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Abstract—In this paper, we propose PROMETHEUS, a frame-
work for proactive temperature aware scheduling of embedded
workloads on single ISA (instruction set architecture) het-
erogeneous Multi-Processor Systems-on-Chip (MPSoC). It sys-
tematically combines temperature aware task assignment, task
migration and dynamic voltage and frequency scaling (DVFS).
PROMETHEUS is based on our novel low overhead temperature
prediction technique, Tempo. In contrast to previous work, Tempo
allows accurate estimation of potential thermal effects of future
scheduling decisions without requiring any runtime adaptation.
It reduces the maximum prediction error by up to an order of
magnitude. Using Tempo, PROMETHEUS framework provides
two temperature aware scheduling techniques which proactively
avoid power states leading to future thermal emergencies while
matching the performance needs to the workload requirements.
The first technique, TempoMP, integrates Tempo with an online
multi-parametric optimization method to guide decisions on
task assignment, migration and setting core power states in a
temperature aware fashion. Our second scheduling technique,
TemPrompt uses Tempo in a heuristic algorithm which provides
comparable efficiency at lower overhead. On average, these two
techniques reduce the lateness of the tasks by 2.5X and energy-
lateness product by 5X compared to the previous work.

Index Terms—Temperature, Multi-processor System-on-Chip,
thermal management, scheduling.

I. INTRODUCTION

CONTINUOUS increase of power density in modern
processors results in higher temperatures which lead

to system reliability degradation, leakage power increase,
performance degradation and higher cooling and packaging
costs. Temperature has become one of the major factors in
design, manufacturing and test of modern multi-processor
systems. Heterogeneous MPSoCs provide trade-offs regarding
performance, power and temperature by allowing customiza-
tion of performance and power characteristics of the chip to
match the requirements of the workload [20]. Temperature
is of particular concern in heterogeneous MPSoCs due to
the inherent imbalance in heat generation patterns across the
die. These MPSoCs are used in many embedded systems
which experience a wider range of environmental conditions
than typically seen in data centers and offices without the
benefit of more sophisticated packaging due to cost and space
considerations. For such systems, on-chip thermal and power
management techniques are key.

In this work we propose a framework called PROMETHEUS
to address dynamic thermal management (DTM) of single
ISA heterogeneous MPSoCs running embedded workloads. By
single ISA heterogeneous MPSoC (assymetric multi-core pro-
cessor), we specifically refer to the SoCs consisting of cores

which support the same instruction set architecture (ISA),
but provide different operating points in terms of power and
performance. In such systems, cores of different types are able
to run the same binary and tasks can migrate between different
types of cores. However, different types of cores are optimized
for different objectives. Typically one type is optimized for
performance while another type may be optimized for power
and energy efficiency.

Our methodology allows systematic thermal management
of these heterogeneous MPSoCs considering individual per-
formance, power and thermal characteristics of each core.
To evaluate the thermal impact of the potential power state
changes, we propose a temperature prediction method, called
Tempo, which has a number of advantages over previous
temperature predictors. First, it does not need any kind of
runtime adaptations to assure accurate prediction. Moreover,
other predictors need to wait until the thermal effect of the
power state changes appear in the temperature so that the
predictor can detect the new trend and restart prediction based
on that. However, Tempo is able to predict temperature of any
set of future power state choices before they are applied to
the system. This enables accurate upfront evaluation of future
thermal impact of potential power state changes caused by
scheduling decisions in an MPSoC. Moreover, other methods
relying on signal estimation techniques typically treat tem-
peratures of different cores as independent signals. Therefore,
in the cases where mutual thermal effects of the cores are
significant, inaccuracies in the estimates might be large.

We use Tempo as a part of two scheduling techniques to
verify thermal safety of alternative scheduling decisions. The
first scheduling technique, TempoMP, integrates Tempo in a
multi-parametric optimization framework. Given the thermal
state of the cores and performance requirements of the power
states are chosen which are power efficient, thermally safe and
able to provide required performance for the workload. Our
second scheduling technique, TemPromopt also uses Tempo
to estimate the future thermal effects of various scheduling
decisions, but instead of being optimal, it uses a heuristic
algorithm to choose power state assignments. These techniques
are preemptive multi-tasking scheduling techniques which can
preempt the tasks at the end of each time quantum (at each
scheduling tick) or migrate them to other cores. Compared to
previous work, these two techniques provide on average a 2.5x
reduction in lateness of the tasks and 5x reduction in energy-
lateness product. The next section discusses the related work
followed by the sections describing the details of Tempo and
PROMETHEUS.
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Fig. 1. Example of thermal network for a MPSoC with four cores

II. RELATED WORK

Availability of multiple instances of similar processing
resources on MPSoCs creates further opportunities for thermal
management compared to single core processors by allowing
distribution of activities and heat as necessary. However, the
solution space becomes huge due to the multitude of possi-
bilities regarding assignment of power states and tasks to the
cores and deciding about when to start the available tasks. The
problem is even more complicated by the fact that temperature
of any particular point on the die is a strong function of recent
temperature and workload history. In general, task scheduling
under thermal constraints is an NP-hard problem.

A large number of DTM techniques proposed in the past
have been reactive in the sense that they take action when
temperature of a unit rises above a given threshold. This
might cause significant performance loss and reliability is-
sues [30]. Therefore, proactive DTM techniques have been
proposed which try to predict and prevent thermal emergencies
before they happen. Several temperature predictors have been
proposed to be used for proactive DTM techniques. In [9]
a proactive temperature balancing technique based on an
autoregressive moving average (ARMA) modelling has been
proposed for general purpose systems. In order to avoid
inaccuracy, the changes in the workload and temperature
dynamics are detected using a sequential probability ratio
test (SPRT) so that the ARMA model can be updated in
timely fashion. In systems with highly dynamic workloads,
continuously performing SPRT-based detection and updating
the ARMA model incurs overhead.

In [19], a temperature prediction technique for chip multi-
processors is proposed which assumes future temperature of a
cores as the linear extrapolation of its previous temperature
readings. Although this predictor does not need any kind
of runtime adaptation, because it implicitly assumes that the
gradient of temperature stays the same for the whole prediction
interval, it may result in inaccurate estimates.

In [5] a proactive DTM technique is introduced for chip
multiprocessors based on the band-limited property of tem-
perature frequency spectrum. Although this method does not

need any adaptation either, it is not able to accurately predict
temperature changes due to power changes before they actually
happen. This technique predicts the temperature by observing
the previous samples and projecting them into future assuming
the trend does not change. Therefore, when the power state of
a core changes, this technique needs to observe at least a few
samples before being able to estimate the future temperature.
Thus it cannot be used to evaluate potential thermal impact of
alternative future scheduling decisions.

Previous temperature prediction techniques either need
costly runtime adaptation (e.g. [9]) or are not able to accurately
predict the thermal impact of transition to new power states
before the power change happens (e.g. [5]). The general signal
analysis and prediction approaches used in these techniques
are more suitable for the cases where the underlying physical
model of the system is not well known. Being oblivious to this
knowledge of the system, the advantages of these techniques
are limited when the underlying model of the system is known
because they are not getting the full benefit of this valuable
information at hand. In contrast to previous techniques, our
prediction method takes advantage of the knowledge of the
dynamics of the system which is provided by the thermal
model. Unlike previous techniques, Tempo can accurately
predict what the future temperature of the cores can be for
any future power states of the cores without the need to apply
them and wait to see their effect on temperature. Therefore,
it can be used to evaluate the thermal effects of alternative
decisions for thermal management to choose the best out of
potential options. Moreover, our proposed model does not need
any runtime adaptation and also is fully linear.

