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ABSTRACTPortable wireless systems require long battery lifetime whilestill delivering high performance. The major contributionof this work is combining new power management (PM)and power control (PC) algorithms to trade o� performancefor power consumption at the system level in portable de-vices. First we present the formulation for the solution of thePM policy optimization based on renewal theory. Next wepresent the formulation for power control (PC) of the wire-less link that enables us to obtain further energy savingswhen the system is active. Finally, we discuss the measure-ments obtained for a set of PM and PC algorithms imple-mented for the WLAN card on a laptop. The PM policywe developed based on our renewal model consumes threetimes less power as compared to the default PM policy forthe WLAN card with still high performance. Power controlsaves additional 53% in energy at same bit error rate. Withboth power control and power management algorithms inplace, we observe on average a factor of six in power sav-ings.
1. INTRODUCTIONBattery-operated portable systems demand tight constraintson energy consumption. Better low-power circuit designtechniques and advances in battery technology have helpedto increase battery lifetime. On the other hand, managingpower dissipation at higher levels can considerably reduceenergy consumption, and thus increase battery lifetime [1].In this paper we consider a client-server system, where theclient is a portable device capable of wireless digital com-munication, such as a laptop. Each communication \ses-sion" is initiated by the client (e.g. web browsing or telnet).Our main contribution is combining new power managementand power control algorithms to reduce power consumptionof the wireless card. Power management reduces power byselectively placing the card into states with lower power con-sumption when the user is not actively communicating viathe card. Power control reduces the level at which the card

transmits while keeping the same performance. Thus ourwork reduces power consumption in both active and idlemodes of card's operation.As soon as a wireless card is added to a portable system,the energy consumption can be drastically increased. Forexample, a wireless local area network (WLAN) card with1Mb/s rate takes up to 12 times more power than 10Mb/sEthernet card [2]. Wireless cards have two active states -receive (listening for data) and transmit (sending data out).The card we used has also two low-power states: doze ando�. Doze mode consumes much less power than the activestates and can be entered and exited with very small per-formance penalty (e.g. 0.8ms). When the card is turned o�,it consumes no power, but takes longer to transition intoactive state (e.g. 60ms).The new IEEE 802.11 standard de�nes power managementfor wireless LAN at medium access control (MAC) and phys-ical layers [3]. The standard requires that a central accesspoint (AP) send out a beacon every 100ms followed by atra�c indication map (TIM). Each card that desires to com-municate listens for the beacon in order to synchronize theclock with AP, and for the TIM to �nd out if any data isarriving for it. If it does not need to transmit or receive, thecard can then go to doze state until the next beacon.The IEEE standard does not address the need for powermanagement at the system level. If the card is turned o�when it is not being used, much larger power savings canbe observed. We de�ne a power manager (PM) that ob-serves the workload of the system and decides when and howto force the power state transition according to the powermanagement policy.A heuristic power management policy implemented in mostoperating systems is a timeout policy that tends to wastepower while waiting for the timeout to expire. Heuristicpredictive policies developed for interactive terminals [4, 5]force the transition to a low power state as soon as a com-ponent becomes idle if the predictor estimates that the idleperiod will last long enough. A wrong estimate can causeboth performance and energy penalties.In this paper we introduce a new model for power manage-ment at the system level that guarantees optimal results.After collecting and analyzing a set of traces for web brows-ing and telnet application, we found that the user request



