
Source Code Optimization and Pro�lingof Energy Consumption in Embedded SystemsTajana �Simuni�c, Luca Benini�, Giovanni De Micheli and Mat HansyComputer Systems Lab, Stanford University�DEIS University of Bologna, ItalyyHP Labs, Palo Altotajana@polaris.stanford.eduAbstractThis paper presents a source code optimization methodologyand a pro�ling tool that have been developed to help design-ers in optimizing software performance and energy in embed-ded systems. Code optimizations are applied at three levelsof abstraction: algorithmic, data and instruction-level. Thepro�ler exploits a cycle-accurate energy consumption simu-lator [3] to relate the embedded system energy consumptionand performance to the source code. Thus, it can be usedfor analysis (i.e., to �nd energy-critical sections of the code),and for validation (i.e., to assess the impact of each code op-timization).Code optimizations and pro�ling tool are used to opti-mize and tune the implementation of an MPEG Layer III(MP3) audio decoder for the SmartBadge [2] portable em-bedded system. We show that using our methodology andtool we can quickly and easily redesign the MP3 audio de-coder software to run in real time with low energy consump-tion. Performance increase of 92% and energy consumptiondecrease of 77% (over the original executable speci�cation)has been achieved for MP3 audio decoding on the Smart-Badge.1 IntroductionLow cost with fast time to market is the top requirementin system-level design of embedded portable appliances. Asa result, typical portable appliances are built of commoditycomponents with a microprocessor-based architecture. Thedesign process for such portable embedded systems startswith the selection of the commodity components that couldmeet the performance and the energy consumption criteria,based on the analysis of data sheets. Typically only a fewprocessor families can be evaluated due to resource and timelimitations. Whole system evaluation is often done on pro-totype boards resulting in long design times. FPGA hard-ware emulators are sometimes used for functional debug-ging. Emulation cannot give accurate estimates of energyconsumption or performance since it uses FPGA technol-ogy that has di�erent energy and performance character-istics. An alternative approach, called virtual prototyping,relies on system-level simulation to explore many di�erenthardware and software architectures and get accurate per-formance and energy consumption estimates.Virtual prototyping can substantially reduce design ef-fort and time-to-market. Unfortunately, CAE support tovirtual prototyping for embedded system design is still lim-ited. Commercial tools target mainly functional veri�cation

and performance estimation [5, 6, 7, 8], but they provideno support for power-related cost metrics. A few researchprototype tools [10, 11] have been proposed that separatelyestimate energy consumption of processor core, caches andmain memory in SOC design. The �nal system energy isobtained by summing over the contribution of each com-ponent. The main limitation of these approaches is thatthe e�ect of the interaction between memory system (orI/O peripherals) and processor is not modeled. Processorenergy consumption is generally estimated by instruction-level power analysis, �rst proposed by Tiwari et al. [12,13]. This technique estimates the energy consumed by aprogram by summing the energy consumed by the execu-tion of each instruction. Instruction-by-instruction energycosts are pre-characterized once for all for each target pro-cessors. The instruction-level power model can be aug-mented by considering the e�ect of �rst-level caches andinter-instruction e�ects. The shortcomings of previous ap-proaches are addressed in [3, 4], where memory models andprocessor instruction-level simulator are tightly integratedinto a cycle-accurate simulation engine. Estimation resultswere shown to be within 5% of measured energy consump-tion in hardware.Several techniques for code optimization have been pre-sented in the past. Tiwari et al. [12, 13] uses instruction-levelenergy models to develop compiler-driven energy optimiza-tions such as instruction reordering, reduction of memoryoperands, operand swapping in the Booth multiplier, e�-cient usage of memory banks, and series of processor spe-ci�c optimizations. In addition, several other optimizationshave been suggested, such as energy e�cient register label-ing during the compile phase [14], procedure inlining andloop unrolling [10] as well as instruction scheduling [15]. Allof these techniques focus on automated instruction-level op-timizations driven by the compiler. Even though these tech-niques may be very helpful once integrated into an industry-strength optimizing compiler, currently available commer-cial compilers have limited capabilities. In [4], it was shownthat the improvements that can be gained using standardcompiler optimizations are marginal compared to writingmore energy e�cient source code. The largest energy sav-ings were observed at the inter-procedural level that com-pilers have not been able to exploit.Accurate virtual prototypes have been exploited to drivethe selection of the best hardware architecture given energyand performance requirements [10, 3]. In this work we ex-plore another area of application, namely, software optimiza-tion. In an industrial environment, cost constraints, stan-dardization requirements, backward compatibility issues and