Tempo can be used within model predictive control tech-
niques as well. DTM techniques using model predictive con-
trol such as [31] typically assume the temperature at all of the
nodes of the thermal network are observable by thermal sen-
sors, which is not true for majority of designs because thermal
sensors are not placed in thermal interface material and heat
sink. Instead, Tempo can be used in such cases in order to avoid
such assumptions, especially because it is completely linear so
there is no need for non-linear optimization techniques. It can
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also be easily integrated with multi-parametric optimization
techniques, as we have used in TempoMP which is explained
later. Tempo can also be used with phase detection and pre-
diction techniques such as [17] which are able to monitor and
predict power consumption of the cores. Although availability
of power estimates increases prediction accuracy of Tempo,
even when there are no accurate values of future core power
consumptions, Tempo is able to estimate future temperature
based on only previous temperature information.

Some recent work leverages control theory and optimization
to manage thermal issues in homogeneous MPSoCs. In [25],
convex optimization is used to control the frequency of the
cores on a homogeneous MPSoC to guaranty that thermal
constraints are met. In [32], a linear quadratic regulator is
used to solve the frequency assignment problem for thermal
balancing. To achieve a smooth control and to minimize
performance loss and thermal fluctuations in an MPSoC, [31]
proposes a technique based on model predictive control.

Unlike general purpose processing, the type and characteris-
tics of the workloads such as execution time are often known in
advance in embedded domain. Although this extra information
is helpful in devising better thermal management solutions, the
complexity of the problem makes it practically infeasible to
find the optimal solution. To manage this complexity and make
the problem tractable, various techniques in this domain have
used different simplifying assumptions to develop heuristics.
In contrast to general purpose domain, in embedded domain
the goal is not merely maximizing the throughput and each
task might have individual performance requirements such as
deadlines In [8], an assignment and scheduling technique for
hard real time applications on MPSoCs is proposed which uses
a mixed-integer linear programming formulation to minimize
peak temperature under hard real-time constraints and task
dependencies. This technique is limited to tasks with large exe-
cution times and works based on a steady-state thermal model.
It performs global optimization to minimize the temperature
of a set of known tasks. The complexity of this approach
increases exponentially with the number of tasks and number
of cores and as authors have mentioned, this formulation is not
practical for large problem instances. A heuristic approach is
also presented for large problems which does not consider a
thermal model and works based on the mobility of the tasks.

Relatively little work has focused on heterogeneous em-
bedded MPSoCs. The work in [27] proposes an algorithm
for energy and temperature aware scheduling of embedded
workloads on heterogeneous MPSoCs where the scheduler
operates in two modes based on the utilization of MPSoC.
The workload is observed and its performance requirements
are estimated. Then, based on the utilization of the processor
it is decided if the scheduler should work in energy saving or
thermal management mode.

In this paper, we propose PROMETHEUS framework for
proactive management of temperature in heterogeneous MP-
SoCs by systematically selecting power state of the cores
and task assignments. PROMETHEUS provides two schedul-
ing techniques, TempoMP and TemPrompt which both are
based on our temperature prediction technique, Tempo. Tem-
poMP incorporates Tempo temperature prediction with multi-

parametric optimization to choose the optimal alternative
among possible power states of the cores and task assign-
ments which does not violate thermal requirements. The other
technique, TemPrompt uses Tempo within a heuristic algorithm
which provides comparable efficiency to TempoMP, but at a
lower overhead.

PROMETHEUS framework is general and is able to con-
sider various performance, power and thermal characteristics
for cores, which makes it applicable to heterogeneous MPSoCs
as well as homogeneous ones. It meets thermal requirements
by evaluating future impacts of various scheduling decisions
and avoiding decisions leading to thermal emergencies.

The next section explains the details of Tempo tempera-
ture prediction technique. Section IV discusses our schedul-
ing framework, PROMETHEUS and details of our proposed
scheduling techniques. Section V provides the experimental
results and discussions and section VI concludes the paper.

III. TEMPERATURE PREDICTION

In this section, we first explain the basic ideas behind
our Tempo temperature predictor and then we describe how
Tempo can take into account the leakage and its tempera-
ture dependence. The objective of our prediction method is
to accurately predict future temperature of the cores based
on the available temperature and power information. More
specifically, we estimate the temperature of the cores at the
end of the scheduling tick (k + 1) based on the temperature
of the cores at the beginning of scheduling tick k+ 1 and the
one before that (k). Tempo takes into account the power state
changes between scheduling ticks k + 1 and k as well.

Our work is based on compact thermal model of the chip
[30] which leverages the well-known duality of thermal and
electrical phenomena. The heat flow among the functional
units is modeled using a corresponding network of thermal ca-
pacitances and resistances as shown in Figure 1. The dynamics
of the temperature and the relation between the temperature,
power consumption of the cores and thermal characteristics of
the system is described as:

Ct
d

dt
T (t) = −GtT (t) + P (t) (1)

where the vectors and matrices are defined as:

T Temperature at all the nodes of the thermal network
P Power consumptions of the nodes of thermal network
Gt Thermal conductance matrix
Ct Thermal capacitance matrix

Assuming the number of the cores to be n and the number
of nodes in the thermal RC network to be m, P and T are
vectors of length m both and Gt and Ct are matrices of size
m×m both.

Given the temperature at all the nodes of the thermal net-
work, estimating the future temperature based on the power is
not difficult. However, usually this is not the case. At runtime,
temperature is usually obtained via thermal sensors within the
silicon layer. If each core does not have its own sensor, the
technique in [28] can be used to estimate the core temperatures
using the available sensors. However, thermal sensors cannot
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be placed within internal layers (thermal interface material,
heat spreader, etc.), so the available temperature information
is limited to the temperature of the cores. This lack of thermal
information of internal nodes makes it challenging to predict
or evaluate temperature at runtime. The temperature of the
internal nodes can be obtained by simulating the thermal
model at runtime, which is not computationally practical.
Moreover, without feedback from the thermal sensors, the
results may deviate dramatically from the actual values.

In our formulation, to reflect this lack of thermal in-
formation of the internal nodes, we break the vector of
temperature values (T ) into two sub-vectors. Sub-vector To
represents the temperatures observable by thermal sensors
(core temperatures), while Tu represents the internal nodes
of the thermal network whose temperatures are unobservable
(as shown in Figure 1). The size of these vectors are n and
m− n respectively.

