approach does
not consider the accuracy of the sensors and does not guarantee
the maximum error in the thermal sensor readings.

To the best of our knowledge, no technique has been previ-
ously proposed to estimate the temperature difference between
various locations on the die. The technique proposed in [21] is
a special case of this problem and proposes a model for esti-
mating the temperature at distance d from a heat source. In this
paper, we propose an analytical model for estimating an upper
bound for the maximum temperature difference between any
two points on the die. Usually in order to estimate the maxi-
mum temperature differences and variations, extensive simula-
tions are performed. The upper bound provided by our model
is not application dependent and does not involve extensive
simulations. Other than sensor placement, the proposed model
can be used in analyzing the worst case temperature variations
on the chip such as analysis of reliability and performance
mismatch. Spatial and temporal temperature variations happen
as a result of functional and structural differences and differ-
ences between computational activities across the chip and also
workload variations during the time. Temperature variations
as high as 50 °C across the die in a modern microprocessor
are reported in [2]. These variations impact reliability and
performance of the systems. It is shown in [24] that at mod-
erate temperatures, spatial and temporal temperature gradients
determine the device reliability; and to achieve satisfactory
reliability, resolving the thermal hotspots alone is not adequate.
In [23], a comprehensive framework is proposed for analyzing
the effects of temperature and temperature variations on relia-
bility of multi-core systems. Temperature variations may also
cause performance mismatch which can lead to performance
or functional failures. For example, since wire resistances scale
with temperature, difference between temperatures of two
regions of the die cause difference between resistances at those
two regions which may result in timing issues in interconnects
and clock skew problems in clock networks. This makes tem-
perature variations an important factor in clock tree design and
optimization [25]. Such issues make analysis of temperature
variations and gradients an important issue. Our model which
is presented in the subsequent section is a useful tool for
analyzing maximum temperature variations across the die.

III. Analytical Model for Upper Bound of On-Chip

Temperature Differences

In this section, we present the analytical model which
is later used by our proposed sensor placement algorithm.
Finding the maximum temperature difference between various
locations on the die is an important step during the thermal
analysis and design as it enables better placement of temper-
ature sensors and helps in evaluation of reliability issues. The
maximum temperature difference under potential workloads
can be found by extensive simulations, which would incur
significant overhead. For systems whose operation depends on
interaction with other systems, even the same workload can re-
sult in completely different behavior, thus introducing an even
higher overhead for temperature estimation. In contrast, our
method provides an upper bound with insignificant overhead.

Our techniques in this paper are based on the same thermal
model as used in HotSpot. The thermal network generated by
the Hotspot model includes thermal resistors and capacitors.

SHARIFI AND ROSING: ACCURATE DIRECT AND INDIRECT ON-CHIP TEMPERATURE SENSING FOR EFFICIENT DYNAMIC THERMAL MANAGEMENT 1589

Temperature can be modeled at the level of a functional block,
or the die can be divided into regular grid cells (Fig. 1) to
obtain more fine-grained estimates. Given the layout and the
thermal characteristics of a chip, it is divided into a grid of r

rows and c columns as shown in Fig. 1. The proper size of the
grid cells and the number of rows and columns of the grid can
be determined by the method proposed in [1]. Our technique
works at the granularity of a grid cell, therefore, when we talk
about different locations or points of interest; we actually refer
to the corresponding grid cell.

The algorithm starts with the evaluation of the effect each
power source has on the temperature differences. This can be
done by simulation or with analytical methods. Following this
step, the maximum temperature difference between pairs of
locations is calculated by exploiting the linear time-invariant
(LTI) characteristics of the system. Since the thermal resistors
and capacitors are linear components, the thermal network can
be considered an LTI dynamic system. We exploit the LTI
characteristics of this system as a basis for calculating an upper
bound for the temperature difference. First, we explain it on
a simple case of a single input and single output system, and
then extend to the thermal networks with multiple inputs and
outputs. If we define the power input to the thermal circuit
as p(t), the impulse response of the system as h(t), then the
temperature output of the system f(t) can be represented as

f (t) = h(t) ∗ p(t) =
∫ t

0
h(τ) p(t − τ) dτ. (1)

We assume that minimum and maximum power consumed
at each functional unit, pMin and pMax, are known, and that
the power consumed at a functional unit is always positive

0 ≤ pMin ≤ p(t − τ) ≤ pMax. (2)

H+ and H− are the sets of intervals where the impulse
response h(t) takes non-negative and negative values, respec-
tively. Therefore, the temperature output of the system can be
represented as

f (t) =
∫ t

0 h(τ)p(t − τ) dτ =∫
H+

|h(τ)| p(t − τ) dτ − ∫
H−

|h(τ)| p(t − τ) dτ.
(3)

Based on (2), we know that

pMin
∫

H+
|h(τ)| dτ ≤

∫
H+

|h(τ)| p(t − τ) dτ

≤ pMax
∫

H+
|h(τ)| dτ

pMin
∫

H−
|h(τ)| dτ ≤

∫
H−

|h(τ)| p(t − τ) dτ

≤ pMax
∫

H−
|h(τ)| dτ. (4)

Equation (4) enables us to then derive the bounds on the
value of the output f of a single input single output system
based on its impulse response. If we assume the bounds to be
f Min and f Max (f Min ≤ f (t) ≤ f Max), they are calculated

Fig. 2. Algorithm for calculating the upper bounds.

as

f Min = pMin
∫

H+
|h(τ)| dτ − pMax

∫
H−

|h(τ)| dτ =

pMin
∫

H+
h(τ) dτ + pMax

∫
H−

h(τ) dτ

f Max = pMax
∫

H+
|h(τ)| dτ − pMin

∫
H−

|h(τ)| dτ =

pMax
∫

H+
h(τ) dτ + pMin

∫
H−

h(τ) dτ.

(5)

We represent a system with m power sources as
p1(t), . . . , pm(t), where for each power source maximum and
minimum input values are defined as pMax

i , pMin
i . Assuming

hi(t) is the response of the single output to the impulse on
input i, the LTI characteristics of the system imply

f (t) =
m∑
i=1

fi(t) =
m∑
i=1

hi(t) ∗ pi(t). (6)

Therefore, the minimum and maximum values of the func-
tion are

f Min =
m∑
i=1

f Min
i

f Max =
m∑
i=1

f Max
i .

(7)

Equation (7) holds for all outputs of the system. The tem-
perature difference between grid cells a and b is represented
by Td(a, b). Its impulse response to input i, h(a,b),i(t), can be
calculated as

h(a,b),i(t) = ha,i(t) − hb,i(t) (8)

where ha,i(t), hb,i(t) are impulse responses of temperature at
grid cells a and b, respectively. Calculation of Td(a, b)Min and
Td(a, b)Max for each output requires only the knowledge of
pi

Max, pi
Min and h(a,b),i(t) as can be seen from (5). The impulse

response characteristics of the chip, h(a,b),i(t) can be calculated
by simulation or by analytical methods.

The process of finding maximum temperature differences
is shown in Fig. 2. Initialization step needs to be done just
once, and then its results can be used for the upper bound
calculation. To find hj,i(t) during initialization, a step input
is applied to power source i while setting all other power
sources to 0. Then, the step response at grid cell of interest
j is used to calculate the impulse response by differentiation.
hj,i(t) can also be calculated by analytical methods of linear
systems theory.