time-to-market pressure drastically reduce the hardware or-ganization options that can be explored. On the other hand,a lot more freedom is available for software design. First,application-speci�c embedded software can be developed morerapidly than dedicated hardware. Second, many embeddedapplications are speci�ed using a software programming lan-guage (e.g., C, Matlab). Mapping a software-only speci�-cation into an embedded system is a more straightforwardprocess than performing hardware-software partitioning andco-design. Finally, it is much easier and less expensive todebug or update software than to modify incorrect or in-complete hardware.Embedded software optimization requires methodologiesand tools for: (i) transforming a sub-optimal executablespeci�cation into an optimized embedded application; (ii)estimating the impact of program transformations on powerconsumption and performance. To address these issues, we�rst developed a code transformation methodology that hasbeen helpful in driving the energy (and performance) opti-mization of embedded applications. We present three cat-egories of source code optimizations: algorithmic changes,data representation changes and instruction-level optimiza-tions.The second contribution of the paper is a code pro�lingtool that provides detailed feedback on both performanceand power of all components of a program, starting from pro-cedures and functions down to the single instruction. Pro-�ling is typically used to relate performance to the sourcecode. Often performance pro�ling for embedded systemstakes only processor and L1 cache performance into account,but does not include L2 cache, o�-chip memory models andinterconnect. For example, call-graph performance pro�lingin the ARM Ltd. instruction-level simulator [1] handles onlyprocessor and L1 cache models. Our pro�ler gives percent-ages of time and energy spent in each procedure for everysystem component (in addition to the total performance, en-ergy consumption and cycle-by-cycle plots) accounting forthe e�ect of L2 cache, main memory and system busses.The remainder of this paper is organized as follows. Ourcode optimization methodology is described in Section 2,where code transformations are discussed in detail. Thedesign tool support we have developed is presented in Sec-tion 3. A full software design example of MP3 audio decoderfor the SmartBadge, with extensive experimental results, isgiven in Section 4.2 Code OptimizationIn our context, code optimization is the process of trans-lating a high-level speci�cation in an imperative languageinto optimized machine code for the target processor. Com-pilers are the tools of choice for code optimization. Exten-sive research on optimizing compilers has been carried outin last few years [28]). Prototype research compilers haveshown impressive results [26]. Most optimizing compilerstarget high-performance and/or general-purpose computers,and relatively little e�ort has been dedicated to create pow-erful optimizing compilers for embedded processors. Eventhough several researchers are studying automatic code opti-mization techniques for embedded processors [29], currently,most embedded processors (or DSPs) are programmed di-rectly in assembly by expert programmers and code opti-mization is mostly based on human intuition and skill.Given the limited compiler support available, our ap-proach to code optimization for embedded systems is stillmostly based on manual code re-writing and optimization.

