Source Code Optimization and Profiling
of Energy Consumption in Embedded Systems

Tajana Simuni¢, Luca Benini*, Giovanni De Micheli and Mat Hans!
Computer Systems Lab, Stanford University
*DEIS University of Bologna, Italy
THP Labs, Palo Alto
tajana@polaris.stanford.edu

Abstract

This paper presents a source code optimization methodology
and a profiling tool that have been developed to help design-
ers in optimizing software performance and energy in embed-
ded systems. Code optimizations are applied at three levels
of abstraction: algorithmic, data and instruction-level. The
profiler exploits a cycle-accurate energy consumption simu-
lator [3] to relate the embedded system energy consumption
and performance to the source code. Thus, it can be used
for analysis (i.e., to find energy-critical sections of the code),
and for validation (i.e., to assess the impact of each code op-
timization).

Code optimizations and profiling tool are used to opti-
mize and tune the implementation of an MPEG Layer III
(MP3) audio decoder for the SmartBadge [2] portable em-
bedded system. We show that using our methodology and
tool we can quickly and easily redesign the MP3 audio de-
coder software to run in real time with low energy consump-
tion. Performance increase of 92% and energy consumption
decrease of 77% (over the original executable specification)
has been achieved for MP3 audio decoding on the Smart-
Badge.

1 Introduction

Low cost with fast time to market is the top requirement
in system-level design of embedded portable appliances. As
a result, typical portable appliances are built of commodity
components with a microprocessor-based architecture. The
design process for such portable embedded systems starts
with the selection of the commodity components that could
meet the performance and the energy consumption criteria,
based on the analysis of data sheets. Typically only a few
processor families can be evaluated due to resource and time
limitations. Whole system evaluation is often done on pro-
totype boards resulting in long design times. FPGA hard-
ware emulators are sometimes used for functional debug-
ging. Emulation cannot give accurate estimates of energy
consumption or performance since it uses FPGA technol-
ogy that has different energy and performance character-
istics. An alternative approach, called wvirtual prototyping,
relies on system-level simulation to explore many different
hardware and software architectures and get accurate per-
formance and energy consumption estimates.

Virtual prototyping can substantially reduce design ef-
fort and time-to-market. Unfortunately, CAE support to
virtual prototyping for embedded system design is still lim-
ited. Commercial tools target mainly functional verification

and performance estimation [5, 6, 7, 8], but they provide
no support for power-related cost metrics. A few research
prototype tools [10, 11] have been proposed that separately
estimate energy consumption of processor core, caches and
main memory in SOC design. The final system energy is
obtained by summing over the contribution of each com-
ponent. The main limitation of these approaches is that
the effect of the interaction between memory system (or
I/O peripherals) and processor is not modeled. Processor
energy consumption is generally estimated by instruction-
level power analysis, first proposed by Tiwari et al. [12,
13]. This technique estimates the energy consumed by a
program by summing the energy consumed by the execu-
tion of each instruction. Instruction-by-instruction energy
costs are pre-characterized once for all for each target pro-
cessors. The instruction-level power model can be aug-
mented by considering the effect of first-level caches and
inter-instruction effects. The shortcomings of previous ap-
proaches are addressed in [3, 4], where memory models and
processor instruction-level simulator are tightly integrated
into a cycle-accurate simulation engine. Estimation results
were shown to be within 5% of measured energy consump-
tion in hardware.

Several techniques for code optimization have been pre-
sented in the past. Tiwari et al. [12, 13] uses instruction-level
energy models to develop compiler-driven energy optimiza-
tions such as instruction reordering, reduction of memory
operands, operand swapping in the Booth multiplier, effi-
cient usage of memory banks, and series of processor spe-
cific optimizations. In addition, several other optimizations
have been suggested, such as energy efficient register label-
ing during the compile phase [14], procedure inlining and
loop unrolling [10] as well as instruction scheduling [15]. All
of these techniques focus on automated instruction-level op-
timizations driven by the compiler. Even though these tech-
niques may be very helpful once integrated into an industry-
strength optimizing compiler, currently available commer-
cial compilers have limited capabilities. In [4], it was shown
that the improvements that can be gained using standard
compiler optimizations are marginal compared to writing
more energy efficient source code. The largest energy sav-
ings were observed at the inter-procedural level that com-
pilers have not been able to exploit.