After initialization, upper bound is calculated for each
pair of grid cells of interest. First, the impulse response of
temperature difference between the two points caused by
power source i is calculated (h(t) = ha,i(t) − hb,i(t)). Then,

1590 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 29, NO. 10, OCTOBER 2010

based on this impulse response, T Min
d and T Max

d are calculated
using (5) and (7).

The calculations can be done only for the pairs of grid cells
which are of interest, after completing the simulations for the
initialization step (which are done just once). For example, we
can use this algorithm to find maximum temperature difference
between hotspot a and the set of potential sensor locations
around that hotspot L = {l1, l2, . . . , lk}. In this case, the
grid cell pairs of interest are (a, l1), . . . , (a, lk). As explained
before, many constraints, such as routing, can limit the number
of potential sensor locations around a hotspot.

The model can also be used to generate the power trace
which results in the maximum temperature difference between
any two points. Using (5) to maximize the value of f(t) at t0,
we know that p(t0 − τ) must take the maximum value at the
intervals of τ where h(τ) = 0. For example, if h(τ) is non-
negative on interval t1 < τ < t2, p(t) must take its maximum
value on interval t0−t2 < t < t0−t1. Similarly, it can be shown
that for the intervals of τ where h(τ)<0, p(t0-τ) must take its
minimum value. These rules allow us to generate the power
trace p(t) which leads to the maximum temperature difference
between two arbitrary points. Doing this for all power sources
enables us to detect the configurations and scenarios which
lead to maximum temperature variations between different
points on the die. This information can also be helpful in
augmenting the benchmarks and generating test data for the
stress tests.

In the next section, we propose an efficient thermal sensor
placement technique which uses our analytical model to min-
imize the number of thermal sensors while keeping the sensor
placement error within acceptable limits.

IV. Thermal Sensor Placement

The objective of our sensor placement technique is to find
the minimum number of sensors and their locations such that
the temperature reading errors for each point of interest is
within the required accuracy. As shown in Fig. 1, the chip is
divided into a grid. Whenever we specify a point on the die, we
are refering to the corresponding grid cell at that location. Let’s
suppose Q = {q1, q2, . . . , qn} and E = {e1, e2, . . . , en} are the
set of n points of interests and the set of corresponding desired
accuracies for these points, respectively. We also define a set
of potential sensor points L = {l1, l2, . . . , lk} which consists of
all of the grid cells around the hotspots where a temperature
sensor can be placed. This set is usually determined by other
design considerations such as availability of space for locating
the sensor, etc. Also, usually sensors could not be placed inside
on-chip memory blocks, routing, and IO.

The objective is to find the minimum set of sensors (and
their locations) S = {s1, s2, . . . , sm} such that for each qi there
exists a sj for which T (qi) − T (sj) < ei always holds. S must
be a subset of L.

Earlier, we introduced the concept of observability area
which is defined as the area around a point of interest q within
which the maximum temperature difference is always less than
the maximum tolerable error. Therefore, if a sensor is placed
in the observability area of a point of interest, the sensor
placement error would be less than the maximum tolerable

error. The observable set of a point of interest q is the set of
grid cells in L which completely fall in its observable area.
We can define observable set of point of interest qj as

Oj =
{

li
∣∣ abs(T max

d (qj, li)) < ej , abs(T min
d (qj, li)) < ej

}
.

(9)
The inputs to the sensor placement technique are sets Q, E

and L mentioned above. In the first step, the observability
set of each qj is calculated using (9) and our analytical
model. Then, we find the optimum number of sensors and
their locations such that there is at least one sensor in the
observable set of each point of interest. This guarantees that
the accuracy requirements are satisfied since any sensor placed
on a grid cell in the observable set of a point of interest can
sense temperature with the required accuracy. This problem
is equivalent to the minimum hitting set problem which has
been proven to be NP-complete. If xa = 1 when the sensor is
placed at grid cell a, and xa = 0 otherwise, then the sensor
minimization problem can be formulated as an integer linear
program (ILP) as follows:

minimize
∑

a∈L xa

subject to
∑

a∈Oj xa ≥ 1 j = 1, . . . , n

xa ∈ {0, 1} ∀a ∈ L

S = {li|xli = 1}.
(10)

Minimizing �xa (for a ∈ L) minimizes the total number of
sensors while constraint �xa ≥ 1 (for a ∈ Oj) guaranties
that there will be at least one sensor in observable set of
hotspot j. For each grid with xa = 1, a sensor is placed in
the corresponding grid cell. To solve the ILP problem, we
use lp−solve [26] which is based on the revised simplex and
branch-and-bound methods.

Our proposed sensor placement technique minimizes the
cost of sensors while maintaining the desired accuracy. How-
ever, our technique may not always be able to place enough
sensors in the right locations due to design constraints, and
even those sensors that are placed may degrade or fail during
the lifetime of the system. These issues call for techniques
to compensate for the lack of sensing hardware. Next section
presents our accurate indirect temperature sensing technique
which is able to estimate the temperature at locations not
directly covered by sensors.

V. Indirect Temperature Sensing

Inaccuracies related to temperature sensing cannot always
be effectively addressed at design time. There are multiple
sources of errors; sensors fail over time, their output is subject
to noise, and even if the system did not have sensor failures and
noise, the location of hotspots dynamically changes under dif-
ferent workloads. To address such runtime issues, we propose
indirect temperature sensing based on Kalman filtering which
can accurately estimate the temperature at various locations
on the die using inaccurate readings obtained from a limited
number of noisy sensors. Our technique consists of a set of
off-line setup steps shown in Fig. 3(a), followed by runtime
procedure shown in Fig. 3(b).

The setup phase [Fig. 3(a)] starts by creation of chip’s
equivalent thermal RC network using models described in

SHARIFI AND ROSING: ACCURATE DIRECT AND INDIRECT ON-CHIP TEMPERATURE SENSING FOR EFFICIENT DYNAMIC THERMAL MANAGEMENT 1591

Fig. 3. Proposed technique. (a) Off-line setup. (b) Runtime temperature
estimation by KF.

[8] and [9]. The linear dynamic system generated in this
way is usually too large and too complex for an on-chip
software implementation. Model order reduction is used to
generate a much smaller yet accurate system. Calibration is
performed by applying Kalman filter (KF) to the reduced
order model of the system. The calibration ends when the
KF reaches its steady state. The resulting steady-state KF
is used during the normal operation to actually perform the
temperature estimation [Fig. 3(b)].

The KF estimates the temperature in a predict-correct
manner based on inaccurate information of temperature and
power consumption. Time update equations project forward
in time with the current temperatures and the error covariance
estimates to obtain a priori estimates for the measurement step.
The measurement update equations incorporate the new mea-
surements into the a priori estimate to obtain an improved a
posteriori estimate of the temperature. Details of the technique
are explained in the next section.

A. Temperature Estimation

Temperature values at different locations on the die depend
on various factors, such as power consumptions of functional
units, layout of the chip and the package characteristics.
Analysis and estimation of temperature requires a thermal
model which represents the relation between these factors and
the resulting temperature. The differential equations describing
the heat flow have a form dual to that of electrical current. This
duality is the basis for the micro-architectural thermal model
proposed in [8] and is further explained in [1] and [9].