The main advantage of our approach is that it enables de-signers to focus �rst on a very abstract view of the prob-lem, �nd a good solution, then move down in abstraction,and perform optimizations that are narrower in scope. Thecomplex problem of optimizing an executable speci�cationis partitioned, and its parts are more manageable than thecomplete problem. Furthermore, di�erent people can workon di�erent optimization layers and parallelize the e�ort. Inthe next subsections, we will describe in detail the three op-timization layers de�ned in out methodology, moving fromhigh to low abstraction. We will illustrate our methodol-ogy on optimization of MP3 code [25] for the SmartBadgeportable device [2].2.1 Algorithmic optimizationThe top layer in the optimization hierarchy targets algo-rithms. The original speci�cation is �rst pro�led to identifyall computational kernels, i.e., the procedures where mosttime and power are spent. Alternative algorithms for imple-menting the same functionality are considered and comparedwith the original one using high-level estimators of algorith-mic e�ciency (such as number of basic operations). Mostpromising alternative algorithms are then analyzed in moredetail and �nally coded. This step is mostly based on humanintuition and knowledge, and is unlikely to be automated.Algorithmic optimizations have high potential, but theyalso have risks. First, developing and testing algorithms isa time-consuming and error-prone task. Since human re-sources are always scarce, it is unwise to dedicate too muche�ort to an activity where success is often based on intuition.Second, asymptotic analysis and operation counts are of-ten misleading as estimators of algorithmic e�ciency, hencemarginal improvements should be regarded with suspicionwhen considering algorithmic changes.For these reasons, our approach to algorithmic optimiza-tion in MP3 decoding has been conservative. First, we fo-cused on just one computational kernel where a large frac-tion of run time and energy was spent, namely the subbandsynthesis. Second, we did not try to develop new origi-nal algorithms but we used previously published algorith-mic enhancements [19, 20] that are still fully compliant tothe MPEG standard. The new algorithm incorporates aninteger implementation of the scaled Chen discrete cosinetransform (DCT) instead of a generic DCT in the polyphasesynthesis �lterbank. The use of a scaled DCT reduces theDCT multiply count by 28%.2.2 Data optimizationAt a lower level of abstraction than the algorithmic level,we can optimize code by changing the representation of thedata manipulated by the algorithms. The main objective isto match the characteristics of the target architecture withthe processed data. Signal processing algorithms are oftenspeci�ed by assuming double-precision oating point data toavoid overows and keep accuracy under control. Floatingpoint computations are usually more complex and power-hungry than their integer counterparts. As no hardwareoating point support is available in the ARM SA-1100 andthe MPEG decoder speci�cation performed most computa-tions using doubles, we tried to emulated oating point us-ing ARM's software library. The direct implementation ofthe decoding algorithm, even after algorithmic optimization,was unacceptably slow and power-consuming.To overcome this problem, we developed a �xed-precisionlibrary and we implemented all computational kernels of the

algorithm using �xed precision numbers. The number ofdecimal digits can be set at compile time. The ARM ar-chitecture is designed to support computation with 32-bitsintegers with maximum e�ciency. Little can be gained byreducing data size below 32 bits. On the other hand, whenmultiplying two 32-bit numbers, the result is a 64-bit num-ber and directly truncating the result of a multiplicationto 32 digits frequently leads to incorrect results because ofoverow. To increase robustness, 64-bit numbers have beenused for �xed-point computation. This data type is sup-ported by the ARM compiler through the de�nition of along long integer type. Computing with long long inte-gers is less e�cient than using 32-bit integers, but resultsare accurate and the risk of overow is minimized.Data optimization produced signi�cant energy savingsand speedups for computational kernels of MP3 without anyperceivable degradation in quality. The �xed-point librarydeveloped for this purpose contains macros for conversionfrom �xed-point to oating point, accuracy adjustment andelementary function computation. This optimization did notrequire extensive code rewriting, and it was implementedindependently from algorithmic optimization.2.3 Instruction ow optimizationThe third layer of optimizations targets low-level instruc-tion ow. After extensive pro�ling, the most critical loopsare identi�ed and carefully analyzed. Source code is thenre-written to make computation more e�cient. Well-knowntechniques such as loop merging, unrolling, software pipelin-ing, loop invariant extraction, etc. [28, 27] have been applied.In the innermost loops, code can be written directly as inlineassembly, to better exploit specialized instructions.Instruction ow optimizations have been extensively ap-plied in the MP3 decoder, obtaining signi�cant speedup. Wedo not describe these optimizations in detail because theyare common knowledge in the optimizing compilers litera-ture [28, 27]. However, in our case most optimizations wereperformed manually due to lack of support by the ARMcompiler.A simple example of this class of transformation is theuse of the multiply-accumulate instruction (MLAL) availablein the ARM SA-1100 core. The inner loops of subbandsynthesis and inverse modi�ed cosine transform (the twokey computational kernels of MP3 decoder), contain matrixmultiplications which can be implemented e�ciently withmultiply-accumulate. In this case, we forced the ARM com-piler to use the MLAL instruction by inlining it in assembly.Summarizing this section, we described three code opti-mization layers that have been useful to optimize MP3 de-coding. We found that layering optimizations for decreasinglevels of abstraction, and working on each level separately,was a very e�ective way to tackle the non-trivial task ofspeeding up and reducing the energy consumed in executingthe original speci�cation by more than an order of magni-tude. In principle, stepwise optimization may reduce opti-mality. In practice, it often helps in �nding better heuristicsolutions in a shorter time. Many of the optimizations weapplied manually could be automated, even though automa-tion becomes more problematic as the level of abstractionraises. During code optimization, tool support was essential:code pro�ling was by far the most useful source of informa-tion to direct optimization, and assess its impact. In thenext section we will describe the pro�ling tool that has beendeveloped to support code optimization.