The analytical solution to the non-homogeneous system of
differential equations in equation (1) can be calculated as:

T (t) = e−Γ(t−t0)T (t0) +

∫ t

t0

e−Γ(t−τ)C−1
t P (τ) dτ (2)

where T (t0) is the starting temperature at time t0 and

Γ = C−1
t Gt (3)

Discretizing the equation (2) for a scheduling tick of ts, the
temperature at consequent scheduling ticks can be described
as: [

To[k + 1]
Tu[k + 1]

]
= Ψ

[
To[k]
Tu[k]

]
+ Φ

[
P [k + 1]
Pu[k + 1]

]
(4)

where
Ψ = e−Γts ,Φ = Γ−1(I − e−Γts)C−1

t (5)

The first term in equation (4) is the contribution of initial
conditions and the second term is the contribution of power
consumption during this scheduling tick. We divide the matri-
ces Ψ and Φ into sub-matrices as shown here:

Ψ =


Ψoo Ψuo

Ψou Ψuu

 ,Φ =


Φoo Φuo

Φou Φuu

 (6)

where sizes of the matrices Ψoo, Ψuo, Ψou and Ψuu are
n×n, n×m−n, m−n×n and m−n×m−n respectively.
Each matrix Ψxy shows the effect of initial temperature of
set x of nodes on the current temperature of the set y. For
example, Ψuo models the effect of initial temperature of unob-
servable(u) nodes on the current temperature of observable(o)
nodes. Similarly, each matrix Φxy shows the effect of current
power of the set x of nodes on the current temperature of
the set y. The internal nodes do not consume any power
(Pu[k + 1] = 0), so:

To[k + 1] = ΨooTo[k]︸ ︷︷ ︸
Fo

+ ΨuoTu[k]︸ ︷︷ ︸
Fu

+ ΦooP [k + 1]︸ ︷︷ ︸
Fp

(7)

where the first and second terms (Fo and Fu) are respectively
the contributions of initial temperature of the observable and
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Fig. 2. (a) Temperature of the core (b) Breakdown of temperature into
components of equation (7) (c) Temperature of corresponding nodes in thermal
interface material, heat spreader and heat sink, all relative to ambient

unobservable nodes on the temperature at the next scheduling
tick. The third term (Fp) is the contribution of the power
consumption of the cores during the incoming scheduling tick.
At each scheduling tick, the term Fo can be calculated based
on the current temperature of the cores which are observable
by thermal sensors. The term Fp also can be calculated
given the current power consumption of the cores. But due
to lack of knowledge about the temperature of unobservable
nodes (Tu[k]), term Fu is unknown. This term represents the
contribution of initial temperature of the unobservable nodes
of the thermal network (internal nodes) on the temperature at
the next scheduling tick. Because Fu is not known at runtime,
equation (7) is not enough to calculate future temperature of
the cores.

We show that fast changes in the temperature are produced
by components Fo and Fp while component Fu does not
change quickly. Figure 2 shows an example of breakdown of
the temperature of a SPARC-like core in floorplan of Figure
7 into three components of the equation (7). It should be
noted that while the core temperature shown in part (a) of the
figure is the sum of the components in Figure 2(b). All values
are relative to the ambient temperature (40◦C in this case).
As can be seen in this figure, although the core temperature
changes significantly, the term Fu changes very slowly. The
quick change of temperature between two scheduling ticks is
mainly due to changes on the other two terms (Fo and Fp)
as shown in the figure. Figure 2(c) shows the temperature of
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the corresponding internal nodes. It should be noted that as
this figures shows, although some of the unobservable internal
nodes might change quickly (e.g. thermal interface material),
the changes of term Fu are very slow. Later in this section we
will explain the reason for this phenomenon in detail.

Due to the limited rate of change on Fu, we assume that this
term remains constant between two consecutive scheduling
ticks:

Fu[k + 1] ≈ Fu[k] (8)

Temperature evaluation equation for the previous scheduling
tick is then:

To[k] = ΨooTo[k − 1] + ΨuoTu[k − 1] + ΦooP [k] (9)

Based on equation (8), ΨIITu[k] ' ΨIITu[k − 1]. T, the
temperature prediction by Tempo is then calculated as:

T[k + 1] = (Ψoo + I)To[k]−ΨooTo[k − 1] + Φoo(P [k + 1]− P [k])
(10)

We use equation (10) to predict the temperature at the be-
ginning of scheduling tick k + 1 based on the temperature
of the cores at the beginning of scheduling tick k and their
power state during this scheduling tick. We also define Tempo’s
thermal state of a core, T[k + 1] in equation (11) as the
predicted temperature at the beginning of scheduling tick k+1
if the power state of the cores do not change in scheduling
tick k.

T[k + 1] = (Ψoo + I)To[k]−ΨooTo[k − 1] (11)

As equation (11) shows, T[k + 1] can be calculated based
on the previous and current core temperatures. Later we use
Tempo’s thermal state within our scheduling techniques. Based
on equation (11) we rewrite the equation (10) as:

T[k + 1] = T[k + 1] + Φoo(P [k + 1]− P [k]) (12)

The second term on the right hand side reflects the effect of
power changes on the temperature of the cores.

Now we describe how we incorporate the leakage power
and its temperature dependence into Tempo prediction. We use
the linear approximation of the leakage as suggested in [22]
with an approximate estimation error of up to 5%. Using this
model, the leakage power of a core can be estimated as sum
of a constant term and a term linearly dependent on the cores
temperature:

Pleak(t) = LT (t) +Q (13)

where L is a diagonal matrix containing the coefficients for the
linear terms and Q is a vector of constant terms for different
cores. It should be noted that elements of L and Q which
correspond to the nodes in any layer other than silicon are
zero because these nodes do not consume any power, including
leakage power. Therefore, the equation (1) is transformed to:

Ct
d

dt
T (t) = −(Gt − L)T (t) + (Pdynamic(t) +Q) (14)

The next steps would be similar to deriving equations (2) to
(12) based on equation (1). Predicted temperature considering
leakage is:

T[k + 1] =
(
(Ψ′oo + I)To[k]−Ψ′ooTo[k − 1]

)
+

Φ′oo(Pdyn[k + 1]− Pdyn[k])
(15)
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Fig. 3. Gershgorin discs of matrix Γts in complex plane for (a) a high end
package and (b) an embedded-type package

where Ψ′ = e−C
−1
t (Gt−L)ts , Φ′ = ((Gt − L)−1Ct)(I −

e−C
−1
t (Gt−L)ts)C−1

t .
Before describing how we leverage Tempo in our scheduling

framework, which is explained in Section IV, in the following
subsection we show why Tempo is an accurate predictor.

A. Theoretical Analysis of Tempo
Tempo is based on the premise that the changes on compo-

nent Fu of temperature are very slow, or Fu[k + 1] ≈ Fu[k].
This phenomenon can be explained by the structure of the
thermal RC circuit and thermal characteristics of the chips.
To simplify the explanation, we assume that the length and
width of heat spreader and heat sink exactly match those of
the silicon (and thermal interface material).

As shown in Figure 1, each node in the thermal network
is connected to its neighbor nodes in the same layer through
lateral thermal conductances and to the corresponding nodes in
the top and bottom layers through vertical thermal resistances.
If the nodes at the bottom and top of node i are respectively
represented by bottom(i) and top(i) and the set of lateral
neighbors of the node i are represented by LN(i), then thermal
conductance matrix Gt could be described as:

Gt(i, j) =


i = j

∑
l∈LN(k)

g(i, l) + g(i, top(i)) + g(i, bottom(i))

i 6= j −g(i, j)
(16)

where g(i, j) is the conductance and capacitance between
nodes i and j in the thermal circuit. Capacitance matrix Ct is
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also defined as:

Ct(i, j) =

{
i 6= j 0
i = j c(i)

(17)

where c(i) is the thermal capacitance of node i. As can be
seen, matrix Gt is symmetric and diagonally dominant, and
matrix Ct is diagonal. Based on equations (16) and (17):

Γ(i, i) = c(i)−1

 ∑
l∈LN(k)

g(i, l) + g(i, top(i)) + g(i, bottom(i))


(18)

Considering matrix Γts, its eigendecomposition is:

Γts = V ΛV −1 (19)

where V is a square matrix whose jth colum is the jth
eigenvector (vj) of Γts and the Λ is a diagonal matrix whose
diagonal elements are the corresponding eigenvalues of matrix
Γts; in other words: Λ(j, j) = λj . From equations (5) and
(19), we have:

Ψ = e−Γts = V e−ΛV −1 = V XV −1 (20)

Since Λ is diagonal, X is also a diagonal matrix with diagonal
elements:

X(j, j) = e−λj (21)

According to Gershgorin’s circle theorem [11], the eigenvalues
of matrix Γts lie within a set of discs called Gershgorin discs.
Gerschgorin disc i is centered at Γ(i, i)ts with radius ρ(i).
ρ(i) is defined as ρ(i) = min(ρR(i), ρC(i)) where

ρR(i) =
∑
j 6=i |Γ(i, j)ts| ρC(i) =

∑
j 6=i |Γ(j, i)ts|

(22)
For diagonally dominant matrices, usually the eigenvalues

tend to be closer to the centers of the discs. For example,
in the extreme case of a diagonal matrix, the eigenvalues fall
right onto the center of Gershgorin discs. Using equations (18)
and (22), Gershgorin discs and the location of the eigenvalues
can be estimated directly based on the chip and package
parameters without the need to calculate the exact eigenvalues.

For an MPSoC composed of a 3×3 grid of cores of size
1×1mm each, Figure 3 shows the eigenvalues and Gershgorin
discs of matrix Γts corresponding to the nodes in thermal
interface material, heat spreader and heat sink for two different
types of packages. The first one is the default package in
Hotspot [1] which is a high end package with thermal interface
material thickness of 0.02mm, heat spreader thickness of
1mm, heat sink thickness of 6.9mm and convection resistance
of 0.1K/W . The other one resembles a lower end and less
expensive package which can be found in embedded type
devices. It has the same thermal interface material thickness,
but with heat spreader thickness of 0.1mm, heat sink thickness
of 1mm and convection resistance of 5.0K/W .

In both cases, the eigenvalues of matrix Γts corresponding
to heat sink (shown in Figure 3) are very close to zero and
their corresponding Gershgorin discs are too small to be seen
in the figure. In both types of packages, the eigenvalues cor-
responding to the thermal interface material and heat spreader
are much larger compared to those of heat sink, although

the heat spreader eigenvalues are very different in these two
cases. As a result, in matrix Ψ, according to equation (21)
the eigenvalues corresponding to heat spreader and thermal
interface material are negligible compared to the ones of
the heat sink. Therefore, the effect of the temperature of
these nodes on component Fu is negligible relative to the
effect of the heat sink. Consequently, although the temperature
of thermal interface material and heat spreader can change
quickly and significantly, the effect of these changes on the
component Fu is negligible. In contrast, the temperature of
heat sink which is the dominant component of Fu changes very
slowly. Its changes are negligible in the milliseconds range.
Therefore, Fu’s changes between two consecutive scheduling
ticks can be neglected.

The next section describes how we leverage Tempo in our
proposed scheduling framework.

IV. PROMETHEUS SCHEDULING FRAMEWORK

In this section, we describe PROMETHEUS, our proposed
framework for proactive temperature aware scheduling. Our
approach imposes no restrictions on the distributions of the
size and the number of concurrent tasks in the workload which
makes it applicable to various classes of workloads. It also
systematically considers individual performance, power and
thermal characteristics of the cores so it can be applied to
heterogeneous MPSoCs as well as homogeneous ones. Using
Tempo, the thermal impact of alternative scheduling decisions
are evaluated in advance and scheduling decisions which
might result in thermal emergencies are avoided. Therefore,
PROMETHEUS guaranties that the maximum temperature
threshold will not be exceeded. This approach can be applied
to any preemptive, multi-tasking scheduling system which is
able to preempt the tasks or migrate them to other cores
at scheduling intervals. Here, we present an overview of
PROMETHEUS’s scheduling system followed by the details
of two individual proactive scheduling techniques.

Figure 4 shows an overall view of our framework and its
operation. Embedded workloads running on the system are
pre-characterized in terms of execution time and power. Using
pre-characterization information, the performance requirement
estimation module can estimate the execution time of the
tasks at different power states. Then, for each core type it
can determine the set of power states on which each tasks
will be able to meet its performance requirement. For cases
where offline characterization of the tasks is not possible,
online characterization techniques can be used to evaluate the
performance requirements on the fly [4].
At each scheduling tick, the temperature predictor module
calculates Tempo’s thermal state, T[k + 1], which is the esti-
mated temperature at next scheduling tick if the current power
states of the cores do not change. Given the outputs of the
temperature prediction module and performance requirement
estimation module, power state decision module determines a
set of thermally safe power states which are able to provide
performance as close as possible to the workload’s require-
ments. The output of this module is used to set the core power
states and also in assigning tasks to cores. Once the power
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states are determined by the power state decision module, task
assignment decision module decides how the tasks should be
assigned to the cores based on their performance requirements.

The two scheduling techniques provided in this framework,
TempoMP and TemPrompt differ only in their power state
decision modules. The first technique, TempoMP, determines
the safe power states based on an optimization stage which is
performed offline and its results are stored for runtime use. Al-
though the optimization technique can provide locally optimal
power state decisions, storing and fetching the optimization
results incurs overhead. To avoid this overhead, we propose
another scheduling technique called TemPrompt which uses a
heuristic for its power state decision module. The next sub-
sections describes the details of TempoMP and TemPrompt
scheduling techniques.

A. Power state assignment in TempoMP

At each scheduling tick, temperature information received
from the sensors and also scheduling state provided by the
scheduler are used in order to determine the core power
states and task assignments for the next scheduling interval. In
TempoMP, power state module determines the best power state
for the cores by referring to the results of offline optimization
stage. Optimization is formulated based on the power and
performance characteristics of the cores and the thermal model
of the MPSoC as shown in Figure 5. The selection of locally
optimal power states and task assignment are done based on a
multi-parametric optimization framework which incorporates
our temperature prediction methods.

Multi-parametric programming is a class of optimization
problems in which given an objective function, a set of
constraints and a set of parameters, the optimal solution is
obtained as an explicit function of those parameters [26]. It is
a powerful approach for analyzing the effect of variations and
uncertainty in optimization problems where objective function
is to be minimized or maximized subject to a set of constraints,
and a set of parameters which may vary within given bounds.
For such problems, multi-parametric programming obtains the
objective function and optimization parameters as functions
of the varying parameters. It also provides the regions in the

solution space where these functions are valid. These regions
are called critical regions. Multi-parametric optimization ap-
proach splits the optimization process into offline and online
stages. Using multi-parametric programming, the optimization
problem is solved offline and the set of critical regions and
parametric solutions are provided as output. No optimization
needs to be done at runtime. Only a limited number of
operations need to be performed at runtime in order to find
the critical regions corresponding to the current solution.

We use this technique as a basis for our online optimization.
Our goal is to choose what power states the cores should
be set to in order to meet the performance requirements
of the workload and thermal constraints. Therefore, decision
variables (optimization outputs) are power states of the cores
while performance requirements and the thermal state of the
MPSoC are the varying parameters (parametric optimization
inputs) in this optimization problem. Without this online
optimization, various combinations of power states would
have to be tried to find the thermally safe power settings
which meet the performance requirements of the workload.
Performance requirement of a workload is measured by the
minimum number of cores of type Ω that should be set to
a given power state v to meet performance demand of the
workload and is denoted as σΩ,v . Performance requirement of
a task is measured by the time to its deadline in a deadline
based system. In other types of systems, per-task performance
requirements can be described using other measures such as
throughput requirements.