Accurate virtual prototypes have been exploited to drive
the selection of the best hardware architecture given energy
and performance requirements [10, 3]. In this work we ex-
plore another area of application, namely, software optimiza-
tion. In an industrial environment, cost constraints, stan-
dardization requirements, backward compatibility issues and

time-to-market pressure drastically reduce the hardware or-
ganization options that can be explored. On the other hand,
a lot more freedom is available for software design. First,

application-specific embedded software can be developed more

rapidly than dedicated hardware. Second, many embedded
applications are specified using a software programming lan-
guage (e.g., C, Matlab). Mapping a software-only specifi-
cation into an embedded system is a more straightforward
process than performing hardware-software partitioning and
co-design. Finally, it is much easier and less expensive to
debug or update software than to modify incorrect or in-
complete hardware.

Embedded software optimization requires methodologies
and tools for: (i) transforming a sub-optimal executable
specification into an optimized embedded application; (ii)
estimating the impact of program transformations on power
consumption and performance. To address these issues, we
first developed a code transformation methodology that has
been helpful in driving the energy (and performance) opti-
mization of embedded applications. We present three cat-
egories of source code optimizations: algorithmic changes,
data representation changes and instruction-level optimiza-
tions.

The second contribution of the paper is a code profiling
tool that provides detailed feedback on both performance
and power of all components of a program, starting from pro-
cedures and functions down to the single instruction. Pro-
filing is typically used to relate performance to the source
code. Often performance profiling for embedded systems
takes only processor and L1 cache performance into account,
but does not include L2 cache, off-chip memory models and
interconnect. For example, call-graph performance profiling
in the ARM Ltd. instruction-level simulator [1] handles only
processor and L1 cache models. Our profiler gives percent-
ages of time and energy spent in each procedure for every
system component (in addition to the total performance, en-
ergy consumption and cycle-by-cycle plots) accounting for
the effect of L2 cache, main memory and system busses.

The remainder of this paper is organized as follows. Our
code optimization methodology is described in Section 2,
where code transformations are discussed in detail. The
design tool support we have developed is presented in Sec-
tion 3. A full software design example of MP3 audio decoder
for the SmartBadge, with extensive experimental results, is
given in Section 4.

2 Code Optimization

In our context, code optimization is the process of trans-
lating a high-level specification in an imperative language
into optimized machine code for the target processor. Com-
pilers are the tools of choice for code optimization. Exten-
sive research on optimizing compilers has been carried out
in last few years [28]). Prototype research compilers have
shown impressive results [26]. Most optimizing compilers
target high-performance and/or general-purpose computers,
and relatively little effort has been dedicated to create pow-
erful optimizing compilers for embedded processors. Even
though several researchers are studying automatic code opti-
mization techniques for embedded processors [29], currently,
most embedded processors (or DSPs) are programmed di-
rectly in assembly by expert programmers and code opti-
mization is mostly based on human intuition and skill.
Given the limited compiler support available, our ap-
proach to code optimization for embedded systems is still
mostly based on manual code re-writing and optimization.

The main advantage of our approach is that it enables de-
signers to focus first on a very abstract view of the prob-
lem, find a good solution, then move down in abstraction,
and perform optimizations that are narrower in scope. The
complex problem of optimizing an executable specification
is partitioned, and its parts are more manageable than the
complete problem. Furthermore, different people can work
on different optimization layers and parallelize the effort. In
the next subsections, we will describe in detail the three op-
timization layers defined in out methodology, moving from
high to low abstraction. We will illustrate our methodol-
ogy on optimization of MP3 code [25] for the SmartBadge
portable device [2].

2.1 Algorithmic optimization

The top layer in the optimization hierarchy targets algo-
rithms. The original specification is first profiled to identify
all computational kernels, i.e., the procedures where most
time and power are spent. Alternative algorithms for imple-
menting the same functionality are considered and compared
with the original one using high-level estimators of algorith-
mic efficiency (such as number of basic operations). Most
promising alternative algorithms are then analyzed in more
detail and finally coded. This step is mostly based on human
intuition and knowledge, and is unlikely to be automated.