3 Pro�ler for Energy and PerformanceThe class of embedded systems considered in this paper con-sists of a microprocessor with two levels of cache, o�-chipmemory, DC-DC converter and battery. Previous work ex-tended the ARMulator, a proprietary instruction-level per-formance simulator from ARM inc., with cycle-accurate en-ergy models for all system components in [3]. The cycle-accurate energy consumption simulator can give cycle-by-cycle plots of energy consumption for each system compo-nent, thus enabling very detailed hardware and software ar-chitecture analysis. Simulation results with simulator wereshown to be within 5% of the hardware measurements forthe same frequency of operation when running the Dhrys-tone benchmark on the SmartBadge [2].The main limitation of cycle-accurate energy simulatoris that the impact of code optimizations is not easily eval-uated. For example, in order to evaluate energy e�ciencyof two di�erent implementations of a particular portion ofsoftware, the designer would need to obtain cycle-by-cycleplots and then manually relate cycles to the software por-tion of interest. The pro�ling methodology presented nextaddresses this limitation.
ARM Instruction-level Simulator

Processor & L1 Cache Energy Model

Interconnect Energy Model

L2 Cache Memory

L1 Cache

Energy Model Energy Model

Processor Core Model

DC-DC
Converter

Energy
Model Ba

tte
ry

AddressData

AddressData

AddressCycle Type

L2 Cache Current

Memory Current

Processor
Current

Battery
Current

Interconnect
Current

Cycle Type

Cycle Type

Data

Profiler

Source Code

for (i=0; i<30; i++)

{

x[i] = y[i] + 2 * x[i + 1];

z[i] -= x[i];

y[i] = x[i] + z[i];

}

LD R21, #30;
ADD R21, R23,R27;
...

Energy
Consumption

Software Profile

 fun energy

 getD 15%
 sort 10%
 init 2%
 ...

Figure 1: Pro�ler ArchitectureThe pro�ler is shown in Figure 1. Shaded portion rep-resents the extension we made to the cycle-accurate energysimulator architecture to enable code pro�ling. Pro�ling forenergy and performance enables designers to identify thoseportions of their source code that need to be further opti-mized in order to either decrease energy consumption, in-crease performance or both. Our pro�ler enables designersto explore multiple di�erent hardware and software architec-tures, as well as to do statistical analysis based on the inputsamples. In this way the design can be optimized for bothenergy consumption and performance based on the expectedinput data set.The pro�ler operates as follows. Source code is compiledusing a compiler for a target processor. The output of thecompiler is the executable that the cycle-accurate simulatorexecutes (represented in this �gure as assembly code that isinput into the simulator) and a map of locations of each pro-cedure in the executable that a pro�ler uses to gather statis-tics (the map is correspondence of assembly code blocks toprocedures in 'C' source code). In order to increase the sim-ulation speed, a user-de�ned pro�ling interval is set, so thatthe pro�ler gathers statistics only at predetermined time in-crements. Usually an interval of 1�s is su�cient.