arrivals can be modeled with Pareto distribution. The cardtransitions between o� and active states are best �t withuniform distribution. Our model has two non-exponentialtransitions occurring at the same time when the card tran-sitions from doze mode into o� state. Thus we could notapply policy optimization algorithms based on exponentialmodels, such as [9, 10, 13]. Large errors result if exponentialdistribution is used for all transitions, as was shown in [11].Another approach to handle non-exponential transitions isto use adaptive method, such as in [12]. This method requrespolicy interpolation at very short time increments, regard-less of the device state, thus causing an increase in CPU andmemory energy consumption. In order to correctly modelthe system, we formulated the policy optimization problemusing renewal theory [16]. The optimal policy we obtain hasbeen implemented on a laptop for the WLAN card. Ourresults show that reduction in power can be as large as afactor of �ve with a small performance penalty.In addition, we implemented a power control algorithm thatreduces power consumption of the wireless card during trans-mission. Power control for minimizing energy consumptionsubject to maintaining a required transmission rate is con-sidered in, e.g., [19]. There, authors discuss solutions tovarious constant transmitter power and constant signal-to-interference ratio (SIR) problems while assuming normal-ized wireless link so that transmitted and received powerare equal. Each mobile is deciding on its own optimal trans-mitting power, hence the proposed power control algorithmsare of distributed nature. Zorzi et al. [20] studied a relatedproblem of error control in an energy-constrained wirelessnetwork, optimizing transmission power and transmissionstrategy for maximum throughput. In the current paper, weimplement an algorithm that achieves the required QoS bymaintaining constant target SIR at the AP. The algorithmis centralized since the AP decides the power level of eachuser. The transmitter power is a function of the target SIRand time-varying parameters of the channel. The WLANcard we used in our experiments employs direct sequencecode division multiple access (DS-CDMA) scheme. The ca-pacity of DS-CDMA is interference limited. By maintainingthe transmission power of each user's card on the minimumlevel needed to achieve required bit-error rate (BER), wehold the interference to the smallest tolerable amount whileat the same time reducing client's power consumption. Ourpower control algorithm saves as much as 53% of the poweras compared to the default algorithm implemented in thecard we were using.Section 2 develops the model for power management basedon renewal theory. Theoretical background for power controlis presented in Section 3. We discuss measurement resultsof a wireless card in Section 4. Finally, we summarize our�ndings in Section 5.
2. POWER MANAGEMENTWe optimize energy consumption under performance con-straint (or vice versa) to obtain an optimal power manage-ment policy. The system we model consists of the user, thewireless card and the queue (the bu�er associated with thecard). In the next sections we describe the system modelwe developed, followed by a new approach based on renewaltheory to obtain an optimal power management policy.

2.1 Wireless Card ModelThe wireless card has multiple power states: two activestates, transmitting, receiving, and two inactive states, dozeand o�. Transmission power is 1.65W, receiving 1.4W, andthe power consumption in the doze state is 0.045W [7] andin o� state it is 0W. When the card is awake (not in the o�state), every 100ms it synchronizes its clock to the accesspoint (AP) by listening to AP beacon. After that it listensto TIM map to see if it can receive or transmit during thatinterval. Once both receiving and transmission are done, itgoes to doze state until the next beacon. This portion of thesystem is fully controlled from the hardware and thus is notaccessible to the power manager that has been implementedat the OS level.The power manager can control the transitions between thedoze and the o� states. Once in the o� state, the card waitsfor the �rst user request arrival before returning back to thedoze state. We measured the transitions between doze ando� states using cardmgr utility in Linux system. The tran-sition from the doze state into the o� state takes on averagetave = 62ms with variance of tvar = 31ms. The transitionback takes tave = 34ms with tvar = 21ms variance. Thetransition between doze and o� states are best describedusing uniform distribution, where t0 and t1 can be de�nedas tave � tvar and tave + tvar respectively. The cumulativeprobability function for the uniform distribution is shownbelow. Fwlan(t) = � t�t0t1�t0 t0 � t � t10 otherwise (1)The wireless driver uses a bu�er for storing requests that arenot currently being serviced during busy times and transi-tion times. We model the bu�er using queue. We charac-terize card's power states by the number of jobs pending forservice in the queue.
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Figure 1: Tail distribution of request arrivals
2.2 User ModelWe analyzed user's behavior in accessing the wireless cardon a laptop running Linux with telnet and web browser us-ing tcpdump utility [8]. Figure 1 shows the tail distributionsof measured results �tted with Pareto and exponential dis-tributions. Pareto distribution shows a much better �t forthe arrival after a longer idle time as compared to the ex-ponential distribution. Exponential distribution (or Poissonarrivals ) can be used to model subsequent short request in-terarrival times. Pareto cumulative distribution is de�nedin Equation 2 with parameters a = 0:7 and b = 0:02 for web



requests and a = 0:7 and b = 0:06 for telnet requests:Fuser(t) = 1� at�b (2)
2.3 Renewal theory modelThe goal of power management optimization is to minimizeperformance penalty under energy consumption constraint(or vice versa). In this paper we focus on the former prob-lem. The system model is shown in Figure 2, and the systemstates are shown in Figure 3.
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Figure 2: System ModelIn our system, the only decisions PM can make is whetherto leave the card in doze state or turn it o� completely. Ifthe card is left on, it will wait in the doze state until the �rstrequest arrives from the user. Upon arrival of request, thecard transitions into active state. If the PM turns o� thecard, the system enters a transition state between doze ando� state. The transition state models the fact that it takes a�nite amount of time to actually turn o� the card as modeledby Equation 1. If during the transition time a request arrivesfrom the user, the card will enter the transition to activestate as soon as transition to o� state is completed. If norequest arrives during the transition to o� state, the cardstays o� until the next request arrives. Upon request arrival,the card starts the transition back into active state. Thistransition also takes a �nite amount of time, and thus ismodeled as a transition state. Once transition into activestate is completed, the card either transmits or receives, andthen again returns to doze state.
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Figure 3: System statesRenewal theory [16, 17] describes counting processes forwhich the request interarrival times are independent and

