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Abstract— Energy-efficient design of battery-powered systems
demands optimizations in both hardware and software. We
present a modular approach for enhancing instruction level sim-
ulators with cycle-accurate simulation of energy dissipation in
embedded systems. Our methodology has tightly coupled com-
ponent models thus making our approach more accurate. Perfor-
mance and energy computed by our simulator are within a 5%
tolerance of hardware measurements on the SmartBadge [2]. We
show how the simulation methodology can be used for hardware
design exploration aimed at enhancing the SmartBadge with real-
time MPEG video feature.

In addition, we present a profiler that relates energy consump-
tion to the source code. Using the profiler we can quickly and
easily redesign the MP3 audio decoder software to run in real
time on the SmartBadge with low energy consumption. Perfor-
mance increase of 92% and energy consumption decrease of 77%
over the original executable specification have been achieved.
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I. INTRODUCTION

Energy consumption is a critical factor in system-level de-
sign of embedded portable appliances. In addition, low cost
with fast time to market are crucial. As a result, typical
portable appliances are built of commodity components and
have a microprocessor-based architecture. Full system evalu-
ation is often done on prototype boards resulting in long design
times. FPGA hardware emulators are sometimes used for func-
tional debugging but cannot give accurate estimates of energy
consumption or performance. Performance can be evaluated us-
ing instruction-set simulators (e.g. [1]), but there is limited or
no support for energy consumption evaluation.

Ideally, when designing an embedded system built of com-
modity components, a designer would like to explore a limited
number of architectural alternatives and test functionality, en-
ergy consumption and performance without the need to build a
prototype first. In addition, designers need to optimize software
both during hardware development and once the prototype is
built in order to get the best performance and energy consump-
tion from the system. Embedded software optimization requires
tools for estimating the impact of program transformations on
energy consumption and performance.

This work presents a complete solution for all embedded sys-
tem design issues discussed above. The distinctive features of
our approach are the following: (i) complete system-level and
component energy consumption estimates as well as battery life-
time estimates (ii) ability to explore multiple architectural al-
ternatives and (iii) easy estimation of the impact of software
changes both during and after the architectural exploration.
The tool set is integrated within the instruction set simulator
provided by ARM Ltd. [1]. It consists of two components: a
cycle-accurate system-level energy consumption simulator with
battery lifetime estimation and a system profiler that correlates
both energy consumption and performance with the code. Our
tools have been tested on a real-life industrial application, and
have proven to be both accurate (within 5% of hardware mea-
surements) and highly effective in optimizing the energy con-

sumption in embedded systems (energy consumption reduced
by 77%). In addition, they are very flexible and easy to adopt
to different systems. The tools contain general models for all
typical embedded system components but the microprocessor.
In order to adopt the tools to another processor, the ARM ISS
needs to be replaced by the ISS for the processor of interest.

The rest of this manuscript is organized as follows. We discuss
related work in Section II. System model and the methodology
for cycle-accurate simulation of energy dissipation are presented
in Section ITI. Section IV shows that the simulation results of
timing and energy dissipation using the methodology presented
are within 5% of the hardware measurements for the Dhrystone
test case. Hardware architecture trade-offs for SmartBadge’s
real-time MPEG video decode design are explored using cycle-
accurate energy simulation in Section V. The profiling support
we have developed is presented in Section VI. A full software
design example of MP3 audio decoder for the SmartBadge that
uses our profiler is shown in Section VII.

II. RELATED WORK

As portable embedded systems have grown in importance in
recent years, so has the need for tools that enable energy con-
sumption estimation for such systems. CAE support for em-
bedded system design is still limited. Commercial tools target
mainly functional verification and performance estimation [3],
[4], [5], [6], but provide no support for energy-related cost met-
rics.

Processor energy consumption is generally estimated by
instruction-level power analysis, first proposed by Tiwari et
al. [24], [25]. This technique estimates the energy consumed
by a program by summing the energy consumed by the ex-
ecution of each instruction. Instruction-by-instruction energy
costs, together with non-ideal effects, are pre-characterized once
for all for each target processor. An approach proposed recently
in [12] attempts to evaluate the effects of different cache and bus
configurations using linear equations to relate the main cache
characteristics to system performance and energy consumption.
This approach does not account for highly non-linear behavior
in cache accesses for different cache configurations that are both
data and architecture dependent.