During each cycle of operation, the cycle-accurate energyconsumption simulator calculates the current total execu-tion time and energy consumption of all system componentsas shown in Equation 1. The total energy consumed by thesystem per cycle is the sum of energies consumed by the pro-cessor and L1 cache (ECPU), interconnect and pins (ELine),memory (EMem:), L2 cache (EL2), the DC-DC converter(EDC) and the e�ciency losses in the battery (EBat:) [3, 4].ECycle = ECPU +ELine+EMem:+EDC+EL2+EBat: (1)The pro�ler works concurrently with the cycle-accurate sim-ulator. It periodically samples the simulation results (usingsample interval speci�ed by the user) and maps the energyand performance to the function executed using informationgathered at the compile time. Once the simulation is com-plete, the results of pro�ling can be printed out by the totalenergy or time spent in each function.Table 1: Sample Energy Pro�lingName Cumulative Self(mWhr) (mWhr)main 3.20E-01 2.52E-02...III hybrid 6.71E-02SubBandSynthesis 3.72E-02III stereo 2.75E-02III reorder 2.02E-02III antialias 1.45E-02III dequantize sample 1.40E-02III hufman decode 3.74E-03III get scale factor 1.28E-04decode info 3.20E-05...III hybrid 6.71E-02 6.36E-03inv mdctL 6.07E-02SubBandSynthesis 3.72E-02 1.95E-02chendct32 scaled 1.77E-02III stereo 2.75E-02 2.75E-02III reorder 2.02E-02 2.02E-02III antialias 1.45E-02 1.45E-02III dequantize sample 1.40E-02 1.40E-02III hufman decode 3.74E-03 1.53E-03huffman decoder 2.17E-03initialize huffman 1.03E-05hsstell 3.20E-05The main advantage of the pro�ler is that it allows de-signers to obtain energy consumption breakdown by proce-dures in their source code after running only one simulation.This information is of critical importance when designing anembedded system, as it enables designers to quickly identifyand address the areas in the source code that will providelargest overall energy savings. A good example of pro�lerusage is shown in Table 1. The table shows a portion ofenergy pro�le for MP3 audio decode. The �rst column givesthe name of the top procedure, followed by its children. Thenext column gives the total energy spent for that procedure.For example, the total energy spent running the program(main) is 0:32mWhr. The �nal column gives the amount ofenergy spent only in that particular procedure. For example,under main it is clear that III hybrid and its descendantsspend the most energy, 0:0671mWhr. Looking at the en-try for III hybrid, it is easy to see that the largest portionof energy is consumed by its child, inv mdctL. Therefore,the procedures to focus optimization on are inv mdctL andSubBandSynthesis. Although in this example we showedsource code pro�le of total battery energy consumption, the

pro�ler can report energy consumption for any system com-ponent, such as SRAM or the interconnect.The pro�ler allows for fast and accurate evaluation ofsoftware and hardware architectures. Most importantly, itgives good guidance to the designer during the design pro-cess without requiring manual intervention needed in thesimulator without the pro�ler. In addition, the pro�ler ac-counts for all embedded system components, not just theprocessor and the L1 cache as most general-purpose pro�l-ers do. In the next section we present a real design examplethat uses the pro�ler to guide the implementation of thesource code optimizations described earlier for the MP3 au-dio decoder running on the SmartBadge.4 Optimizing MP3 audio decoderWe optimized the implementation of the MP3 audio decoderfor the SmartBadge portable device [2]. The SmartBadge isan embedded system consisting of the StrongARM-1100 pro-cessor, FLASH, SRAM, sensors, and modem/audio analogfront-end on a PCB board powered by the batteries througha DC-DC converter. The hardware prototype of the Smart-Badge uses a standard PCB with line delay of 71ps=cm andstripline and microstrip capacitances of 1:6 and 1:1pF=cmrespectively. The characteristics of CPU and memory chipsare given in Table 2.Table 2: SmartBadge CPU and Memory Con�gurationComponent Cycle T. Active P Idle P Pin Cap. Line L.Units (ns) (mW) (mW) (pF) (cm)SA-1100 5-20 400 170 5 N/AFLASH (1MB) 80 74 0.5 10 2SRAM (1MB) 90 55 0.01 8 3We obtained the original MP3 audio decoder softwarefrom the International Organization for Standardization [18].Our design goal was to obtain real-time performance withlow energy consumption while keeping in full compliancewith the MPEG standard. The block diagram of the MP3decoding algorithm is shown in Figure 2. It consists of threeblocks: frame unpacking, reconstruction, and inverse map-ping. The �rst step in decoding is synchronizing the in-coming bitstream and the decoder. Hu�man decoding ofthe subband coe�cients is performed before requantization.Stereo processing, if applicable, occurs before the inversemapping which consists an inverse modi�ed cosine transform(IMDCT) followed by a polyphase synthesis �lterbank.
Encoded
Bitstream