identically distributed with arbitrary distributions. A pro-cess can be considered to be renewal process only if there is astate of the process in which the whole system is probabilis-tically restarted. The complete cycle of transition from dozestate, through other states and then back into doze state canbe viewed as a renewal period [17]. Every time the systemreenters doze state, the time is measured again from zero.Renewal theory can handle multiple non-exponentially dis-tributed transitions occurring at the same time. In particu-lar, we can model changes of queue state due to user requestarrivals (Pareto distribution) which occur during the transi-tion from doze into o� state or from o� to active state (uni-form distribution). It can be shown [17] that with renewaltheory the search for the best policy for a system modeledusing stationary non-exponential distributions can be castinto a stochastic control problem whose solution is random-ized in the presence of constraints. The randomization is afunction of time elapsed from the last entry into the resetstate.In our case, the problem of power management policy opti-mization is to determine the optimal distribution of randomvariable � that speci�es when the transition from the dozestate to o� state should occur from the last renewal timeof the system (the last entry into doze state). We assumethat � takes on discrete values in [0; h; 2h; :::jh; :::), wherej is an index of time from reset state and h is a fractionof the time it takes for a system to transition from doze too� state. With smaller values of h the solution gets moreaccurate, the computation time grows as well. The solutionto policy optimization can be viewed as a table of proba-bilities for transition from doze to o� state, p(j), indexedby time values jh. Furthermore, when user request arrivaltimes are modeled using Pareto distribution, it can be shownthat the optimal policy always has the probability of turningthe card o� monothonically increasing with time [17]. Thepolicy table thus has entries p(j) that increase with timefrom zero until some time kh where the probability of giv-ing a command to turn o� the card is equal to one. Thus wecan simplify the implementation of PM. If the PM's decisionupon entry to doze state is to leave the card on, the powermanager waits until the time jh where the probability oftransition to o� state, p(j), is greater than zero. From thatpoint on, the decision is reevaluated every h seconds untileither the card is turned o� or a user request arrives and thecard transitions into the active state.Based on renewal theory we formulate optimization problemto minimize the average number of jobs waiting in the queue(performance penalty) under power constraint:LP: min Xj q(j)x(j) (3)s.t. Xj [e(j)� t(j)Constraint]x(j) = 0Xj x(j) = 1=E[� ]Xj t(j)x(j) = 1The number of job requests in the queue, q(j), is derived



using:q(j) = E[ �Z0 Q(t)dt] =Xj p(j)E[ �Z0 Q(t)dtj� = jh] (4)where Q(t) is the number of jobs in the queue, p(j) is theprobability of issuing a command to go to doze state at timejh and � = jh signi�es that the command to turn the cardo� is given at time jh. The expected time until renewalgiven that the system went to o� state at time jh, is givenby: t(j) = E[�j j� = jh] (5)The expected energy consumption can be de�ned by:e(j) = E[ �Z0 W (t)dt] =Xj p(j)E[ �Z0 W (t)dtj� = jh] (6)where W (t) is the expected power consumption for eachstate of the device during the renewal time.The LP solves for the probability frequencies, x(j). Theprobability of transition to o� state from doze state at timejh, p(j), can be computed using expected time until renewal,E[� ] =Pj p(j)E[�j j� = jh]:p(j) = x(j)E[� ] (7)The optimal policy is a table of probabilities p(j). PM ob-serves the state of the system and user request arrivals atrun time. Once the system enters doze state, PM startskeeping track of elapsed time. The decision to turn o� thecard is �rst evaluated at the time jh for which the tablegives non-zero probability p(j) of turning the card o�. Foreach p(j) that is not zero, PM generates a random numberusing a pseudo-random number generator. If the numbergenerated is less than p(j), PM shuts down the card. Oth-erwise the card stays in the doze state until either the nexttime probability of shutting down the card is non-zero, oruntil request arrival that forces the card to transition intoactive state. Once the card is turned o�, it stays o� untilthe �rst request arrives, at which point it transitions intoactive state.In this section we presented a new algorithm for power man-agement of the wireless card that saves energy by selectivelyturning o� the card. In the next section we present a powercontrol algorithm that saves energy by reducing the trans-mission power level when the card is active.
3. POWER CONTROLIn this section, we discuss implementation of uplink powercontrol in the wireless system. Figure 4 shows the systemcon�guration we focus on for power control. On every trans-mission from each client, access point (AP) measures re-ceived signal to interference and noise ratio (SIR) and biterror rate (BER). AP then performs quick calculation usingthe closed form optimal solution. The result of calculationis the optimal transmission level for each of the clients inthe system. Upon receiving a response from AP, each clientadjust the transmission power level accordingly. The poweradjustement can be done very rapidly as compared to the