Figure 6 shows a simple illustrative example of using multi-
parametric programming in power state assignment for a single
core case. This core has one sleep state and three discrete
power states: phigh, pmedium and plow (corresponding to
frequencies fhigh, fmedium and flow respectively). The goal
is to set the core to the optimal power state whose frequency
is equal to or greater than the minimum frequency required
to meet performance requirements of the workload (fmin) but
does not cause the temperature to exceed the threshold. fmin is
one of the varying parameters in the optimization and its value
is estimated at runtime given the workload. Another parameter
obtained at runtime in this decision is Tempo’s thermal state
of the core, T[k + 1], which is the estimated temperature of
the core at the next scheduling tick assuming the power state
does not change. T[k + 1] reflects the current trend of the
temperature of the cores.

This set of parameters define the solution space as shown
in Figure 6. The Y axis represents fmin, while the X axis
represents T[k + 1]. The space of the solutions consists of
all possible combinations for T[k + 1] and fmin which is
divided into four regions. Based on the given input parameters,
the corresponding region is identified and the corresponding
solution is chosen. Each region corresponds to one frequency
setting which minimizes the power while providing at least
the minimum required frequency. In the example of Figure 6,
each region is labeled by the frequency corresponding to that
region.

At very low T[k + 1], even the highest power state is
thermally safe. Therefore, even if the frequency requirement
(fmin) is high, it can be satisfied. This corresponds to the
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Fig. 6. A very simple example describing use of multi-parametric program-
ming in power state assignment

green area of Figure 6. When T[k + 1] is very high, none of
the active states are thermally safe, therefore the core should
be put to sleep (e.g. when T[k+1] > 86◦C). This corresponds
to the white region on the right side of the figure. At T[k+ 1]
values between these two extremes, the core can be set to
one of its active power states. As an example, parameters
T[k + 1] = 80◦C and minimum frequency requirement of
1.1 GHz fall into the yellow region which corresponds to
the medium power state of the core(pmed corresponding to
fmed). Using multi-parametric programming, we generate such
functions which allow us to find optimum power states for each
combination of parameters. This example was just a simple
illustration of how multi-parametric optimization can be used
to assign power state to a single core based on its thermal
state and the performance demand of the workload. Next we
describe how we extend this idea to the more general case
of systems with multiple cores and different representation of
performance requirements.

We formulate an optimization problem using Tempo pre-
diction model with the goal of finding the locally optimal
power states of the cores. Thermal states of the cores and
performance requirements of the workload are given to the
optimization framework as inputs, while the output of the
optimization process is a set of power states for the cores that
are thermally safe and are able to provide the performance
requirements of the workload at the minimum power cost.
The optimization formulation uses Tempo to evaluate thermal
safety of the potential power states.

The decision variables in this optimization are power states
in the next scheduling tick which are represented by the vector
α[k+1] (in bold in equation (23)). λΩ,v represents the number
of cores which would be set to power state v after the opti-
mization while σΩ,v is a measure of performance requirement
which represents the minimum number of cores which should
be set to power state v to satisfy the performance demand of
the workload. The optimization problem is formulated as:

minimize
α

Ptotal(α[k+ 1],T[k + 1])

subject to T(α[k+ 1], α[k],T[k + 1]) ≺ TTh
∀Ω, v : λΩ,v ≥ σΩ,v.

(23)

where we use ≺ as element-wise less than operator and
T[k + 1] is the thermal state defined by Tempo. The objective
of this optimization is to minimize the total power (Ptotal)
of the cores under the thermal limits. Ptotal is the sum of
dynamic and leakage power of the cores. Leakage component
of Ptotal is calculated using equations (13) and (14).

The optimization parameters are performance requirements

and the temperature of the cores. Details of the optimization
objective and constraint formulation are provided below.

The outputs of the optimization (the decision variables) are
the power states of the cores in the next scheduling tick which
are represented by the vector α[k+1]. If the optimization sets
the core n to power state v, then αn,v is 1, and 0 otherwise:

αn,v =

{
1 if core n is set to power state v
0 otherwise (24)

Optimization chooses α[k+1] values such that the total power
is minimized under the thermal constraints while meeting
performance requirements. We denote the number of cores of
type Ω which are set to power state v as λΩ,v , where

λΩ,v =
∑
ω∈Ω

αω,v (25)

The minimum number of cores of type Ω that have to run at
a given power state v to meet performance requirements of
the workload is denoted as σΩ,v . The performance require-
ment estimation module determines σΩ,v values at runtime
given the performance requirements of the tasks provided
by information such as deadlines, required throughput or
target IPS (instructions per second) [4] for example. As an
example, suppose a soft deadline based system with three
ready to run tasks. Based on the current deadlines of the tasks
and their pre-characterization information, the performance
requirement estimation module determines that in order to
meet the deadlines of these tasks, two of them need to run
on cores of type 0 (Ω = 0) at the highest power state (v = 0)
and the remaining one needs to be run on a core of type 1
(Ω = 1) at its lowest power state (v = 2), then σ0,0 = 2,
σ1,2 = 1 and for other values of Ω and v, σΩ,v = 0. For each
core, if we assume core of type k has v active power states
and one sleep state, the power consumption of core n which
is of core type k can be written as

P [n] = αn,1 ·Pk,1 + ...+αn,v ·Pk,v +αn,sleep ·Pk,sleep (26)

where Pk,v is the power consumed at power state v at a core
of type k.

The first constraint enforces the predicted temperature at the
next scheduling tick to be lower than the maximum threshold,
while the second set of constraints require the power states
chosen by optimization to provide at least the performance
required by the workload. Instead of solving the optimization
problem at each scheduling tick, we use an approach based on
multi-parametric programming [26]. Optimization parameters
σ, α[k] and T[k+1] partition the parameter space into separate
regions called critical regions. Each possible combination of
σ, α[k] and T[k+1] corresponds to one and only one of these
critical regions which represents the optimum power states of
the cores for that specific combination. The region basically
specifies the validity range of that set of power states such
that temperatures of all the cores are below the threshold
temperature and the total power is minimized. The actual
values for the optimization parameters are found at runtime.
Given the parameter values, the corresponding region is found
which represents the appropriate set of power states for the
cores. The set of optimal solutions (α[k + 1]) is obtained as
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an explicit function of the parameters (σ, α[k] and T[k + 1]).
To get the optimum results at runtime, the power state decision
module does not need to do any optimization online. It only
needs a limited number of operations to be performed at
runtime to find the regions representing the α[k + 1] values
corresponding to the current value of σ, α[k] and T[k + 1].

Temperature of the cores at the next scheduling tick depends
on decision variable α[k+ 1] and optimization variables α[k],
T[k+ 1]. Larger number of optimization parameters results in
much larger solution space. In order to reduce the number of
optimization variables, equation (10) is transformed to:

T[k + 1] = ΦooP [k + 1]︸ ︷︷ ︸
Fp

+ (T[k + 1]− ΦooP [k])︸ ︷︷ ︸
Fr

(27)

It can be seen that at each scheduling tick, the only unknown
component is Fp and the remaining component, Fr, is known.
Therefore, at each scheduling tick, Fr can be calculated based
on the observable temperature and current power states, and is
used as the optimization parameter instead of α[k] and T[k+1].
This significantly reduces the size of the parameter space. Fr
along with performance requirements σΩ,v are used by the
power state decision module to find the corresponding critical
region which represents the set of optimal power states of the
cores for the given parameters.