PCM audio
samplesFrame

Unpacking
Reconstruction

Inverse
MappingFigure 2: MP3 Audio Decoder Architecture4.1 Experimental results of software optimizationWe �rst pro�led the original source code to highlight ar-eas where improvement is needed. Without the pro�ler, wecould have obtained the total energy consumption for run-ning whole code and cycle-by-cycle plots. In order to �ndout where most energy consumption occurs, we would have

needed to run a series of cycle-by-cycle plots, each time fo-cusing on a di�erent function. With the pro�ler, we onlyneed to run the simulation once to obtain the breakdown ofenergy spent per each function. In addition, the pro�ler en-abled us to identify the key issues in code optimization andallowed us to proceed with the optimizations in parallel.Table 3: Pro�ling for MP3 ImplementationsMP3 Code Rev. 1st 2nd 3rdOriginal Floating Pt. SubBandSynthesis III stereocode 80.31% 10.31% 1.43%Algorithmic Floating Pt. III stereo III reorderOpts. 62.73% 6.12% 5.62%Data & SubBandSynthesis inv mdctL III stereoInstruction 34.32% 18.22% 7.32%Combined inv mdctL III stereo mainOpts. 18.98% 8.61% 7.87%Table 3 shows the top three functions in energy consump-tion for each code revision we worked on. The original codehas a very large overhead due to oating point emulation -about 80% of energy consumption. The next largest issue isthe redesign of SubBandSynthesis function that implementsthe polyphase synthesis �lterbank. The details of each op-timization type, namely algorithmic, data and instruction-level optimizations, have been presented in Section 2.We will use the SubBandSynthesis function redesign asa vehicle to illustrate the use of our pro�ler. In the initialstage, we transferred all critical operations to �xed-pointfrom oating point. The transfer resolved the issue withoating-point operations, but at the same time increasedSubBandSynthesis fraction of total energy six times. Nextwe introduced a series of instruction-level optimizations thatresulted in 30% decrease of SubBandSynthesis fraction oftotal energy, to 34.32% as shown in the Table 3. In parallelwe had decided to try the algorithmic changes on the currentcode.Pro�ling results in Table 3 show that the algorithmicoptimizations considerably reduced the energy consumptionof SubBandSynthesis function - it does not appear in thetop three functions, and in fact it is only 3.2% of the totalenergy consumption. The �nal step is to combine the algo-rithmic changes with the data and instruction-level changes,resulting in decrease of SubBandSynthesis fraction of energyconsumption to 6% of total.Table 4: Energy for MP3 ImplementationsMP3 Code Battery CPU Flash RAM DC-DC LinesRevision (mWhr) (mWhr) (mWhr) (mWhr) (mWhr) (mWhr)Original 0.446 0.089 0.005 0.178 0.045 0.129code 0% 0% 0% 0% 0% 0%Algorithmic 0.107 0.020 0.007 0.040 0.011 0.029Opts. 76% 77% -44% 77% 76% 77%Data & 0.130 0.025 0.004 0.051 0.013 0.037Instruction 71% 71% 27% 71% 71% 71%Combined 0.105 0.019 0.007 0.040 0.010 0.028Opts. 77% 78% -41% 78% 77% 78%System and component energy consumptions are shownin Table 4 for di�erent revisions of source code optimiza-tion. Positive percentage of energy decrease with respect tothe original code is shown as well. Table 5 shows the same