A few research prototype tools that estimate the energy con-
sumption of processor core, caches and main memory in SOC de-
sign have been proposed [7], [10]. Memory energy consumption
is estimated using cost-per-access models. Processor execution
traces are used to drive memory models, thereby neglecting the
non-negligible impact of a non-ideal memory system on program
execution. The final system energy is obtained by summing over
the contribution of each component. The main limitation of the
approaches presented in [7], [10] is that the interaction between
memory system (or I/O peripherals) and processor is not mod-
eled.

A more recent approach presented in [11] combines multiple
power estimators into one simulation engine thus enabling de-
tailed simulation of some components, while using high-level
models for others. This approach is able to account for in-
teraction between memory, cache and processor at run time,



but at the cost of potentially long run-times. Longer run-
times are caused by different abstraction levels of various simu-
lators and by the overhead in communication between different
components. The techniques that enable significant simulation
speedup are presented, but at the cost of the loss of detail in
software design and in the input data trace.

Cycle-accurate register-transfer level energy estimation is pre-
sented in [8]. This tool integrates RT level processor simulator
with DinerollII cache simulator and memory model. It is shown
to be within 15% of HSPICE simulations. Unfortunately, this
approach is not practical for component-based designs such as
the one presented in this paper, as it requires knowledge of the
internal design of system components. In addition, it is slower
than our approach as it models at lower abstraction level.

An alternative approach for energy estimation using mea-
surements as a basis for estimation is presented in PowerScope
tool [9]. PowerScope requires two computers to collect the
measurement statistics, some changes to the operating system
source code and a digital multimeter. Although this system en-
ables accurate code profiling of an existing system, it would be
very difficult to use it for both hardware and software architec-
ture exploration we present in this paper, as in the early design
stages neither hardware nor operating systems or software are
available for measurements.

Finally, previous approaches do not focus on battery life opti-
mization, the ultimate goal of energy optimization for portable
systems. In fact, when the battery subsystem is not considered
in energy estimation significant errors can result [21]. Some an-
alytical estimates of the tradeoff between battery capacity and
delay in digital CMOS systems are presented in [18]. Battery
capacity is strongly dependent on the discharge current as can
be seen from any battery data sheet [22]. Hence, it is important
to accurately model discharge current as a function of time in
an embedded system.

In contrast to previous approaches, in this work memory
models and processor instruction-level simulator are tightly in-
tegrated together with an accurate battery model into cycle-
accurate simulation engine. Estimation results obtained with
our simulator are shown to be within 5% of measured energy
consumption in hardware. In addition, we accurately model
battery discharge current. Since we develop only one simulation
engine, there is no overhead in executing simulators at different
levels of abstraction, or in the interface between them. Thus,
our approach enables fast and accurate architecture exploration
for both energy consumption and performance.

In an industrial environment, the degrees of freedom in hard-
ware design for embedded portable appliances are often very
limited but for software a lot more freedom is available. As a
result, a primary requirement for system-level design method-
ology is to effectively support code energy consumption opti-
mization. Several techniques for code optimization have been
presented in the past. A methodology that combines automated
and manual software optimizations focused on optimizing mem-
ory accesses has been presented in [17]. Tiwari et al. [24], [25]
uses instruction-level energy models to develop compiler-driven
energy optimizations such as instruction reordering, reduction
of memory operands, operand swapping in Booth multipliers,
efficient usage of memory banks, and series of processor spe-
cific optimizations. Several other optimizations have been sug-
gested, such as energy efficient register labeling during the com-
pile phase [19], procedure inlining and loop unrolling [7] as well
as instruction scheduling [27]. Work presented in [20] applies
a set of compiler optimizations concurrently and evaluates the
resulting energy consumption via simulation.

All of the techniques discussed above focus on automated
instruction-level optimizations driven by the compiler. Unfor-
tunately, currently available commercial compilers have limited
capabilities. The improvements gained when using standard
compiler optimizations are marginal compared to writing en-
ergy efficient source code [16]. The largest energy savings were
observed at the inter-procedural level that compilers have not
been able to exploit.

Code optimization requires extensive program execution anal-
ysis to identify energy-critical bottlenecks and to provide feed-
back on the impact of transformations. Profiling is typically
used to relate performance to the source code for CPU and
L1 cache [1]. Leveraging our estimation engine, we implemented
a code profiling tool that gives percentages of time and energy
spent in each procedure for every system component, not only
CPU and L1 cache. Thanks to energy profiling, the program-
mer can easily identify the most energy-critical procedures, ap-
ply transformations and estimate their impact not only on pro-
cessor energy consumption, but also on memory hierarchy and
system busses.