We store the results of optimization in a two level look-up
table. At the first level, for each combination of performance
requirements (σΩ,v), one set of regions is stored. At the second
level, within that set of regions, we find the proper region
based on Fr. Performance requirements (σΩ,v values) are
small integer values (the upper bound for σΩ,v is the number
of cores of type Ω). Therefore, given the values of variable
σΩ,v , the table where the corresponding set of regions is stored
can be found with a single memory access. Then the Fr values
are used to find the proper region within this set. If nr is the
average number of regions in each set of regions and nc is
the number of the cores, then finding the right region within a
set needs nr × nc multiply/add operations on average [26].
Therefore, the complexity of this algorithm is O(nr × nc)
(nr < 5 in our experiments).

After the power states are set, the last step of TempoMP
is assigning tasks to the cores. The next subsection discusses
how task assignment is done.

Offline optimization phase is performed in Matlab [23].
The multi-parametric programming framework is implemented
in YALMIP [3] toolbox in Matlab which relies on Multi-
Parametric Toolbox (MPT) [2]. Optimization results are saved
in the scheduling decision module to be accessed during the
online phase of our algorithm. The critical regions are stored in
the form of the coefficients of the linear inequalities describing
them. Memory required for the critical regions of the MPSoC
of Figure 7 is less than 500KB.

B. Power state assignment in TemPrompt

Although TempoMP is able to choose locally optimal power
states, the results of the offline optimization must be stored
and retrieved at runtime. This overhead can be high for many
core systems. In order to address this issue, we propose an
alternative scheduling technique, TemPrompt, whose power

state assignment is based on a heuristic. Algorithm 1 outlines
the power state assignment algorithm of TemPrompt.

Algorithm 1 Power state assignment in TemPrompt
1: O ⇐ types of the available cores
2: sort O in the decreasing order of performance of the core types
3: for all Ω in O do
4: CΩ ⇐ set of cores of type Ω
5: sort CΩ in increasing order of the cores’ Ti[k + 1]
6: end for
7: P [k], P[k + 1] ⇐ Current power of the cores
8: F ⇐ ∅
9: while (Not all cores are assigned frequencies) do

10: Ω ⇐ the next type in O
11: σΩ ⇐ performance requirements of core type Ω
12: F ⇐ F ∪ σΩ

13: while ( ( CΩ 6= ∅ ) and (F 6= ∅) ) do
14: i ⇐ the next core in CΩ (with the lowest Ti[k + 1])
15: preq ⇐ the highest power state required from F
16: psafe ⇐ the highest power state for which T[k + 1] ≺ TTh

(T[k + 1] = T[k + 1] + ΦI(P[k + 1]− P [k]))
17: assign the lower of preq and psafe power states to core i
18: update P[k + 1] with the potential power of core i
19: remove f from F
20: remove i from CΩ

21: end while
22: end while

The first step of this algorithm is sorting the core types in the
decreasing order of their performance. Typically various types
of cores integrated on a heterogeneous MPSoC are optimized
for contrasting objectives. Usually one type is optimized for
performance, while the other type is optimized for energy
efficiency [15]. Therefore, various types of cores usually
operate at distinct power and performance points and can be
easily differentiated in terms of performance.

As our metric to quantitatively compare the performance
of the core types, we use the average IPS (instructions per
second) that each type achieves over the benchmarks. The
algorithm first sorts the core types in the decreasing order
of performance (line 2). At each stage, P[k + 1] contains the
power of potential power states of the cores (At the beginning,
it is initialized to the power at the previous scheduling tick
(P [k])). At each stage of the algorithm, F keeps the perfor-
mance requirements which are not still met. If a core type has
not been able to meet all of its performance requirements, the
remaining elements are kept in F so that they are addressed
by the next core type (line 12).

Tempo thermal state of the core, Ti[k + 1], is the potential
temperature of core i at the end of the next scheduling tick
if the power states of the cores do not change. The effect
of changes in the power states of the cores are reflected by
component Φoo(P [k + 1]− P [k]) as shown in equation (12).
Cores with lower Tempo thermal state are expected to have
lower temperature in the future scheduling tick and can be
assigned to higher power states compared to the other cores.
Therefore, the algorithm checks the instances of each type of
cores in the increasing order of Ti[k + 1].

At each step, the algorithm checks the core types in the
decreasing order of their performance (line 10). The algorithm
determines preq, the highest power state that the current
workload requires from the core type being checked (line 15).
Then it checks the available cores of that type in the increasing
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order of their thermal state Ti[k+ 1] (line 14). For each core,
it finds psafe, the highest thermally safe power state of the
core given the current thermal state and power settings (line
16). Core i is set to the lower of preq and psafe to provide
just enough performance for the workload and not to exceed
the temperature threshold. Then the power values are updated
and then the next core is checked. If there is no core of this
type left, then a new core type is examined (line 10). The
algorithm finishes if the performance requirements are met or
every core is assigned a power state.

The algorithm first sorts the array of the core types and the
array of cores of each type. The complexity of sorting these
arrays is (O(nc log(nc))). Then the algorithm visits each core
at most once (O(nc)). Therefore, the complexity of the power
assignment algorithm in TemPrompt is (O(nc log(nc))) which
is typically very small (nc = 3 in the heterogeneous MPSoC
in the experimental results).

C. Runtime task assignment to the cores

The task assignment algorithm (Algorithm 2) at each step
matches the task with the highest performance requirement to
the core which can provide the highest performance in the
following scheduling ticks. It examines the cores based on the
performance that each of them will be able to provide in the
next scheduling tick. In order to do this, it starts with the
highest performance core types first. Within each core type, it
first examines the cores which are set to higher power states
hence providing higher performance. When a core is chosen,
the unassigned task with the highest performance requirement
is chosen and assigned to that core. This way we make sure
that the task with the highest performance requirement is
provided with the highest performance core available.

Performance estimation module can determine power state
at which each task needs to be run to be able to meet its
performance requirements (deadline, throughput, etc.). Given
this information from the performance estimation module and
the output of power state decision module, the task assignment
module tries to assign the tasks to the cores such that the
tasks with higher performance requirements are assigned to
the cores providing higher performance. Algorithm 2 explains
how this is done at each scheduling tick in a deadline based
system. This module works identically for both TempoMP and
TemPrompt.