The lumped values of thermal R and Cs represent the heat
flow among units and from each unit to the thermal package.
We model the temperature at grid cell level [1] which enables
more accurate and fine-grained temperature estimates. An an-
alytical method is proposed in [1] to determine the proper size
of a grid cell. The thermal network is represented in state space
form with the grid cell temperatures as states and the power
consumption as inputs to this system. The outputs of this state
space model are the temperatures at the sensor locations which

can be observed by sensor readings (S(t)). We define Ct and
Gt as thermal capacitance and thermal conductance matrices,
D as the input selection matrix which identifies the effect of
power consumptions at current time steps on the temperature at
next time step and F as the output matrix which identifies the
sensor grid cells at which temperatures are observable. u is the
vector of power consumption values for different components
on the die and T is the vector of temperature values at different
grid cells. The units for temperature and power are centigrade
degree and watt. The system can be represented as

dT
dt

(t) = −C−1
t GtT (t) + C−1

t Du(t)
S(t) = FT (t).

(11)

Since sensor measurements can be inaccurate and exact
power consumption of each functional unit at runtime is not
available, we use KF for accurate temperature estimation. The
KF uses a form of feedback control to estimate a process in
a predict-correct manner with time and measurement update
phases. Time update equations project forward in time the
current state of the system and the error covariance estimates
to obtain a priori estimates for the measurement step. The mea-
surement update equations incorporate the new measurements
into the a priori estimate to obtain an improved a posteriori
estimate.

We use Kalman filtering to both estimate the temperature
and to filter out any thermal sensor noise. In order to apply the
KF to our model, we convert the continuous time differential
equations in (11) to corresponding discrete time equations in
(12). Here, H, J, and F are the state matrix, input matrix
and output matrix of the system, respectively. Furthermore, at
time n, T[n], u[n], and S[n] are the state vector representing
temperatures at different grid cells, input vector of functional
block power consumption and output vector of temperatures
at sensor locations, respectively

T [n + 1] = H T [n] + J u[n]
S[n] = F T [n].

(12)

Accurate estimation of power consumptions of each com-
ponent at each time step is not practical in runtime. On the
other hand, [11] shows that most of the energy in the power
traces is concentrated in the DC component. The trend of
temperature variations is determined by the average power
over a period of time. This is especially true for power traces
with very large DC components and smaller high-frequency
harmonics [11]. Based on this fact, we use the average power
consumption of each component as an estimation of the actual
power consumption at that time.

Introduction of noise due to inaccuracies of modeling the
process, w[n], and the measurement noise, v[n], enables us to
rewrite the system formulation as

T[n + 1] = H T [n] + J u[n] + Gw[n]
Sv[n] = F T [n] + v[n].

(13)

The time-update equations for our system are given below.
Here, Ť [n|n − 1] represents the estimate of T [n] given the
past measurements up to Sv[n − 1], Ť [n|n] is the updated
estimate based on the last measurement Sv[n] and P is the
error covariance matrix

1592 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 29, NO. 10, OCTOBER 2010

T̆ [n + 1|n] = H T̆ [n|n] + J u[n]
P[n + 1|n] = HP[n|n]HT + GQ[n]GT .

(14)

Given the current estimate Ť [n|n − 1], the time update
predicts the state value at the next sample n + 1 (one step
ahead). Then, the measurement update adjusts this prediction
based on the new measurement Sv[n + 1]. The measurement
update equations for this system are

T̆ [n|n] = T̆ [n|n − 1] + M[n](Sv[n] − FT̆ [n|n − 1])

M[n] = P[n|n − 1] FT (R[n] + FP[n|n − 1]FT)−1

P[n|n] = (I − M[n]F) P[n|n − 1].

(15)

M is called Kalman gain or innovation gain. It is chosen
to minimize the steady-state covariance of the estimation
error given the noise covariance Q = E(w[n]w[n]T) and
R = E(v[n]v[n]T). Computational complexity of the KF is
O(k3) due to the matrix inversion in calculating Kalman gain
M[n], where k is the size of the dynamic model. The next
section describes the methods we exploit in order to speed up
the runtime computation.

B. Reducing Computational Complexity

We introduce two techniques that significantly reduce the
computational complexity of our model. One of the techniques
reduces the size of the model used in KF, while the other
reduces the number of computations required for KF.

1) Steady-State Kalman Filtering: The time scale at which
the sensor noise characteristics change is much larger than the
time scale at which we study the system (months or years
compared to seconds). Thus, we assume the system and noise
covariances are time-invariant. As a result, we can use steady-
state KF in which it is not necessary to compute the estimation
error covariance or Kalman gain in real time [12]. The steady-
state KF reduces the computational overhead from O(k3) to
O(k2) while still providing good accuracy [12]. A calibration
step is needed prior to runtime operation in order to get the
KF to steady state. Running the KF during the calibration
step makes gain and covariance matrices converge to constant
values. In our experiments, we show that use of steady-state
KF reduces the computational complexity to several orders of
magnitude without significant effect on accuracy.

2) Model Order Reduction: The model order reduction
enables us to find a low-dimensional but accurate approxima-
tion of the thermal network which preserves the input-output
behavior to a desired extent. We use a projection based implicit
moment matching method (PRIMA) [14] which is used to find
a mapping from the high-dimensional space of the given state-
space model to a lower dimensional space. In this technique,
Krylov subspace vectors are used instead of moments. For a
square matrix A of dimension N and a vector b, the subspace
spanned by the vectors [b, Ab, . . . , Aq−1b] is called a Krylov
subspace of dimension m generated by {A, b} and is denoted
by Kr(A, b, q).

With thermal capacitance and conductance matrices rep-
resented by Ct and Gt , respectively, the circuit formulation
shown in (11) can be represented in the form

sCtT = −GtT + Du. (16)

The reduced order model is generated using congruence
transformation, where Cr = VT

q CtVq, Gr = VT
q GtVq, Dr =

VT
q D, Tr = VT

q T :

sCrTr = −GrTr + Dru. (17)

The projection matrix Vq = {V1,V2, . . . ,Vq} is obtained by
Arnoldi process such that

Span{V1, V2, . . . , Vq} = Kr{−G−1
t Ct, −G−1

t D, q} =
Span{−G−1

t D, (−G−1
t Ct) × −G−1

t D, . . . , (−G−1
t Ct)q−1

× − G−1
t D}

(18)
and

VT
i Vj = 0 for all i �= j

VT
i Vi = 1 for all i.

(19)

This approach matches moments up to order q. The larger
the number of matched moments, the closer is the behavior
of the reduced order model to the original system, but at
the cost of higher processing time. Because of the moment-
matching properties of Krylov-subspaces, the reduced transfer
function will agree with the original up to the first q derivatives
on an expansion around some chosen point in the complex
plane (usually s = 0). In addition, due to the congruence
transformation, the reduced model inherits the structure of
the original model, which means the passivity is preserved.
Interested readers can refer to [14] for a detailed discussion
of the technique.

There are other model order reduction techniques which
are designed for linear circuits with multiple sources. For
example, energy kernel system (EKS) [15] can match higher
moments compared to PRIMA in multiple-input multiple-
output systems, but imposes limitations on the inputs and,
more importantly, incurs higher computational overhead. Our
experimental results show that PRIMA works well for our
applications since our network consists of only simple linear
elements (Rs and Cs). Moreover, the topology of the network
is such that it operates as a low pass filter which eliminates
the high frequencies of the inputs. Therefore, PRIMA with
a few moments around frequency s = 0 provides sufficient
accuracy and acceptable overhead compared to RHS-model
order reduction methods like EKS [15]. The effectiveness of
PRIMA is shown in Table V.