time needed to set up and send data, and thus does not needto be considered as overhead in this process.
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Figure 4: Power control systemIn DS-CDMA scheme, data sequence to be transmitted is�rst modulated using a narrowband modulation scheme andthen spread by multiplying with the spreading sequence,where each user is assigned a unique spreading sequence.This wideband signal is then transmitted over a wirelesschannel. We assume a commonly used wide-sense station-ary uncorrelated scattering channel (WSSUS) model. Thefading is assumed to be slow in comparison with the sym-bol rate so that channel remains constant over each symboltransmission period.The mobile user speci�es a minimum tolerable reliability interms of bit error rate (BER) which can be mapped intorequired SIR [21]. The goal of power control is to minimizethe total transmitted power subject to the constraint thatthe SIR requirement, SIRreq;i for each user i is satis�ed,i.e., min p(t) = MXi=1 
i(t)pi(t) (8)subject to: Giai(t)pi(t)Pj 6=i aj(t)
j(t)pj(t) + �(t)2 � SIRreq;i1� SIRreq;i MGi ;pi(t) � 0; for i = 1; 2; : : :M;where pi(t) is power of the ith user, 
i is an indicator func-tion (
i = 1 if ith user is currently active and 
i = 0 oth-erwise), Gi is the processing gain of the ith user, ai(t) isthe path loss form the ith user to the access point, M is thenumber of users in the network and �2(t) is the noise power.Optimization problem (8) can be rearranged as a linear pro-gram which has a solution i� (see [22])MXi=1 
i(t)�i < 1;where �i = SIRreq;i(1�M)SIRreq;i +Gi ;which is satis�ed under the assumptions that we made. More-over, the linear program can be solved in closed form (see[22]). Thus, the optimal transmission power pi(t) for eachactive card i at time t is calculated by the access point using:pi(t) = 
i(t)�iai(t) �2(t)1�PMj=1 
j(t)�j : (9)



From the requirements on the transmission quality (i.e.,SIRreq;i), the access point calculates �i for each client in thenetwork. When client i makes a request for a transmission,
i(t) = 1. The access point then takes the corresponding �i,along with the measured values of �2(t) and ai(t), and eval-uates the ith client's optimal transmission power pi(t) fromEquation 9. This value is then transmitted to the ith client,whose card adjusts its transmission power accordingly. Theoptimal transmission power pi(t) takes on continuous val-ues. The card can adjust its power only in discrete steps.Hence pi(t) is discretized to the closest supported value ofthe transmission power.In the previous sections we described theoretical backgroundsfor power management and power control algorithms. In thenext section we present results that show large power savingswe can obtain with both algorithms.
4. RESULTSIn this section we present the measurement results for powermanagement algorithm we developed, followed by the powercontrol algorithm results. Finally we show that the two ap-proaches combined can give on average a factor of six inpower savings, while keeping constant bit error rate. For allour measurements we used Lucent's WLAN 2Mb/s card [7]running on the laptop with Linux OS. As mobile environ-ment is continually changing, it is not possible to reliablyrepeat the same experiment. As a result, we needed to usetrace-based methodology discussed in [14].The methodology consists of three phases: collection, distil-lation and modulation. We used tcpdump [8] utility to getthe user's trace for two di�erent applications: web browsingand telnet. At the same time, we collected card's transmis-sion speed and SIR using a utility we developed that inter-faces with the driver. We modeled transmission power levelsof the card using measured SIR values, as we did not haveaccess to power control functions of the WLAN card dueto proprietary reasons. During distillation we prepared thetrace for the modeling step. We had a LAN-attached hostread the distilled trace and delay or drop packets accordingto the parameters we obtained from the measurements. Inthis way we were able to recreate the experimental environ-ment, so that di�erent algorithms can be reliably compared.We perform power management policy optimization for ourpolicy using lp solve [18]. The optimization runs in about 30seconds on a 300MHz Pentium processor. We implementedthree di�erent versions of our policy for each applicationwith di�erent power and performance penalty values (Re-newal a,b,c for web browser and Renewal 1,2,3 for telnet).Since web and telnet arrivals behave di�erently (see Fig-ure 1), we observe through OS what application is currentlyactively sending and use the appropriate power managementpolicy.In addition to measuring the energy consumption (and thencalculating average power), we also quanti�ed performancepenalty using three di�erent measures. Delay penalty, Tp,is the time system had to wait to service a request since thecard was in the sleep state when it should not have been. Inaddition, we measure the number of shutdowns, Nsd and thenumber of wrong shutdowns, Nwd. A shutdown is viewed as