The performance requirement of a task in a deadline based
system is measured by the time remaining to its deadline. The
shorter the time to the deadline is, the higher would be the
performance requirement of the task. In other types of systems,
the performance requirement of a task can be described by
different measures, such as throughput requirements of each
task. Our task assignment algorithm is applicable as long as
the performance requirements of the tasks can be compared.
The algorithm sorts the available tasks in the system in the
decreasing order of their performance requirements (line 2).
As an example, in a deadline based system, the task with the
highest performance requirement is the one with the earliest
deadline. At each step, the task j with the highest performance
requirement is chosen (line 13). Then, the core i which has
the highest performance (at the highest power state) is chosen

Algorithm 2 Task to core assignment
1: J ⇐ ready to run tasks
2: sort J in the decreasing order of the performance requirements of

the tasks (e.g. In a deadline based system, in increasing order of the
deadlines)

3: C ⇐ currently available cores
4: O ⇐ types of cores in C
5: sort O in the decreasing order of core type performances
6: for all Ω in O do
7: CΩ ⇐ set of cores of type Ω in C
8: sort CΩ in the decreasing order of the cores’ assigned power states

(the cores with higher power states first)
9: end for

10: while (C 6= ∅) and (J 6= ∅) do
11: Ω ⇐ the first element in O (the highest performance core type

available)
12: while (CΩ 6= ∅) and (J 6= ∅) do
13: j ⇐ the next element in J (the next ready to run task with the

highest performance requirement)
14: i ⇐ the next core in CΩ (the core with the next highest power

state among the available cores of type Ω)
15: assign task j to core i
16: remove j from J
17: remove i from CΩ and C
18: end while
19: remove Ω from O and CΩ from C

20: end while

(line 14). Then task j is assigned to core i (line 15) and this
is repeated until no core or no task is left. The algorithm
always finishes because at each iteration it assigns a task to
an available core and finishes when no core or no task is left.
The algorithm always finishes, because at every iteration, it
assigns a power state to one unassigned core and finishes when
no unassigned core is left (the maximum number of iterations
is the larger of the number of the cores and the tasks).
This algorithm sorts the core types and then sorts the available
cores (lines 5, 8). The complexity of sorting these arrays
is (O(nc log(nc))). The algorithm also sorts the tasks in the
decreasing order of their performance requirements (line 2)
(O(nt log(nt))). Then it pops at most nc tasks from the list,
because each core can be assigned at most one task (O(nc)).
This way the complexity would be (O(nt log(nt))). However,
using a binary heap, no sorting is necessary for the tasks. The
complexity of building the binary heap is O(nt) (nt=number
of tasks) and popping each task takes O(log(nt)). Because we
need to pop at most nc tasks, the complexity of the task to
core assignment is O(max(nt, nclog(nt))). As an example,
for nc = 3, this value is 6 and 9 for nt = 4 and nt = 8
respectively.
Based on the analysis of the individual algorithms, the time
complexity of the whole algorithm (power state assignment
and task assignment) is O(max(nr × nc, nt, nc log(nt)).

V. EXPERIMENTAL RESULTS

The cores used in our experiments are a low-power in-
order architecture similar to the SPARC cores in UltraSPARC
T1 [21], and very low power cores designed for embedded
systems, similar to Intel’s XScale [16]. It should be noted that
these core types use the same ISA and are able to run the
same binaries, but one of them is architecturally similar to
SPARC which trades off energy for performance while the
other one is architecturally similar to XScale which trades off
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Fig. 7. Characteristics of the MPSoC

performance for power efficiency. Power, performance, and
area characteristics of the cores are shown in Figure 7. We
assume that the MPSoC is implemented in 65 nm technology.
The areas of the cores are derived from published photos
of the dies after subtracting the area occupied by I/O pads,
interconnection wires, interface units, L2 cache, and control
logic as in [20], and scaled to 65nm. Each L2 cache has 1MB
size, 2 banks, 64-byte lines, and is 4-way associative. Using
CACTI [14], the area and power consumption of the caches
at 65nm are estimated as 14mm2 and 1.7W, respectively. The
cache power consumption value includes leakage.

For performance and power data, the M5 Simulator [6] is
used with Wattch [7] power model updated with 65nm model
parameters. The in-order pipelines of SPARC and Xscale are
modeled by modifying M5’s execution engine. We assume the
same three voltage settings for the XScale and SPARC cores.
For XScale, we use the existing available frequency levels (as
reported in [16]), and for SPARC we set the default frequency
to 1.2GHz (as reported in [21]), and scale frequency using the
95% and 85% settings as in [17]. The overhead of switching
to a new voltage/frequency is set to 50µs. These power values
are then utilized in the temperature simulations. We compute
the leakage power of CPU cores based on structure areas and
temperature. We compute temperature dependence using the
model introduced in [13] with the same constants mentioned
in the paper for 65nm. For power overhead during voltage and
frequency scaling, we use the power of the higher power state.
The overhead of migration of the tasks between the cores is
assumed to be 10µs.

We use HotSpot Version 4.2 [1] for thermal modeling with
a sampling interval of 100µs to ensure sufficient accuracy.
In many embedded systems such as cell phones there is no
heat sink or spreader. To model this within HotSpot, we set
the spreader thickness to be very thin- 0.1mm. The heat sink
is replaced by a package with thermal parameters shown in
Figure 7(b) which are within the ranges suggested by [18]
and [24]. The parameters used in HotSpot are summarized in
Figure 7(b). It should be noted that this is only one example,
while our techniques are general and apply to a wide range of
systems with various characteristics.

The workloads in our experiments consist of integer bench-

marks provided in MiBench benchmark suite [12] which
include automotive/industrial, network and telecommunica-
tions applications. Other than datasets provided in MiBench
suite, we use datasets provided by [10]. We use a periodic
workload model where each task has its own arrival period
(τ ) and deadline (d). This model allows us to compare among
different techniques in terms of their ability to handle per-task
performance requirements. In this periodic workload model,
a new instance of each task is generated regularly at every
arrival period of that task (τ ) and the deadline of this task
is d time units after it arrives. The deadlines are soft and a
task is not dropped if its deadline is missed. To evaluate
our technique under various conditions, we create moderate
to intensive workloads consisting of varying number of tasks
from MiBench suite. We set both deadline (d) and arrival
period (τ ) of each task to twice the execution time of that
task at the lowest power state on the slowest core (XScale-like
core). This way the tasks can potentially meet their deadlines
irrespective of the core type they are assigned to. The system
is preemptive and the scheduler can preempt a running task
and start running another ready task. The preempted task may
resume execution later.

First we compare Tempo with a state of the art temperature
predictor called Band-Limited Predictor (BLP) [5]. It utilizes
the band limited nature of temperature frequency spectrum
to predict the temperature trend. Similar to Tempo, the coeffi-
cients used in calculations of BLP are also calculated at design
time. No training phase is required. We use the same param-
eters as used in [5], namely α = 0.135,m = 3 and N = 3.

Figure 8(a) shows the actual temperature of a core on a
MPSoC along with the prediction results of Tempo and BLP,
while Figure 8(b) shows the trace of dynamic power applied
to the same core. The sharp changes in the dynamic power
are caused by power state changes happening at scheduling
ticks which are 10 ms apart. This is a slice of a longer trace
of execution of the MiBench benchmarks so the cores have
high initial temperatures.

As shown in the figure, as long as the temperature and
power changes are smooth, both predictors do well. How-
ever, BLP fails when the power state of the core changes
significantly. For example, in Figure 8(a), right after the first
power state change at around 190ms, BLP underestimates
the temperature. This is because BLP relies exclusively on
the temperature history and trend. Therefore, even if the new
power state is known, BLP cannot predict the temperature
before the new power state is applied and has impacted the
temperature trend. Moreover, as the figure shows, even after
the first sample of temperature signal is observed after the
change in temperature trend, BLP significantly overestimates
the temperature. However, Tempo accurately predicts the future
temperature given the next power state of the cores. As shown
in this figure, the maximum prediction error of BLP can be
over 5◦C, while in our experiments, the maximum temperature
prediction is always less than 0.5◦C - an order of magnitude
difference. BLP and any other predictors which depend only
on temperature trend cannot accurately evaluate the thermal
effects of scheduling decisions and power state changes. In
contrast, Tempo can be efficiently used to evaluate alternative



TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 12

(W)
(a) Temperature

(b) Dynamic Power

Actual 
Temperature

BLP 
Prediction

Tempo  
Prediction

(°C)

(ms)

(ms)

Fig. 8. Comparison of Tempo and BLP predictor [5]

decisions regarding scheduling and power state changes. The
results of our temperature aware scheduling techniques in
PROMETHEUS further illustrate the efficiency of Tempo.