C. Detecting Sensor Failure and Degradation

As explained in the previous sub-sections, one of the tech-
niques we use for real time realization of the technique is the
use of steady-state KFs. Steady-state KF is optimal when as-
suming stationary noise. The fact that the noise characteristics
of the thermal sensors do not change rapidly, makes steady-
state KF applicable to our problem. Sensor degradations or
failures which cause these changes usually happen at the order
of months. While steady-state Kalman filtering works well
for the stationary noise characteristics, it is not guarantied to
work well under non-stationary noise. Therefore, the changes
in the characteristics of the sensor noise affect the accuracy of
indirect temperature sensing. Here, we address this problem
by proposing a technique to detect the variations in the

SHARIFI AND ROSING: ACCURATE DIRECT AND INDIRECT ON-CHIP TEMPERATURE SENSING FOR EFFICIENT DYNAMIC THERMAL MANAGEMENT 1593

characteristics of sensor noise in order to detect the sensor
degradation or failure before they affect the accuracy of the
technique. Then, these variations are addressed by adapting
the indirect temperature sensing to these variations.

The steady-state KF is completely dependent on the charac-
teristics of the noise. Therefore, a KF generated for a certain
set of noise characteristics might not work well for a different
set. When a change is detected, the calibration phase of the
technique is performed again and a new steady-state Kalman
filter is generated based on the current noise characteristics. In
order to detect these variations, we use a hypothesis test called
sequential probability ratio test (SPRT) which is specifically
designed for sequentially collected data. It allows us to detect
the variations in the statistical characteristics of the estimation
error. An alternative would be setting thresholds on mean of
the errors, but this can detect the variations only after they
have happened. SPRT is able to detect the abrupt changes as
threshold-based techniques, but it is also able to detect slow
gradual variations which evolve over a long period of time
[29]. It has been shown in [30] that a hypothesis test based on
the SPRT is optimal in the sense that for given false and missed
alarm probabilities α and β, it results in the lowest possible
false or missed alarms. As stated before, α and β are the
probabilities of false positives and false negatives, respectively.

SPRT is based on a pair of hypotheses, H0 and H1 which are
null hypothesis and alternative hypothesis, respectively. The
null hypothesis (H0) states that the estimation errors are drawn
from a distribution with mean zero and standard deviation of
σ. The alternate hypothesis states that the estimation errors are
drawn from a distribution with mean µ and standard deviation
of σ. In other words, H0 assumes no change in the char-
acteristics of the noise, while H1 implies variations in these
characteristics. The decision between these two hypotheses is
based on the cumulative sum of the log-likelihood ratio (�i)

S = Si + log �i. (20)

H1 is accepted if Si≥ b, H0 is accepted if Si≤ a, otherwise
the monitoring continues, where a and b are chosen as two
sub-equations:

a = log

(
β

1 − α

)
and b = log

(
1 − β

α

)
(21)

where α is the false alarm probability, which is the probability
of accepting H1 when H0 is true, and β is the missed alarm
probability, which is the probability of accepting H0 when H1

is true. α and β are decided in advance by the user.
Likelihood ratio is the ratio of the maximum probability

of a result under two different hypotheses. In other words,
likelihood ratio can be calculated as the maximum probability
of H0 (the estimation errors are drawn from a distribution
with mean zero and standard deviation of σ) to H1 (estimation
errors are drawn from a distribution with mean µ and standard
deviation of σ) given the current observations

�n =
Pr(ε1, . . . , εn|H1)

Pr(ε1, . . . , εn|H0)
(22)

when n is the number of observations and Pr(ε1, . . . , εn|H0)
and Pr(ε1, . . . , εn|H1) are the probability of observing se-

quence ε1, . . . , εn under H0 and H1, respectively. Assuming
independent observations, we can write

�n =

∏n
i=1 Pr(εi|H1)∏n
i=1 Pr(εi|H0)

=
n∏

i=1

Pr(εi|H1)

Pr(εi|H0)
(23)

and

log �n =
n∑

i=1

log
Pr(εi|H1)

Pr(εi|H0)
. (24)

When operating at runtime mode, the technique monitors
the temperature estimation error ε (difference between
the estimated and observed temperature). With every new
observation, (22) is calculated and the new log likelihood
ratio is compared against the thresholds a and b. If the new
log likelihood ratio exceeds b, SPRT reports degradation,
while if the likelihood ratio gets under a, SPRT assumes the
sensor is working fine. The changes are detected before they
are large enough to affect the indirect temperature sensing
results. Due to extremely low rate of sampling required
in this technique (due to the extremely slow changes in
the noise characteristics), we are not concerned about the
overhead of the technique, but for estimation errors which
are normally distributed, [29] proposes a compact expression
with very low computational overhead. As stated previously,
the probabilities α and β are defined by the user. When a
decision is made about the H0 or H1, the technique starts at
n = 1 with current observation. For our experiments, we used
α = 0.01, β = 0.0001, and sampling interval of 1 min.

In the next section, we discuss how our techniques comple-
ment each other thorough various experiments.

VI. Experimental Results

For our experiments, we use two different multi-processor
SoCs: 1) SoC1 consisting of 6 XScale cores implemented
in 90 nm process [16] whose layout is shown in Fig. 1, and
2) SoC2 consisting of two SPARC cores and 4 XScale cores
implemented in 65 nm process whose layout is shown in
Fig. 4 where the cores share the L2 cache. A set of programs
from the automotive/industrial, network and telecommunica-
tions categories of MiBench [17] are selected and run on
datasets provided by [18]. Moreover, we have also used a
set of programs from Mediabench [40] benchmark suite and
run them on SPARC cores. Pareto distribution is used [19]
to introduce idle intervals between the MiBench tasks. A
timeout-based dynamic power management policy is applied
in order to determine the active and low power states which
each core experiences during running these workloads. Power
values for XScale are measured on a real system and scaled
for the target process. Power values for Alpha cores are
calculated using Wattch power estimator [27] integrated with
M5 simulator [28]. HotSpot 3.0 [13] grid mode is used for
thermal simulations. Each processor is assumed to have its
own L2 cache. Parameters used for package are: convection
capacitance 140.4 J/K, convection resistance 0.1 K/W, spreader
thickness 10−3 m, and initial temperature of 333 °K.

First, we present the experimental results on the offline parts
of our techniques which are performed during the design of the

1594 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 29, NO. 10, OCTOBER 2010

Fig. 4. Layout of SoC2.

system. These include our analytical model for upper bound
on on-chip temperature differences and our sensor placement
algorithm. Then, the results of the runtime techniques are
discussed which are performed during the normal operation
of the system. These include indirect temperature sensing and
also detection of sensor failure and degradation.

A. Offline Techniques

1) Maximum Temperature Difference Model: Our proposed
model analytically calculates the upper bound on temperature
differences on the die eliminating the high overhead of exten-
sive simulations. Very specific combinations of conditions may
be required to achieve the maximum temperature difference on
the die. Such specific conditions may not be created by the
benchmarks, but may happen during the actual operation of the
system. Our model can generate a set of input power traces
which create such a maximum temperature difference scenario.

Figs. 5–7 provide an example of this for SoC1. Fig. 5 shows
a simulation slice in which the temperature difference between
points a and b has reached its highest value. The dotted line
shows the maximum temperature difference estimated by our
model which is clearly higher than the benchmark results.
Fig. 6 shows the situation in which the actual temperature
difference found by our method exceeds the maximum re-
ported by simulations using standard benchmarks. The first
row shows h(a,b),i(t) which is the response of the temperature
difference between a and b to the impulse applied at input
i. h(a,b),i(t) is calculated by differentiating the response of
the temperature difference to the step input i (since it is in
discrete time, this is done by differencing the consecutive
samples of step response). To keep the example easy to
follow, we considered only three power sources of SoC1
and the rest are turned off. The power traces generating the
maximum temperature differences are calculated as explained
in Section III. Applying each of these traces leads to the
corresponding temperature differences shown in the third row.
The overall maximum temperature difference due to all power
sources occurs at time 0.9 s (time unit 900) as shown in Fig. 7.