Algorithmic optimizations have high potential, but they
also have risks. First, developing and testing algorithms is
a time-consuming and error-prone task. Since human re-
sources are always scarce, it is unwise to dedicate too much
effort to an activity where success is often based on intuition.
Second, asymptotic analysis and operation counts are of-
ten misleading as estimators of algorithmic efficiency, hence
marginal improvements should be regarded with suspicion
when considering algorithmic changes.

For these reasons, our approach to algorithmic optimiza-
tion in MP3 decoding has been conservative. First, we fo-
cused on just one computational kernel where a large frac-
tion of run time and energy was spent, namely the subband
synthesis. Second, we did not try to develop new origi-
nal algorithms but we used previously published algorith-
mic enhancements [19, 20] that are still fully compliant to
the MPEG standard. The new algorithm incorporates an
integer implementation of the scaled Chen discrete cosine
transform (DCT) instead of a generic DCT in the polyphase
synthesis filterbank. The use of a scaled DCT reduces the
DCT multiply count by 28%.

2.2 Data optimization

At a lower level of abstraction than the algorithmic level,
we can optimize code by changing the representation of the
data manipulated by the algorithms. The main objective is
to match the characteristics of the target architecture with
the processed data. Signal processing algorithms are often
specified by assuming double-precision floating point data to
avoid overflows and keep accuracy under control. Floating
point computations are usually more complex and power-
hungry than their integer counterparts. As no hardware
floating point support is available in the ARM SA-1100 and
the MPEG decoder specification performed most computa-
tions using doubles, we tried to emulated floating point us-
ing ARM’s software library. The direct implementation of
the decoding algorithm, even after algorithmic optimization,
was unacceptably slow and power-consuming.

To overcome this problem, we developed a fixed-precision
library and we implemented all computational kernels of the

algorithm using fixed precision numbers. The number of
decimal digits can be set at compile time. The ARM ar-
chitecture is designed to support computation with 32-bits
integers with maximum efficiency. Little can be gained by
reducing data size below 32 bits. On the other hand, when
multiplying two 32-bit numbers, the result is a 64-bit num-
ber and directly truncating the result of a multiplication
to 32 digits frequently leads to incorrect results because of
overflow. To increase robustness, 64-bit numbers have been
used for fixed-point computation. This data type is sup-
ported by the ARM compiler through the definition of a
long long integer type. Computing with long long inte-
gers is less efficient than using 32-bit integers, but results
are accurate and the risk of overflow is minimized.

Data optimization produced significant energy savings
and speedups for computational kernels of MP3 without any
perceivable degradation in quality. The fixed-point library
developed for this purpose contains macros for conversion
from fixed-point to floating point, accuracy adjustment and
elementary function computation. This optimization did not
require extensive code rewriting, and it was implemented
independently from algorithmic optimization.

2.3 Instruction flow optimization

The third layer of optimizations targets low-level instruc-
tion flow. After extensive profiling, the most critical loops
are identified and carefully analyzed. Source code is then
re-written to make computation more efficient. Well-known
techniques such as loop merging, unrolling, software pipelin-
ing, loop invariant extraction, etc. [28, 27] have been applied.
In the innermost loops, code can be written directly as inline
assembly, to better exploit specialized instructions.

Instruction flow optimizations have been extensively ap-
plied in the MP3 decoder, obtaining significant speedup. We
do not describe these optimizations in detail because they
are common knowledge in the optimizing compilers litera-
ture [28, 27]. However, in our case most optimizations were
performed manually due to lack of support by the ARM
compiler.

A simple example of this class of transformation is the
use of the multiply-accumulate instruction (MLAL) available
in the ARM SA-1100 core. The inner loops of subband
synthesis and inverse modified cosine transform (the two
key computational kernels of MP3 decoder), contain matrix
multiplications which can be implemented efficiently with
multiply-accumulate. In this case, we forced the ARM com-
piler to use the MLAL instruction by inlining it in assembly.