We compare TempoMP and TemPrompt with three other
state of the art temperature-aware scheduling techniques. The
scheduling ticks are 10ms apart for all of these scheduling
techniques. The maximum safe temperature is assumed to be
90◦C which must be respected by all techniques. PASTEMP
and Thermal PO [29] are both proactive techniques which
use optimization to assign thermally safe power states to the
cores based on the performance requirements of the workload
and also the thermal state of the system. The optimization
formulation in PASTEMP is based on a modified dynamic
thermal model called instantaneous thermal model [29], while
optimization in Thermal PO is based on a steady state thermal
model. None of these models can estimate temperature as
accurately as Tempo. Therefore, to guaranty meeting thermal
constraints these techniques may need to set the power states
of the cores conservatively, which may result in performance
loss. The third technique, Thermal DVFS relies on the direct
temperature readings from the thermal sensors. It switches
the core to a lower power state when the core temperature
reaches a critical threshold of Ttop. When the temperature
gets below a lower threshold, Tbottom, the power state of
the core can be switched to a higher level again. This lower
threshold helps prevent oscillations between power states. We
test two variations of Thermal DVFS with different thresh-
olds: Thermal DVFSL with Ttop=85◦C and Tbottom=83◦C and
Thermal DVFSH with Ttop=87◦C and Tbottom=85◦C. Ther-
mal DVFS does default load balancing to create a balanced
distribution of the workload across the cores.

We run same mix of MiBench benchmarks for 100 seconds.
Before each run, the heat sink is pre-heated to initial tem-
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Fig. 10. Average lateness (seconds)

perature Ti ranging from 73◦C to 83◦C. Figure 9 reports the
maximum core temperature observed under various conditions.
At low Ti, all techniques are able to meet the 90◦C temperature
threshold. Only Thermal DVFS violates the threshold at high
Tis, because in this region the core temperature quickly
reaches above the threshold before Thermal DVFS can
respond. PASTEMP and Thermal PO have consistently
lower maximum temperature, because their thermal models
overestimate temperature and as a result of these pessimistic
temperature estimates, they tend to make more conservative
scheduling decisions and use lower power states. Although this
keeps the temperature lower, it results in more performance
loss compared to the other techniques as shown next.

To compare how techniques address individual performance
requirements of the tasks, we measure lateness of a task which
is defined as the time it takes to finish the task after its deadline
is missed. Since the workload contains tasks of various types
and lengths, this metric is more relevant compared to the
number of deadline misses. Using lateness metric, if a task
misses its deadline, as long as it is not finished, the scheduling
technique still gets penalized for it. To compare how the
potential processing capabilities of the MPSoC are utilized as
a whole, we also look at the throughput of the MPSoC which
is the number of instructions executed per second. Figure 10
and 11 report these two metrics. As expected, as Ti increases,
so does the average lateness, while the throughput degrades.

TempoMP and TemPrompt miss deadlines only at the highest
Ti where turning on the SPARC without violating Tth is
not possible. In this case, no temperature aware scheduling
technique can meet all the deadlines because while the perfor-
mance of SPARC core is necessary to meet the deadlines,
turning this core on will violate Tth. At the highest Ti,
TempoMP and PASTEMP perform similarly and slightly better
than TemPrompt because they both use optimized power state
assignments, while TemPrompt uses a heuristic approach to
assign power states. Although Thermal PO and PASTEMP are
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both proactive, because their temperature estimates are pes-
simistic compared to Tempo, in some cases they unnecessarily
prevent cores from operating at the highest possible power
states. As a result, they consistently perform worse than our
techniques in terms of both lateness and throughput. TempoMP
and PASTEMP improve lateness by 2.5X and throughput by
1.9X compared to average of the other techniques. To achieve
this performance improvement, TempoMP and TemPrompt
consume around 1.4X more power compared to average of
the other techniques as shown in Figure 12.

Figure 12 reports average power consumption of MPSoC
with DTM techniques studied. In some cases TempoMP and
TemPrompt consume more power than the other techniques.
These are cases where the other techniques cannot turn on
large higher power cores due to their pessimistic temperature
estimates, therefore they consume lower power, but have much
lower performance as well. Due to accurate estimation of
thermal slack in TempoMP and TemPrompt, they are able
to turn on the higher power large cores to meet the perfor-
mance requirements. For example, in all cases, Thermal PO
consumes the least power and has the lowest performance.

We also compare these techniques using two different
measures of combined energy efficiency and performance:
average energy consumed per billion instructions and energy-
lateness product (ELP). ELP is similar to energy-delay product
(EDP) metric, but applied to the systems with deadlines. In
terms of both of these metrics, TempoMP and TempoMP are
on average an order of magnitude better compared to the
other techniques mainly because they provide just enough
performance for the workload requirements and use the larger
cores - which are less power and energy efficient - only when
their high performance is necessary. Therefore, they can better
match the performance provided to the performance required.
Thermal PO is the least energy efficient because while it uses
lower power states of the lower power cores, due to longer
execution time and leakage power, it is not energy efficient.
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As the experimental results show, TempoMP performs the
best across all the techniques. It provides the best trade-off
between temperature, power and performance. The TemPrompt
is generally close to TempoMP. The main reason for supe-
riority of these techniques over the other techniques is their
accurate evaluation of the thermal impacts of future scheduling
decisions. Overestimated temperature leads to conservative
decisions thus not taking full advantage of thermal slack which
results in performance loss. Running the cores slower might
also result in higher energy consumption due to leakage. On
the other hand, underestimating future temperature can cause
thermal violations and reliability issues. Taking advantage
of accurate predictions of Tempo, PROMETHEUS performs
better across various metrics compared to other reactive and
proactive techniques. On average, PROMETHEUS scheduling
techniques reduced the lateness of the tasks by 2.5X and the
energy-lateness product by ∼5X.

VI. CONCLUSION

This paper introduces a novel temperature predictor called
Tempo which accurately predicts the potential thermal effects
of alternative power state changes in an MPSoC. Tempo
achieves up to an order of magnitude reduction in the max-
imum prediction error compared to the previous predictors.
We also propose PROMETHEUS, a framework for proactive
temperature aware scheduling of embedded workloads on
heterogeneous MPSoC. Using Tempo, PROMETHEUS pro-
vides two temperature aware scheduling techniques which
proactively avoid power states leading to future thermal emer-
gencies while matching the performance provided by the
heterogeneous MPSoC to the workload requirements. The first
scheduling technique, TempoMP, integrates Tempo with an
online multi-parametric optimization method to deliver lo-
cally optimal dynamic thermal management decisions to meet
thermal constraints while minimizing power and maximizing
performance. The second one, TemPrompt, uses Tempo as
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a part of a heuristic algorithm which provides comparable
efficiency at lower overhead. Compared to the other proactive
techniques, TempoMP and TempPrompt consistently perform
better in terms of performance while always meeting thermal
requirements. On average, they reduce the lateness of the tasks
by ∼2.5X and energy-lateness product by ∼5X.
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