As shown in this example, the maximum temperature differ-
ences can be much larger than what is observed under standard
benchmarks. Therefore, when we need to know the maximum
temperature differences on the die, running benchmarks may
not be enough and models such as ours are needed to get accu-
rate data. The difference between simulations and the model in
this particular example is not large because of the low power
consumption of XScale cores and the fact that for simplicity
we looked at only 3 cores with observation points in proximity

Fig. 5. Temperature difference between points a and b.

of each other. The error can be much larger in high-end pro-
cessors with higher powered devices. Table I shows that errors
as high as 9 °C occur in estimates of temperature differences
when relying only on simulations. Even using combinations
of different benchmarks does not resolve the problem. Such
errors can cause significant functional and reliability issues.
For example, if the maximum temperature difference between
a sensor and a hotspot is underestimated, it may cause late acti-
vation of DTM which can result in serious reliability problems.

The simulation overhead of our method is insignificant. As
explained in Section III, this method involves simulating one
step input for each power source in the worst case compared
to simulating the whole set of benchmarks when standard
simulation is used. If linear systems analytical methods are
used to calculate the step response, then there will be no
simulation overhead.

2) Sensor Placement: The sensor placement method we
developed uses our analytical model for maximum on-die
temperature differences. The experimental results show that
it reduces the number of required sensors as compared to
previous work. Previous techniques such as [21] and [22]
depend on calculation of the range of the hotspot which is
the maximum distance r from the hotspot that a sensor can be
placed while still maintaining the intended accuracy.

This range has a circular form and is centered at the
point of interest which limits the accuracy and the efficiency
of such techniques. Some points which meet the accuracy
requirements might be missed, as demonstrated on SoC with
6 XScale cores shown in Fig. 8. The two X’s represent the
points of interest to be monitored. The observability areas
of the points of interest are shown by solid lines. Circular
ranges of the hotspots are shown by dotted circles. Our sensor
placement technique considers the observability area of a point
of interest instead of its circular range as the potential location
of a sensor. Therefore, it can identify the point marked by *
at the overlapping part of the observability areas to place a
single sensor to monitor both points of interest. When using
the circular ranges, this sensor location would not be identified
since the ranges do not overlap; and therefore, two separate
sensors would be required. We evaluate our sensor placement
algorithm for different values for the desired accuracies and
compared it with techniques that uses circular ranges [21]. In
[21], only the sensor placement model is proposed and actual
results on sensor placement are not provided. Moreover, the
activity factor parameter (fa) which is one of the important

SHARIFI AND ROSING: ACCURATE DIRECT AND INDIRECT ON-CHIP TEMPERATURE SENSING FOR EFFICIENT DYNAMIC THERMAL MANAGEMENT 1595

Fig. 6. Generating the maximum temperature difference by constructing the proper power trace. (a) h(a,b),i(t). (b) Power traces leading to maximum
temperature difference. (c) Temperature difference due to generated power trace.

parameters in the proposed model in that work depends on
the workload and the paper does not explain in enough details
that how this parameter is calculated. Due to these reasons, we
were not able to reproduce the actual sensor placement results
of this paper for comparison. Therefore, in order to be fair, we
assumed the best results which this model could achieve. We
found the largest possible circular range this model could have
found. Then, we used the outcomes of this model in our sensor
placement algorithm. In other words, we are comparing our
techniques to the best possible results the other model could
achieve under the best conditions.

Table II shows the number of sensors required to monitor
eight locations of interest on SoC1 and eight locations on
SoC2 for specified maximum tolerable error between the
temperature sensor and the actual temperature at the point of
interest (accuracy in Table II). As these tables show, our sensor
placement technique is able to reduce the number of sensors
needed more aggressively with lower desired accuracy than
previous work [21]. It should be mentioned that increasing
the number and locations containing the points of interest will
improve the efficiency of our technique. Our sensor placement
technique minimizes the number of sensors by sharing a sensor
among multiple points of interest.

This technique takes advantage of the overlapping observ-
ability regions of the locations of interest in order to find the
possible sharing of a sensor among various locations of inter-
est. Increasing the number of the locations of interest increases
the chances that observability regions of these locations over-
lap, so more sensors could be shared among various points of
interests. This would help reduce the number of sensors.

TABLE I

Errors in Temperature Difference Simulations (°C)

Positive Negative
Benchmarks Mean Std. Max. Mean Std. Max.

Dev. Dev.
MiBench (Automotive) 1.09 0.78 4.34 1.01 0.72 3.77
MiBench (Network) 6.89 2.60 9.39 6.96 0.55 9.55
MiBench (Telecomm.) 6.02 2.53 9.16 6.36 2.47 9.29
MiBench (Mixed) 1.15 1.15 8.05 0.59 0.55 7.08
MediaBench (Mixed) 3.13 2.68 8.36 2.75 2.27 7.41

Fig. 7. Temperature difference (°C) for Fig. 6.

B. Online Techniques

1) Indirect Temperature Sensing: Unlike design time tech-
niques discussed above, our method for accurate indirect
temperature sensing addresses runtime issues such as limited
number of available sensors, their degradation or failure,
dynamic changes in location of hotspots, etc. Indirect tem-
perature sensing requires an offline setup step which has been
implemented in MATLAB, while the runtime part of the algo-
rithm is implemented in C++ on XScale or SPARC processors.

Temperature values are obtained by running HotSpot [13]
in grid mode with XScale power measurements as inputs.

1596 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 29, NO. 10, OCTOBER 2010

Fig. 8. Using observability area vs. circular range.

The temperature values of the grid cell containing the sensors
are observable, while the temperature at other grid cells are
assumed to not be observable and must be estimated using our
technique. For our experiments, we used a 18 × 12 grid for
SoC1 and a 20 × 20 grid for SoC2.

One of the advantages of using the PRIMA model order
reduction technique for indirect sensing is that the size of
reduced model depends only on the number of power sources
and the number of matched moments, not the number of
grid cells. Therefore, increasing the granularity of the grid
in order to increase the accuracy does not result in higher
computational overhead. An analytical method presented in [1]
is used to find the appropriate number and size of the grid cells.

No specific sensor technology is assumed in this paper. The
readings from the temperature sensors are used as starting
temperature values for our model. Gaussian noise has been
superimposed on the actual temperature values to model the in-
accuracies of real thermal sensors. Processes generating noise
are assumed to be stationary between off-line calibrations.

Fig. 9 shows that the estimated temperature values closely
follow the actual temperature at the location of interest on
SoC1. Accurate estimates of the temperature are important
to prevent early or late activation of DTM techniques due to
sensor noise and errors. Indirect temperature sensing is very
accurate in estimating temperature at locations far away from
a limited number of sensors available on the die as shown in
Table III. It should be noted that the quality of estimation using
KF depends on many factors such as workload characteristics,
number and location of the sensors and the characteristics of
noise. For example, having more sensors located closer to
the locations of interest would result in better estimation. For
our application, as our experiments in Table III show, even
with a very few sensors, our technique is able to estimate the
temperature with reasonable accuracy.