Summarizing this section, we described three code opti-
mization layers that have been useful to optimize MP3 de-
coding. We found that layering optimizations for decreasing
levels of abstraction, and working on each level separately,
was a very effective way to tackle the non-trivial task of
speeding up and reducing the energy consumed in executing
the original specification by more than an order of magni-
tude. In principle, stepwise optimization may reduce opti-
mality. In practice, it often helps in finding better heuristic
solutions in a shorter time. Many of the optimizations we
applied manually could be automated, even though automa-
tion becomes more problematic as the level of abstraction
raises. During code optimization, tool support was essential:
code profiling was by far the most useful source of informa-
tion to direct optimization, and assess its impact. In the
next section we will describe the profiling tool that has been
developed to support code optimization.

3 Profiler for Energy and Performance

The class of embedded systems considered in this paper con-
sists of a microprocessor with two levels of cache, off-chip
memory, DC-DC converter and battery. Previous work ex-
tended the ARMulator, a proprietary instruction-level per-
formance simulator from ARM inc., with cycle-accurate en-
ergy models for all system components in [3]. The cycle-
accurate energy consumption simulator can give cycle-by-
cycle plots of energy consumption for each system compo-
nent, thus enabling very detailed hardware and software ar-
chitecture analysis. Simulation results with simulator were
shown to be within 5% of the hardware measurements for
the same frequency of operation when running the Dhrys-
tone benchmark on the SmartBadge [2].

The main limitation of cycle-accurate energy simulator
is that the impact of code optimizations is not easily eval-
uated. For example, in order to evaluate energy efficiency
of two different implementations of a particular portion of
software, the designer would need to obtain cycle-by-cycle
plots and then manually relate cycles to the software por-
tion of interest. The profiling methodology presented next
addresses this limitation.

Source Code

for (i=0; i<30; i++)

LD R21, #30;
l ADD R21, R23,R27; l

ARM Instruction-level Simulator
‘ Processor Gore Model ‘ Protier
c P

‘ L1 Cacne ‘

Processor & L1 Cache Energy Model Proc
DC-DC
Cyele T Converter
yele Type Data Address Enmergy
Model
Interconnec t Energy Model
T Data
Cyele Type 1A<Idress
o | ————
L2 Cache Memory
‘ Energy Model

‘ Energy Model ‘

Figure 1: Profiler Architecture

The profiler is shown in Figure 1. Shaded portion rep-
resents the extension we made to the cycle-accurate energy
simulator architecture to enable code profiling. Profiling for
energy and performance enables designers to identify those
portions of their source code that need to be further opti-
mized in order to either decrease energy consumption, in-
crease performance or both. Our profiler enables designers
to explore multiple different hardware and software architec-
tures, as well as to do statistical analysis based on the input
samples. In this way the design can be optimized for both
energy consumption and performance based on the expected
input data set.

The profiler operates as follows. Source code is compiled
using a compiler for a target processor. The output of the
compiler is the executable that the cycle-accurate simulator
executes (represented in this figure as assembly code that is
input into the simulator) and a map of locations of each pro-
cedure in the executable that a profiler uses to gather statis-
tics (the map is correspondence of assembly code blocks to
procedures in 'C’ source code). In order to increase the sim-
ulation speed, a user-defined profiling interval is set, so that
the profiler gathers statistics only at predetermined time in-
crements. Usually an interval of 1us is sufficient.

During each cycle of operation, the cycle-accurate energy
consumption simulator calculates the current total execu-
tion time and energy consumption of all system components
as shown in Equation 1. The total energy consumed by the
system per cycle is the sum of energies consumed by the pro-
cessor and L1 cache (Ec¢pr), interconnect and pins (Erine),
memory (Euem.), L2 cache (EL2), the DC-DC converter
(Epc) and the efficiency losses in the battery (Eat.) [3, 4].

Ecyete = Ecpu+ Erine + Evtem. + Epc+ Er2 + Ea:. (1)

The profiler works concurrently with the cycle-accurate sim-
ulator. It periodically samples the simulation results (using
sample interval specified by the user) and maps the energy
and performance to the function executed using information
gathered at the compile time. Once the simulation is com-
plete, the results of profiling can be printed out by the total
energy or time spent in each function.