results, but for performance measurements. The positivepercentages show performance increase. Although the en-ergy savings of algorithmic versus data and instruction-leveloptimizations as compared to original code are comparable,the performance improvement of data and instruction-leveloptimizations is signi�cant. Note that the increase in energyconsumption and the decrease in performance of Flash isdue to the increase in code size with the algorithmic changein SubBandSynthesis procedure. The total improvementin system performance and energy consumption more thanmakes up for the degradation of Flash performance and en-ergy consumption. Combined optimizations give real-timeperformance for MP3 audio decode which is a primary con-straint for this project.Table 5: Performance for MP3 ImplementationsMP3 Code System Flash RAMRevision (s) (s) (s)Original 68.490 0.396 6.309code 0% 0% 0%Algorithmic 34.562 0.746 2.776Opts. 50% -88% 56%Data & 9.185 0.381 4.186Instruction 87% 4% 34%Combined 5.193 0.718 2.093Opts. 92% -81% 67%The �nal MP3 audio decoder compliance to the MPEGstandard has been tested as a function of precision for �xed-point computation. We used the compliance test providedby the MPEG standard [22, 24]. The range of RMS errorbetween the samples de�nes the compliance level. Table 6shows that results. Clearly, the larger number of precisionbits results in better compliance. In our �nal MP3 audiodecoder we used 27 bits precision.Table 6: Fixed-point Precision and CompliancePrecision Compliance# bits15 None20 Partial27 Full4.2 Pro�ling for di�erent hardware con�gurationsThe design tools described in Section 3 can be used to eval-uate energy consumption and performance for the di�erenthardware con�gurations in addition to di�erent source coderevisions. Table 7 shows comparison of energy consumptionand performance for each change in hardware with respectto the original SmartBadge con�guration while keeping thesource code the same. Positive percentage indicates an in-crease in energy or decrease in performance. Change of CPUto ARM710a causes a large increase in energy consumptionand a decrease in performance. Burst SDRAM increasesperformance by 26% at the expense in energy consumptionincrease of 147%.5 ConclusionsWe have presented in this paper a methodology for sourcecode optimizations and a tool for pro�ling energy consump-

Table 7: MP3 Results for Di�erent Hardware Con�gurationsHardware Energy PerformanceChange (mWhr) (s)Final 0.105 5.193Config. 0% 0%CPU 1.709 19.78ARM710a 1534% 281%SDRAM 0.258 3.85015ns Burst 147% -26%tion and performance of software in embedded systems. Ourpro�ler is based on the cycle-accurate energy consumptionsimulator that has been shown to give simulation resultsthat are within 5% of hardware measurements [3]. Threemajor categories of software optimizations have been pre-sented: algorithmic, data and instruction-level.We gave an example of application of our methodologyand the pro�ling tool to the optimization of MP3 audio de-coding for the SmartBadge [2] portable embedded system.Pro�ling results enabled us to quickly and easily target theredesign the MP3 audio decoder software. In addition, weshowed the results of evaluating di�erent hardware con�gu-rations using our design tools.Our �nal MP3 audio decoder is fully compliant with theMPEG standard and runs in real time with low energy con-sumption. Using our design tools and the methodology forsource code optimization we have been able to increase per-formance by 92% while decreasing energy consumption by77%.6 AcknowledgmentsThe authors would like to thank John Dias and Mark Smithfor their help. This work was supported by the Hewlett-Packard Laboratory and NSF grant CCR-9901190.References[1] Advanced RISC Machines Ltd (ARM), ARM Software Devel-opment Toolkit Version 2.11, 1996.[2] G. Q. Maguire, M. Smith, H. W. Peter Beadle, \SmartBadges:a wearable computer and communication system," Invited talkslides url: www.it.kth.se/maguire/Talks/CODES-980313.pdf,6th International Workshop on Hardware/Software Codesign,1998.[3] T. Simunic, L. Benini, G. De Micheli, \Cycle-Accurate Simula-tion of Energy Consumption in Embedded Systems," Proceed-ings of DAC, 1999.[4] T. Simunic, L. Benini, G. De Micheli, \Energy-E�cient De-sign of Battery-Powered Embedded Systems," Proceedings ofISLPED, 1999.[5] CoWare, CoWareN2c url:www.coware.com/n2c.html .[6] Mentor Graphics, www.mentor.com/codesign.[7] Synopsys, www.synopsys.com/products/hwsw.[8] Cadence, www.cadence.com/alta/products.[9] P. Landman, J. Rabaey, \Activity-Sensitive Architectural PowerAnalysis," IEEE Transactions on CAD, pp.571{587, June1996.[10] Y. Li and J. Henkel, \A Framework for Estimating and Minimiz-ing Energy Dissipation of Embedded HW/SW Systems," Pro-ceedings of DAC 1998, pp.188{193, 1998.