For SoC1, we estimate the temperature at six locations of
interest using only 2, 3, 4, and 5 sensors. For SoC2, we
estimate the temperature at eight locations of interest using 2,
3, 5, and 7 sensors. Each sensor is equidistant to the hotspots it
must cover. In order to reduce the inaccuracies due to step size
and model reduction, the step size is chosen to be 10 ms and
three moments are matched. The mean absolute error and its
standard deviation are reduced by up to an order of magnitude.

Another important parameter affecting both accuracy and
computational requirements of our technique is the time step

at which temperature sensors are read and KF is applied.
Table III shows statistics of measurement and estimation errors
for different sizes of time steps used on SoC1 and SoC2. The
basic time step is chosen at 10−4 s and multiplied by powers of
2. For this experiment, in order to reduce the inaccuracies due
to sensor model order reduction, three moments are matched.
One sensor monitors each location of interest, but this sensor
is placed at an arbitrary location around the hotspot to show
that the technique does not depend on the relative position
of the sensor and the location of interest. Step size between
10 ms and 100 ms provide reasonable accuracy.

Table IV also shows the effect of the indirect temperature
sensing technique on the performance impact of DTM tech-
niques. It compares the relative slowdown of a DTM technique
when it is driven by temperature values read directly from the
sensors and temperature estimates of our indirect temperature
sensing. The DTM technique used here is a threshold based
DTM technique which reduces the voltage/frequency of a core
when its temperature exceeds the threshold of 75 °C.

Slowdown is compared by looking at the number of instruc-
tions executed per second at high utilizations. As this table
shows, our indirect temperature sensing technique can reduce
the slowdown due to DTM by more than 6X. This is due to
the fact that more accurate temperature estimates reduce the
number of false positives in triggering the DTM technique
which reduces the slowdown due to DTM.

This figure also shows that since larger step sizes reduce the
accuracy of the indirect temperature sensing, the reduction in
DTM slowdown caused by indirect sensing reduces as step
sizes get larger.

Table V shows how matching different number of moments
affects the accuracy of our technique. The step size is set at
50 ms. Size of the reduced model is the number of functional
units times the number of matched moments. For SoC1
example, since there are six power consuming functional units,
matching 4, 3, 2, and 1 moments reduces the model size to
24, 18, 12, and 6, respectively.

As it is shown in the table, after matching the second mo-
ment, further moment matching does not significantly improve
accuracy. Matching two or three moments provides sufficient
accuracy for most applications. As explained in the previous
sections, an important step toward online realization of indirect
temperature sensing is using steady-state Kalman filtering.

We next analyze the overhead of our indirect temperature
estimation technique. During the calibration process, i.e.,
before the KF reaches its steady state, we use general KF.
Since calibration can be performed offline, the overhead of
the general KF does not affect performance. The number
of calibration steps, in our case less than 100, depends on
the thermal network and noise characteristics. The runtime
overhead is shown in Fig. 10. The cost of using regular KF
is compared with the steady-state KF used by online portion
of our indirect temperature sensing technique. As can be
seen in Fig. 10, the performance overhead of steady-state
KF is significantly lower. This difference grows for larger
models. Using model order reduction and steady-state KF
allow performing indirect temperature sensing even on XScale

on which floating point instructions have to be emulated due

SHARIFI AND ROSING: ACCURATE DIRECT AND INDIRECT ON-CHIP TEMPERATURE SENSING FOR EFFICIENT DYNAMIC THERMAL MANAGEMENT 1597

TABLE II

Number of Sensors Needed by Our Technique and Range-Based Methods

SoC1 SoC2
Accuracy (°C) 1 2 3 4 5 6 7 1 2 3 4 5 6
Our technique 7 7 6 5 5 5 4 8 8 7 6 6 5 5
Circular range [21] 7 7 7 7 6 6 6 8 8 8 7 7 6 6

TABLE III

Error Statistics for Limited Number of Sensors

SoC1 SoC2
Temp. Measurement Temp. Estimation Temp. Measurement Temp. Estimation

Errors (°C) Errors (°C) Errors (°C) Errors (°C)
Sensor Mean Abs. Std. Mean Abs. Std. Sensor Mean Abs. Std. Mean Abs. Std.
No. Error Dev. Error Dev. No. Error Dev. Error Dev.
2 3.74 4.72 0.77 1.28 2 5.61 6.02 1.26 2.35
3 3.72 4.60 0.76 1.27 3 4.17 6.41 1.35 2.26
4 4.41 5.50 0.75 1.27 5 4.34 5.76 1.12 1. 50
5 3.29 3.94 0.76 1.27 7 5.03 6.60 0.85 1.23

TABLE IV

Error Statistics for Different Time Steps

SoC1 SoC2
Step Size Sensor Measurement Indirect Temperature Sensor Measurement Indirect Temperature
(10−4s) Errors (°C) Sensing Errors (°C) Errors (°C) Sensing Errors (°C)

Mean Mean Mean Mean
Absolute Std. DTM Absolute Std. DTM Absolute Std. DTM Absolute Std. DTM

Error Dev. Slowdown Error Dev. Slowdown Error Dev. Slowdown Error Dev. Slowdown
128 2.91 4.04 40% 0.13 0.25 6% 3.94 4.75 55% 0.54 0.62 9%
512 3.09 4.33 41% 0.49 0.89 24% 3.66 4.82 52% 1. 12 1.64 22%
1028 4.29 4.27 44% 0.97 1.24 28% 4.04 4.38 49% 1.77 2.15 34%
2056 3.89 5.08 43% 1.74 1.39 38% 3.87 4.51 51% 2.66 3.34 46%

TABLE V

Effect of Number of Matched Moments on Temperature Estimation Error

Sensor No. of SoC1 SoC2
Matched Model Mean Abs. Std. Model Mean Abs. Std.
Moments Size Error Dev. Size Error Dev.

Measure. Error − − 3.38 4.82 − 5.64 6.60
(°C)

1 6 0.88 1.24 7 1.78 2.28
Estimation Error 2 12 0.75 1.05 14 1.53 1.79
(°C) 3 18 0.68 0.90 21 1.24 1.67

4 24 0.48 0.88 28 0.69 0.92

to the lack of floating point units. The runtime overhead
on XScale can be further reduced by using a fixed point
implementation, or running the technique on a processor that
has a floating point unit. The reduction in overhead due to use
of floating point unit is clearly shown in Fig. 10(b) where the
execution times are reported on a SPARC processor. As the
figure shows, for the MPSoCs used in our experiments,
the runtime overheads are in the order of 100 µs.

2) Detecting Sensor Failure and Degradation: Here, we
show how using a steady-state KF while the noise character-
istics are not stationary can affect the accuracy of the results.
To prevent such inaccuracies, we use a sequential hypothesis
test called SPRT described in the previous sections. This
allows us to detect the meaningful changes in the sensor noise
characteristics before they affect the accuracy of the technique.
Fig. 11 shows how SPRT detects the meaningful changes in
the estimation errors due to the changes in the characteristics
of the noise and triggers adaptation of the technique to address
the new changes.

Thermal sensors are usually based on temperature sensitive
diodes, and according to [31], the most common faults in
diodes are open, short and degradation. Open and short
failures in the diode cause constant sensor readings which
according to test community, we call it stuck at fault. We
tried stuck at faults with various values around the average

Fig. 9. Comparison of sensor, actual, and estimated temperatures.

expected sensor reading. Using this technique, all of these
failures were detected in <1 h.