Table 1: Sample Energy Profiling

Name Cumulative Self
‘ (mWhr) (mWhr) ‘
main 3.20E-01 2.52E-02
III hybrid 6.71E-02
SubBandSynthesis 3.72E-02
III_stereo 2.75E-02
III reorder 2.02E-02
III_antialias 1.45E-02
ITI_dequantize_sample 1.40E-02
III_hufman_decode 3.74E-03
III_get_scale factor 1.28E-04
decode_info 3.20E-05
III hybrid 6.71E-02 6.36E-03
inv_mdctL 6.07E-02
SubBandSynthesis 3.72E-02 1.95E-02
chendct32_scaled 1.77E-02
III_stereo 2.75E-02 2.75E-02
III_reorder 2.02E-02 2.02E-02
III_antialias 1.45E-02 1.45E-02
III_dequantize_sample 1.40E-02 1.40E-02
III hufman_decode 3.74E-03 1.53E-03
huffman_decoder 2.17E-03
initialize huffman 1.03E-05
hsstell 3.20E-05

The main advantage of the profiler is that it allows de-
signers to obtain energy consumption breakdown by proce-
dures in their source code after running only one simulation.
This information is of critical importance when designing an
embedded system, as it enables designers to quickly identify
and address the areas in the source code that will provide
largest overall energy savings. A good example of profiler
usage is shown in Table 1. The table shows a portion of
energy profile for MP3 audio decode. The first column gives
the name of the top procedure, followed by its children. The
next column gives the total energy spent for that procedure.
For example, the total energy spent running the program
(main) is 0.32mW hr. The final column gives the amount of
energy spent only in that particular procedure. For example,
under main it is clear that IIT_hybrid and its descendants
spend the most energy, 0.0671mW hr. Looking at the en-
try for III hybrid, it is easy to see that the largest portion
of energy is consumed by its child, inv_mdctL. Therefore,
the procedures to focus optimization on are inv_.mdctL and
SubBandSynthesis. Although in this example we showed
source code profile of total battery energy consumption, the

profiler can report energy consumption for any system com-
ponent, such as SRAM or the interconnect.

The profiler allows for fast and accurate evaluation of
software and hardware architectures. Most importantly, it
gives good guidance to the designer during the design pro-
cess without requiring manual intervention needed in the
simulator without the profiler. In addition, the profiler ac-
counts for all embedded system components, not just the
processor and the L1 cache as most general-purpose profil-
ers do. In the next section we present a real design example
that uses the profiler to guide the implementation of the
source code optimizations described earlier for the MP3 au-
dio decoder running on the SmartBadge.

4 Optimizing MP3 audio decoder

We optimized the implementation of the MP3 audio decoder
for the SmartBadge portable device [2]. The SmartBadge is
an embedded system consisting of the StrongARM-1100 pro-
cessor, FLASH, SRAM, sensors, and modem/audio analog
front-end on a PCB board powered by the batteries through
a DC-DC converter. The hardware prototype of the Smart-
Badge uses a standard PCB with line delay of 71ps/cm and
stripline and microstrip capacitances of 1.6 and 1.1pF/cm
respectively. The characteristics of CPU and memory chips
are given in Table 2.

Table 2: SmartBadge CPU and Memory Configuration

Component ‘ Cycle T. ‘ Active P ‘ Idle P ‘ Pin Cap. ‘ Line L.

Units (ns) (mW) (mW) (pF) (cm)

SA-1100 5-20 400 170 5 N/A
FLASH (1MB) 80 74 0.5 10 2
SRAM (1MB) 90 55 0.01 8 3

We obtained the original MP3 audio decoder software
from the International Organization for Standardization [18].
Our design goal was to obtain real-time performance with
low energy consumption while keeping in full compliance
with the MPEG standard. The block diagram of the MP3
decoding algorithm is shown in Figure 2. It consists of three
blocks: frame unpacking, reconstruction, and inverse map-
ping. The first step in decoding is synchronizing the in-
coming bitstream and the decoder. Huffman decoding of
the subband coefficients is performed before requantization.
Stereo processing, if applicable, occurs before the inverse
mapping which consists an inverse modified cosine transform
(IMDCT) followed by a polyphase synthesis filterbank.