[11] B. Kapoor, \Low Power Memory Architecutres for Video Ap-plications," Proceedings of the 8th Great lakes symposium onVLSI, pp. 2{7, 1998.[12] V. Tiwari, S. Malik, A. Wolfe, M. Lee, \Instruction Level PowerAnalysis," Journal of VLSI Signal Processing Systems, no.1,pp.223{2383, 1996.[13] V. Tiwari, S. Malik, A. Wolfe, \Power Analysis of EmbeddedSoftware: A First Step Towards Software Power Minimization,"IEEE Transactions on VLSI Systems, vol. 2, no.4, pp.437{445,December 1994.[14] H. Mehta, R.M. Owens, M.J. Irvin, R. Chen, D. Ghosh, \Tech-niques for Low Energy Software," Proceedings of ISLPED,pp. 72{75, 1997.[15] H. Tomyiama, H., T. Ishihara, A. Inoue, H. Yasuura, \Instruc-tion scheduling for power reduction in processor-based systemdesign," Proceedings of Design, Automation and Test in Eu-rope, pp. 23-26, February 1998.[16] M. Wan, Y. Ichikawa, D. Lidsky, J. Rabaey, \An Energy Con-scious Methodology for Early Design Exploration of Heteroge-neous DSPs," Proceedings of the Custom Intergrated CircuitConference, 1998.[17] \Fixed Point Arithmetic on the ARM," Application Note 33,ARM Inc., September 1996.[18] \Coded representation of audio, picture, multimedia and hy-permedia information," ISO/IEC JTC/SC 29/WG 11, Part3., May 1993.[19] M. Hans and V. Bhaskaran, \A Compliant MPEG-1 Layer IIAudio Decoder with 16-bit Arithmetic Operations," IEEE Sig-nal Processing Letters, vol. 4, no. 5, May 1997.[20] M. Hans, \An MPEG Audio Decoder Based on 16-bit IntegerArithmetic and SIMD Usage," Proceedings of the First IEEEWorkshop on Multimedia Signal Processing, Princeton, N.J.,June 1997.[21] ISO/IEC JTC 1/SC 29/WG 11 11172-3, \Information Technol-ogy|Coding of moving pictures and associated audio for digitalstorage media up to 1.5 Mbit/s|Part 3: Audio," InternationalOrganization for Standardization, May 1993.[22] ISO/IEC JTC 1/SC 29/WG 11 11172-4, \Information Technol-ogy|Coding of moving pictures and associated audio for digitalstorage media up to 1.5 Mbit/s|Part 4: Compliance Testing,"International Organization for Standardization, 1995.[23] ISO/IEC JTC 1/SC 29/WG 11 13818-3, \Information Technol-ogy|Generic Coding of Moving Pictures and Associated Au-dio: Audio," International Organization for Standardization,November 1994.[24] ISO/IEC JTC 1/SC 29/WG 11 13818-4, \Information Technol-ogy|Generic Coding of Moving Pictures and Associated Au-dio: Conformance," International Organization for Standard-ization, 1996.[25] P. Noll, \MPEG Digital Audio Coding," IEEE Signal Process-ing Magazine, pp. 59{81, September, 1997.[26] M. Hall, J. Anderson, S. Amarasinghe, B. Murphy, S. Liao,E. Bugnion, M. Lam, \Maximizing multiprocessor performancewith the SUIF compiler," IEEE Computer vol. 29, no. 12,pp. 84{89, Dec. 1996.[27] D. Bacon, S. Graham and O. Sharp, \Compiler transformationsfor high-performance computing," ACM Computing Surveys,vol. 26, no. 4, pp. 345{420, Dec. 1994.[28] S. Muchnick, Advanced Compiler Design and Implementation.Morgan Kaufmann, 1997.[29] Workshop on Code generation for Embedded Processors in De-sign Automation for Embedded Systems, vol. 4, no. 2-3, March1999.