Another common fault in these diodes is degradation which
means the deviation of parameters from the expected values. In
order to emulate subtle incipient sensor degradations, we apply
a gradual change in the average of the error which changes this
average by a couple of degrees in a year. α and β values are set
to 0.01 and 0.0001, respectively. This will result in a threshold
of 100 for the likelihood ratio. The y-axis shows the likelihood
ratio (�i) and the threshold for deciding about the degradation.

1598 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 29, NO. 10, OCTOBER 2010

TABLE VI

Effects of Sensor Degradation and Failure

SoC1 SoC2
Estimation Error DTM Detection Time Estimation Error DTM Detection Time

Slowdown By SPRT Slowdown By SPRTSensor Degradation Type Mean Std. Dev Mean Std. Dev
Absolute Absolute

Error Error
Gradual mean change (2 °C/year) 0.59 0.61 19% ∼15 weeks 1. 35 1.55 25% ∼17 weeks
Gradual mean change (1 °C/year) 0.53 0.67 16% ∼ 8 weeks 1.33 1.45 24% ∼ 10 weeks
Bias (1 °C) 1.15 1.60 40% ∼ 1.5 h 1.86 2.54 36% ∼ 2 h
Bias (0.5 °C) 0.85 1.10 26% ∼ 2 h 1.79 2.35 35% ∼ 3 h
Stuck to constant value 1.47 2.63 54% <1 h 2.89 3.47 48% <1 h

Fig. 10. Runtime of the technique on (a) XScale and (b) SPARC.

As shown in the figure, the likelihood ratio has passed the
threshold at about two months. This triggers an alarm showing
degradation of the sensor and the indirect sensing is signaled
to adapt itself to this change and address this degradation by
regenerating the steady-state KF. We assume different cases
of sensor degradation or failure by adding some error to the
sensed temperature. These error types include an error signal
whose mean changes gradually and very slowly from 0 to 1 or
2 in a year. Another error introduced is a constant bias (0.5 °C
and 1 °C) in the sensor readings. Another type of failure
considered is stuck at error which means reading the same
value from the sensor irrespective of the actual temperature.

Table VI shows how such sensor degradations will affect
the estimation error and DTM slowdown before these sensor
degradations are detected and addressed by regenerating the
steady-state KF. It also shows the time it takes to detect these
degradations.

As in the example shown in Fig. 11, the sampling time of
the sensor degradation technique is 1 min and α and β values
are set to 0.01 and 0.01. As the table shows, for the gradual
changes in the error characteristics, the error is detected early
before it affects the accuracy of the technique. For example,
for a gradual mean change of 1 °C/year, the error is detected
after about two months before it can cause significant DTM
slowdown. For more significant and abrupt changes, such as

Fig. 11. SPRT technique to detect sensor degradation.

bias values or stuck at errors which cause significant effect on
DTM, the technique is able to detect the error in a matter of
hours or so. This quick detection of more severe degradations
minimizes the effect of these inaccuracies on the DTM slow-
down. Another important point to note is that these detection
times can be reduced with more frequent sampling. The cost
will be more frequent computations for SPRT which usually
are not significant since the technique can be implemented by
accessing lookup tables. Using (24) in general cases implies
two lookups in the look up table, one division, one logarithm
operation and one addition. For the normally distributed ob-
servations, [29] suggests a compact expression which can be
implemented by just two additions for each sample.

VII. Conclusion

We proposed two techniques for obtaining accurate tem-
perature information from thermal sensors. The first one is
a design time technique for thermal sensor allocation and
placement which is able to guarantee a maximum sensor
placement error. This technique is based on our model for
finding the maximum temperature difference between arbitrary
points on the chip. The model can be utilized in other
application such as estimating the maximum temperature vari-
ations on the chip. Compared to previous work, our sensor
placement technique can reduce the number of sensors needed
by 16% on average while guaranteeing the specified sensor
accuracy. The second technique, called indirect sensing, is
a runtime technique for accurate estimation of temperature
at different locations of the chip based on inaccurate values
obtained from a limited number of noisy on-chip temper-
ature sensors. We also proposed a technique to detect the
sensor degradation and failure which we use to trigger the
calibration of indirect temperature sensing and addressing
these inaccuracies in the technique. Our experimental re-
sults showed an order of magnitude reduction in the maxi-
mum temperature estimation error using indirect temperature
sensing.

SHARIFI AND ROSING: ACCURATE DIRECT AND INDIRECT ON-CHIP TEMPERATURE SENSING FOR EFFICIENT DYNAMIC THERMAL MANAGEMENT 1599

References

[1] W. Huang, S. Ghosh, S. Velusamy, K. Sankaranarayanan, K. Skadron,
and M. R. Stan, “HotSpot: A compact thermal modeling method for
CMOS VLSI systems,” IEEE Trans. Very Large Scale Integr. Syst., vol.
14, no. 5, pp. 501–513, May 2006.

[2] M. Pedram and S. Nazarian, “Thermal modeling, analysis, and man-
agement in VLSI circuits: Principles and Methods,” in Proc. IEEE,
Spec. Issue Thermal Anal. ULSI, vol. 94, no. 8, pp. 1487–1501, Aug.
2006.

[3] D. Brooks and M. Martonosi, “Dynamic thermal management for
high-performance microprocessors,” in Proc. Int. Symp. High-Perform.
Comput. Architect., 2001, pp. 171–182.

[4] A. K. Coskun, T. S. Rosing, and K. Whisnant, “Temperature aware
task scheduling in MPSoCs,” in Proc. DATE, Apr. 2007, pp. 1659–
1664.

[5] A. Naveh, E. Rotem, A. Mendelson, S. Gochman, R. Chabukswar,
K. Krishnan, and A. Kumar, “Power and thermal management in the
IntelTM CoreTM Duo Processor,” Intel Technol. J., vol. 10, no. 2, pp.
109–122, May 2006.

[6] E. Rotem, J. Hermerding, C. Aviad, and C. Harel, “Temperature mea-
surement in the Intel® CoreTM duo processor,” in Proc. Int. Workshop
Thermal Investigat. ICs, Sep. 2006, pp. 23–27.

[7] K. Whisnant, K. C. Gross, and N. Lingurovska, “Proactive fault moni-
toring in enterprize servers,” in Proc. IEEE Int. Multiconf. Comput. Sci.
Comput. Eng., Jun. 2005, pp. 3–10.

[8] K. Skadron, M. R. Stan, W. Huang, S. Velusamy, K. Sankaranarayanan,
and D. Tarjan, “Temperature aware microarchitecture,” in Proc. Int.
Symp. Comput. Architect., Jun. 2003, pp. 2–13.

[9] W. Huang, M. Stan, K. Skadron, K. Sankaranarayanan, S. Ghosh, and S.
Velusamy, “Compact thermal modeling for temperature-aware design,”
in Proc. Design Automat. Conf., Jun. 2004, pp. 878–883.

[10] D. Fetis and P. Michaud, “An evaluation of hotspot-3.0 block-based
temperature model,” in Proc. WDDD, Jun. 2006.

[11] P. Liu, H. Li, L. Jin, W. Wu, S. X.-D. Tan, and J. Yang, “Fast thermal
simulation for runtime temperature tracking and management,” IEEE
Trans. Comput. Aided Design Integr. Circuits, vol. 25, no. 12, pp. 130–
136, Dec. 2006.

[12] D. Simon, Optimal State Estimation: Kalman, H∞, and Nonlinear
Approaches. New York: Wiley, 2006.

[13] HotSpot [Online]. Available: http://lava.cs.virginia.edu/HotSpot/
[14] A. Odabasioglu, M. Celik, and L. Pileggi, “PRIMA: Passive reduced

order interconnect macro-modeling algorithm,” IEEE Trans. Comput.
Aided Design, vol. 17, no. 8, pp. 645–654, Aug. 1998.