PCM audio
samples

Encoded
Bitstream Frame

Unpacking

Inverse
Mapping

I Reconstruction q

Figure 2: MP3 Audio Decoder Architecture

4.1 Experimental results of software optimization

We first profiled the original source code to highlight ar-
eas where improvement is needed. Without the profiler, we
could have obtained the total energy consumption for run-
ning whole code and cycle-by-cycle plots. In order to find
out where most energy consumption occurs, we would have

needed to run a series of cycle-by-cycle plots, each time fo-
cusing on a different function. With the profiler, we only
need to run the simulation once to obtain the breakdown of
energy spent per each function. In addition, the profiler en-
abled us to identify the key issues in code optimization and
allowed us to proceed with the optimizations in parallel.

Table 3: Profiling for MP3 Implementations

[MP3 Code Rev. | ist [2nd [3rd
Original Floating Pt. SubBandSynthesis III stereo
code 80.31% 10.31% 1.43%
Algorithmic Floating Pt. III stereo III reorder
Opts. 62.73% 6.12% 5.62%
Data & SubBandSynthesis inv_mdctL III_stereo
Instruction 34.32% 18.22} 7.32%
Combined inv.mdctL III stereo main
Opts. 18.98% 8.61% 7.87%

Table 3 shows the top three functions in energy consump-
tion for each code revision we worked on. The original code
has a very large overhead due to floating point emulation -
about 80% of energy consumption. The next largest issue is
the redesign of SubBandSynthesis function that implements
the polyphase synthesis filterbank. The details of each op-
timization type, namely algorithmic, data and instruction-
level optimizations, have been presented in Section 2.

We will use the SubBandSynthesis function redesign as
a vehicle to illustrate the use of our profiler. In the initial
stage, we transferred all critical operations to fixed-point
from floating point. The transfer resolved the issue with
floating-point operations, but at the same time increased
SubBandSynthesis fraction of total energy six times. Next
we introduced a series of instruction-level optimizations that
resulted in 30% decrease of SubBandSynthesis fraction of
total energy, to 34.32% as shown in the Table 3. In parallel
we had decided to try the algorithmic changes on the current
code.

Profiling results in Table 3 show that the algorithmic
optimizations considerably reduced the energy consumption
of SubBandSynthesis function - it does not appear in the
top three functions, and in fact it is only 3.2% of the total
energy consumption. The final step is to combine the algo-
rithmic changes with the data and instruction-level changes,
resulting in decrease of SubBandSynthesis fraction of energy
consumption to 6% of total.

Table 4: Energy for MP3 Implementations

MP3 Code Battery CPU Flash
(mWhr) (mWhr) (mWhr) (mWhr)

RAM DC-DC Lines

Revision (mWhr) (mWhr)
Original 0.446 0.089 0.005 0.178 0.045 0.129
code 0% 0% 0% 0% 0% 0%
Algorithmic 0.107 0.020 0.007 0.040 0.011 0.029
Opts. 76% TTh -447y, T7h 76% 7%
Data & 0.130 0.025 0.004 0.051 0.013 0.037
Instruction 71% 71% 27% 71% 71% 71%
Combined 0.105 0.019 0.007 0.040 0.010 0.028
Opts. TTh 78% -41%, 78% TTh 78%

System and component energy consumptions are shown
in Table 4 for different revisions of source code optimiza-
tion. Positive percentage of energy decrease with respect to
the original code is shown as well. Table 5 shows the same

results, but for performance measurements. The positive
percentages show performance increase. Although the en-
ergy savings of algorithmic versus data and instruction-level
optimizations as compared to original code are comparable,
the performance improvement of data and instruction-level
optimizations is significant. Note that the increase in energy
consumption and the decrease in performance of Flash is
due to the increase in code size with the algorithmic change
in SubBandSynthesis procedure. The total improvement
in system performance and energy consumption more than
makes up for the degradation of Flash performance and en-
ergy consumption. Combined optimizations give real-time
performance for MP3 audio decode which is a primary con-
straint for this project.