Table 1: Power Management for Wireless WebBrowserPolicy Nsd Nwd Tpenalty Pave(sec) (W)Oracle 395 0 0 0.467Renewal(a) 363 96 6.90 0.474Renewal(b) 267 14 1.43 0.477Competitive 623 296 23.8 0.479Renewal(c) 219 9 0.80 0.485Poisson 3424 2866 253.7 0.539Default 0 0 0 1.410wrong when the sleep time is not long enough to make upfor the energy lost during transition between the doze ando� state. The number of shutdowns is a measure of howeager the policy is, while a number of wrong shutdowns tellsus how accurate the policy is in predicting a good time toshut down the card.Table 2: Power Management for Telnet ApplicationPolicy Nsd Nwd Tpenalty Pave(sec) (W)Oracle 766 0 0 0.220Renewal(1) 798 21 2.75 0.269Renewal(2) 782 33 2.91 0.296Competitive 780 40 3.81 0.302Renewal(3) 778 38 3.80 0.310Poisson 943 233 20.53 0.361Default 0 0 0 1.410The measurement results for a 2.5hr web browsing trace areshown in Table 1. Our algorithms (Renewal a,b,c) show onaverage a factor of three in power savings with low perfor-mance penalty. The competitive algorithm [15] guaranteesto be within a factor of two of oracle policy. Although itspower consumption is low, it has a performance penalty thatis an order of magnitude larger than for our policy. A pol-icy that assumes Poisson arrivals only [13] has a very largeperformance penalty because it makes the decision as soonas the system enters doze state.Table 2 shows the measurement results for a 2hr telnet trace.Again our policy performs best, with a factor of �ve in powersavings and a small performance penalty. Telnet applicationallows larger power savings because on average it transmitsand receives much less data then the web browser, thus giv-ing us more chances to shut down the card.Table 3: Power control savingsBER 10�3 10�4 10�5 10�6Power Savings 53% 40% 32% 27.5%We have tested our power control algorithm on an exten-sive set of trace-based recorded channel information. Allthe measurements were done in a building with a single ac-cess point (AP). When AP receives request for the trans-mission from a user, it calculates the optimal transmission



power. AP then sends the command to user's wireless cardvia control channel to set the next transmission power to thecalculated level. Measurements presented in [6] show thatwhen no power management policy for turning the card o� isimplemented, the WLAN card by default spends about 5%of time in doze mode and the rest of the time in one of theactive states (transmitting or receiving). Table 3 lists powersavings obtained with respect to the power consumptionwhen no power control algorithm is implemented. Clearly,higher requirements on the transmission quality (i.e., lowerBER) yield higher power consumption.Table 4: Power management and power control sav-ingsApplication PM Algorithm BER PON=PPMPCWWW Renewal (a) 10�3 6.310�6 4.1Telnet Renewal (1) 10�3 9.010�6 6.7Finally, we combined power management with power con-trol. The results are shown in Table 4 for both web browserand telnet applications. We report results for two BERs thatare commonly used in practice. PON is power consumptionof the original card design. PPMPC is card's power con-sumption when both power management and power controlalgorithms are active. Thus, PON=PPMPC gives us a factorof power savings. As power management saves energy byshutting down the card when it is not in use, and powercontrol saves power by lowering transmission level in the ac-tive state, we are able to see large savings. Again, telnetapplication o�ers higher savings due to its lower bandwidthrequirements.
5. CONCLUSIONSWe have presented a combination of two approaches aimedat saving power for wireless applications. We �rst discusseda new approach based on renewal theory for optimizingpower management policies of wireless portable systems.The measurements show that our policy gives on averagethree times lower power consumption for the wireless cardas compared to the current card implementation.In addition, we presented an implementation of a power con-trol algorithm for the wireless card with power savings ashigh as 53%. The combination of power management andpower control algorithm presented in this work give on av-erage a factor of six in power savings.
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