[15] J. M. Wang, and T. Nuyen, “Extended Krylov subspace method for
reduced order analysis of linear circuits with multiple sources,” in Proc.
Design Automat. Conf., Jun. 2000, pp. 247–252.

[16] Intel PXA270 Processor, Electrical, Mechanical and Thermal Specifica-
tion Data Sheet [Online]. Available: http://www.intel.com

[17] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and
R. B. Brown, “MiBench: A free, commercially representative embedded
benchmark suite,” in Proc. IEEE Ann. Workshop Workload Character.,
Dec. 2001, pp. 3–14.

[18] G. Fursin, J. Cavazos, M. O’Boyle, and O. Temam, “MiDataSets:
Creating the conditions for a more realistic evaluation of iterative
optimization,” in Proc. Int. Conf. HiPEAC, Jan. 2007, pp. 245–
260.

[19] T. Simunic, L. Benini, P. Glynn, and G. De Micheli, “Event-driven
power management,” IEEE Trans. Comput.-Aided Design, vol. 20, no. 7,
pp. 840–857, Jul. 2001.

[20] R. Mukherjee and S. O. Memik, “Systematic temperature sensor allo-
cation and placement for microprocessors,” in Proc. Design Automat.
Conf., 2006, pp. 542–547.

[21] K.-J. Lee and K. Skadron, “Analytical model for sensor placement on
microprocessors,” in Proc. IEEE ICCD, Oct. 2005, pp. 24–27.

[22] S. Mondal, R. Mukherjee, and S. O. Memik, “Fine-grain thermal
profiling and sensor insertion for FPGAs,” in Proc. IEEE Int. Symp.
Circuits Syst., 2006, p. 4390.

[23] A. Coskun, T. S. Rosing, K. Mihic, G. De Micheli, and Y. Leblebici,
“Analysis and optimization of MPSoC reliability,” J. Low Power Elec-
tron., vol. 2, no. 1, pp. 56–69, Apr. 2006.

[24] C. J. Lasance, “Thermally driven reliability issues in microelectronic
systems: Status quo and challenges,” Microelectron. Reliabil., vol. 43,
no. 12, pp. 1969–1974, 2003.

[25] M. Cho, S. Ahmedtt, and D. Z. Pan, “TACO: Temperature aware clock-
tree optimization,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided Design,
Nov. 2005, pp. 582–587.

[26] LP-Solve [Online]. Available: http://lpsolve.sourceforge.net/
[27] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: A framework for

architectural-level power analysis and optimizations,” in Proc. Int. Symp.
Comput. Archit., 2000, pp. 83–94.

[28] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, A. G. Saidi, and S.
K. Reinhardt, “The M5 simulator: Modeling networked systems,” IEEE
Micro, vol. 26, no. 4, pp. 52–60, Jul.–Aug. 2006.

[29] K. Gross, K. Whisnant, and A. Urmanov, “Electronic prognostics
through continuous system telemetry,” in Proc. 60th Meeting Soc.
MFPT, Apr. 2006, pp. 53–62.

[30] K. Fu, Sequential Methods in Pattern Recognition and Machine Learn-
ing. New York: Academic Press, 1968.

[31] P. Kabisatpathy, A. Barua, and S. Sinha, Fault Diagnosis of Analog
Integrated Circuits. Berlin, Germany: Springer, 2005.

[32] S. Sharifi and T. S. Rosing, “An analytical model for the upper bound
on temperature differences on a chip,” in Proc. Great Lakes Symp. VLSI,
2008, pp. 417–422.

[33] S. Sharifi, C. Liu, and T. S. Rosing, “Accurate temperature estimation
for efficient thermal management,” in Proc. Int. Symp. Quality Electron.
Design, 2008, pp. 137–142.

[34] J. Long, S. O. Memik, and G. Memik, “Thermal monitoring mechanisms
for chip multiprocessors,” ACM Trans. Architect. Code Optim., vol. 5,
no. 2, pp. 9.1–9.23, Aug. 2008.

[35] S. Remarsu and S. Kundu, “On process variation tolerant low cost
thermal sensor design in 32 nm CMOS technology,” in Proc. Great Lakes
Symp. VLSI, 2009, pp. 487–492.

[36] Y. Zhang and A. Srivastava, “Accurate temperature estimation using
noisy thermal sensors,” in Proc. Design Automat. Conf., 2009, pp. 472–
477.

[37] R. Cochran and S. Reda, “Spectral techniques for high-resolution ther-
mal characterization with limited sensor data,” in Proc. Design Automat.
Conf., 2009, pp. 477–483.

[38] D. Pham, S. Asano, M. Bolliger, M. N. Day, H. P. Hofstee, C. Johns, J.
Kahle, A. Kameyama, J. Keaty, Y. Masubuchi, M. Riley, D. Shippy, D.
Stasiak, M. Suzuoki, M. Wang, J. Warnock, S. Weitzel, D. Wendel, T.
Yamazaki, and K. Yazawa, “The design and implementation of a first-
generation CELL processor,” in Proc. Int. Solid-State Circuits Conf.,
2007, pp. 184–185.

[39] R. Kuppuswamy, S. R. Sawant, S. Balasubramanian, P. Kaushik, N.
Natarajan, and J. D. Gilbert, “Over one million TPCC with a 45 nm
6-Core XeonTM CPU,” in Proc. Int. Solid-State Circuits Conf., 2009,
pp. 70–71, 71a.

[40] C. Lee, M. Potkonjak, and W. H. Mangione-Smith, “MediaBench: A
tool for evaluating and synthesizing multimedia and communications
systems,” in Proc. IEEE Micro., 1997, pp. 330–335.

Shervin Sharifi (S’10) received the B.S. degree
from the Sharif University of Technology, Tehran,
Iran, in 2000, and the M.S. degree from the Univer-
sity of Tehran, Tehran, in 2003, both in computer en-
gineering. He is currently working toward the Ph.D.
degree in computer engineering at the Department
of Computer Science and Engineering, University of
California, San Diego.

His current research interests include temperature
and power aware system design.

Tajana Šimunić Rosing (M’01) received the M.S.
degree in electrical engineering from the University
of Arizona, Tucson, on the topics of high-speed
interconnect and driver-receiver circuit design. She
received the Ph.D. degree from Stanford University,
Palo Alto, CA, in 2001, concurrently with finishing
the Masters in engineering management on topic
dynamic management of power consumption.

Prior to pursuing the Ph.D., she was a Senior
Design Engineer with Altera Corporation, San Jose,
CA. She was a Full Time Researcher with HP Labs,

Palo Alto, CA, while working part-time at Stanford University. At Stanford,
she led the research of a number of graduate students and has taught graduate
level classes. She is currently an Assistant Professor with the Department of
Computer Science and Engineering, University of California, San Diego. Her
current research interests include energy efficient computing, embedded, and
wireless systems.

Dr. Rosing has served on a number of technical paper committees, and
is currently an Associate Editor of the IEEE Transactions on Mobile

Computing.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00540068006500730065002000730065007400740069006e00670073002000610072006500200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e003000200061006e00640020006d00610074006300680020007400680065002000220053007500670067006500730074006500640022002000730065007400740069006e0067002000660069006c0065007300200066006f00720020005000440046002000730070006500630069006600690063006100740069006f006e002000760065007200730069006f006e00200034002e0030002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