Table 5: Performance for MP3 Implementations

MP3 Code ‘ System

Flash‘ RAM ‘

Revision (s) (s) (s)
Original 68.490 | 0.396 6.309
code 0% 0% 0%
Algorithmic 34.562 0.746 2.776
Opts. 50% -88% 567
Data & 9.185 0.381 4.186
Instruction 87% 4% 34%
Combined 5.193 0.718 2.093
Opts. 92% 81y, | 67y

The final MP3 audio decoder compliance to the MPEG
standard has been tested as a function of precision for fixed-
point computation. We used the compliance test provided
by the MPEG standard [22, 24]. The range of RMS error
between the samples defines the compliance level. Table 6
shows that results. Clearly, the larger number of precision
bits results in better compliance. In our final MP3 audio
decoder we used 27 bits precision.

Table 6: Fixed-point Precision and Compliance

Precision | Compliance
bits
15 None
20 Partial
27 Full

4.2 Profiling for different hardware configurations

The design tools described in Section 3 can be used to eval-
uate energy consumption and performance for the different
hardware configurations in addition to different source code
revisions. Table 7 shows comparison of energy consumption
and performance for each change in hardware with respect
to the original SmartBadge configuration while keeping the
source code the same. Positive percentage indicates an in-
crease in energy or decrease in performance. Change of CPU
to ARM710a causes a large increase in energy consumption
and a decrease in performance. Burst SDRAM increases
performance by 26% at the expense in energy consumption
increase of 147%.

5 Conclusions

We have presented in this paper a methodology for source
code optimizations and a tool for profiling energy consump-

Table 7: MP3 Results for Different Hardware Configurations

Hardware Energy | Performance
‘ Change (mWhr) ‘ (s)
Final 0.105 5.193
Config. 0% 0%
CPU 1.709 19.78
ARM710a 15347 2817,
SDRAM 0.258 3.850
15ns Burst 147Y% -26%

tion and performance of software in embedded systems. Our
profiler is based on the cycle-accurate energy consumption
simulator that has been shown to give simulation results
that are within 5% of hardware measurements [3]. Three
major categories of software optimizations have been pre-
sented: algorithmic, data and instruction-level.

We gave an example of application of our methodology
and the profiling tool to the optimization of MP3 audio de-
coding for the SmartBadge [2] portable embedded system.
Profiling results enabled us to quickly and easily target the
redesign the MP3 audio decoder software. In addition, we
showed the results of evaluating different hardware configu-
rations using our design tools.

Our final MP3 audio decoder is fully compliant with the
MPEG standard and runs in real time with low energy con-
sumption. Using our design tools and the methodology for
source code optimization we have been able to increase per-
formance by 92% while decreasing energy consumption by
77%.

6 Acknowledgments

The authors would like to thank John Dias and Mark Smith
for their help. This work was supported by the Hewlett-
Packard Laboratory and NSF grant CCR-9901190.

References

[1] Advanced RISC Machines Ltd (ARM), ARM Software Devel-
opment Toolkit Version 2.11, 1996.

[2] G. Q. Maguire, M. Smith, H. W. Peter Beadle, “SmartBadges:
a wearable computer and communication system,” Invited talk
slides url: www.it.kth.se/maguire/Talks/CODES-980313.pdf,
6th International Workshop on Hardware/Software Codesign,
1998.

[3] T. Simunic, L. Benini, G. De Micheli, “Cycle-Accurate Simula-
tion of Energy Consumption in Embedded Systems,” Proceed-
ings of DAC, 1999.

[4] T. Simunic, L. Benini, G. De Micheli, “Energy-Efficient De-
sign of Battery-Powered Embedded Systems,” Proceedings of
ISLPED, 1999.

[5] CoWare, CoWareN2c url:www.coware.com/n2c.html .

[6] Mentor Graphics, www.mentor.com/codesign.

[7] Synopsys, www.synopsys.com/products/hwsw.

[8] Cadence, www.cadence.com/alta/products.

[9] P.Landman, J. Rabaey, “Activity-Sensitive Architectural Power
Analysis,” [IEEE Transactions on CAD, pp.571-587, June
1996.

10] Y. Liand J. Henkel, “A Framework for Estimating and Minimiz-

, g

ing Energy Dissipation of Embedded HW/SW Systems,” Pro-
ceedings of DAC 1998, pp.188-193, 1998.

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

26]

(27]

(28]

(29]

B. Kapoor, “Low Power Memory Architecutres for Video Ap-
plications,” Proceedings of the 8th Great lakes symposium on
VLSI, pp. 2-7, 1998.

V. Tiwari, S. Malik, A. Wolfe, M. Lee, “Instruction Level Power
Analysis,” Journal of VLSI Signal Processing Systems, no.l,
PpP.223-2383, 1996.

V. Tiwari, S. Malik, A. Wolfe, “Power Analysis of Embedded
Software: A First Step Towards Software Power Minimization,”
IEEE Transactions on VLSI Systems, vol. 2, no.4, pp.437—445,
December 1994.

H. Mehta, R.M. Owens, M.J. Irvin, R. Chen, D. Ghosh, “Tech-
niques for Low Energy Software,” Proceedings of ISLPED,
pp- 72-75, 1997.

H. Tomyiama, H., T. Ishihara, A. Inoue, H. Yasuura, “Instruc-
tion scheduling for power reduction in processor-based system
design,” Proceedings of Design, Automation and Test in Eu-
rope, pp. 23-26, February 1998.

M. Wan, Y. Ichikawa, D. Lidsky, J. Rabaey, “An Energy Con-
scious Methodology for Early Design Exploration of Heteroge-
neous DSPs,” Proceedings of the Custom Intergrated Circuit
Conference, 1998.

“Fixed Point Arithmetic on the ARM,” Application Note 33,
ARM Inc., September 1996.

“Coded representation of audio, picture, multimedia and hy-
permedia information,” ISO/IEC JTC/SC 29/WG 11, Part
3., May 1993.

M. Hans and V. Bhaskaran, “A Compliant MPEG-1 Layer II
Audio Decoder with 16-bit Arithmetic Operations,” IEEE Sig-
nal Processing Letters, vol. 4, no. 5, May 1997.

M. Hans, “An MPEG Audio Decoder Based on 16-bit Integer
Arithmetic and SIMD Usage,” Proceedings of the First IEEE
Workshop on Multimedia Signal Processing, Princeton, N.J.,
June 1997.

ISO/IEC JTC 1/SC 29/WG 11 11172-3, “Information Technol-
ogy — Coding of moving pictures and associated audio for digital
storage media up to 1.5 Mbit/s —Part 3: Audio,” International
Organization for Standardization, May 1993.

ISO/IEC JTC 1/SC 29/WG 11 11172-4, “Information Technol-
ogy — Coding of moving pictures and associated audio for digital
storage media up to 1.5 Mbit/s— Part 4: Compliance Testing,”
International Organization for Standardization, 1995.

ISO/IEC JTC 1/SC 29/WG 11 13818-3, “Information Technol-
ogy — Generic Coding of Moving Pictures and Associated Au-
dio: Audio,” International Organization for Standardization,
November 1994.

ISO/IEC JTC 1/SC 29/WG 11 13818-4, “Information Technol-
ogy — Generic Coding of Moving Pictures and Associated Au-
dio: Conformance,” International Organization for Standard-
ization, 1996.

P. Noll, “MPEG Digital Audio Coding,” IEEE Signal Process-
ing Magazine, pp. 59-81, September, 1997.

M. Hall, J. Anderson, S. Amarasinghe, B. Murphy, S. Liao,
E. Bugnion, M. Lam, “Maximizing multiprocessor performance
with the SUIF compiler,” IEEE Computer vol. 29, no. 12,
pp. 84-89, Dec. 1996.

D. Bacon, S. Graham and O. Sharp, “Compiler transformations
for high-performance computing,” ACM Computing Surveys,
vol. 26, no. 4, pp. 345-420, Dec. 1994.

S. Muchnick, Advanced Compiler Design and Implementation.
Morgan Kaufmann, 1997.

Workshop on Code generation for Embedded Processorsin De-
sign Automation for Embedded Systems, vol. 4, no. 2-3, March
1999.