Our approach enables complete system-level and component
energy consumption estimates as well as battery lifetime esti-
mates. In addition, it provides an ability to quickly explore
multiple architectural alternatives. Finally, it enables software
optimization both during and after architectural exploration us-
ing our energy profiling tool. In the following section we present
the cycle-accurate energy simulator architecture together with
energy consumption models for the components modeled.

III. SYSTEM MODEL

Typical portable embedded systems have processors, storage
and peripherals. We use SmartBadge [2] throughout this paper
as a vehicle to illustrate our methodology and to obtain hard-
ware measurements. The SmartBadge, shown in Figure 1, is an
embedded system consisting of the StrongARM-1100 processor,
FLASH, SRAM, sensors, and modem/audio analog front-end
on a PCB board powered by the batteries through a DC-DC
converter. The initial goal in designing the SmartBadge was
to allow a computer or a human user to provide location and
environmental information to a location server through a het-
erogeneous network. The SmartBadge could be used as a cor-
porate ID card, attached (or built in) to devices such as PDAs
and mobile telephones, or incorporated in computing systems.
The design goal for the SmartBadge has since been extended to
combine location awareness and authentication with audio and
video support. We will illustrate how our methodology has been
used for architecture exploration of the new SmartBadge that
needed to support real-time MPEG video decode feature. In
addition, we will show how our profiler and code optimizations
can be used to improve code for MP3 audio decoder.
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Fig. 1.

The system we use in this work to illustrate our methodology,



the SmartBadge, has an ARM processor. As a result, we imple-
mented the energy models as extensions to the cycle-accurate
instruction-level simulator for the ARM processor family, called
the ARMmulator [1]. The ARMulator is normally used for func-
tional and performance validation. Figure 2 shows the simula-
tor architecture. The typical sequence of steps needed to set
up system simulation can be summarized as follows. (i) The
designer provides a simple functional model for each system
component other than the processor. (ii) The functional model
is annotated with a cycle-accurate performance model. (iii) Ap-
plication software (written in C) is cross-compiled and loaded
in specified locations of the system memory model. (iii) The
simulator runs the code and the designer can analyze execution
using a cross-debugger or collecting statistics. A designer inter-
ested in using our methodology would only need to additionally
provide cycle-accurate energy models for each component dur-
ing step (ii) of the simulation setup. Thus, the designer can
obtain power estimates with little incremental effort.

We developed a methodology for enhancing cycle-accurate
simulator with energy models of typical components used in em-
bedded system design. Each component is characterized with
equivalent capacitance for each of its power states. Energy spent
per cycle is a function of equivalent capacitance, current voltage
and frequency. The equivalent capacitance allows us to easily
scale energy consumed for each component as frequency or volt-
age of operation change. Equivalent capacitances are calculated
given the information provided in data sheets.

Internal operation of our simulator proceeds as follows. On
each cycle of execution the ARMulator sends out the informa-
tion about the state of the processor (“cycle type”) and its ad-
dress and data busses. Two main classes of processor cycle
types are processor active, where active power is consumed, and
processor idle, where idle power is consumed. The processor
idle state represents an off-chip memory request. The number
of cycles that the processor remains idle depends on L2 cache
and memory model access times. L2 cache, when present, is
always accessed before the main memory and so is active on
every memory access request. On L2 cache miss, main memory
is accessed. Memory model accounts for energy spent during
the memory access. The interconnect energy model calculates
energy consumed by the interconnect and pins based on the
number of lines switched during the cycle on the data and ad-
dress busses. The DC-DC converter energy model sums all the
currents consumed each cycle by other system components, ac-
counts for its efficiency loss, and gets the total energy consumed
from the battery. The battery model accounts for battery ef-
ficiency losses due to the difference between the rated current
and discharge current computed the current cycle.

The total energy consumed by the system per cycle is the sum
of energies consumed by the processor and L1 cache (Ecpy), in-
terconnect and pins (Erine ), memory (Enrem ), L2 cache (Er2),
the DC-DC converter (Epc) and the efficiency losses in the
battery (EBat.):

Ecyete = Ecpu + Erine + Ervtem + Er2 + Epc + Epar (1)

The total energy consumed during the execution of the software
on a given hardware architecture is the sum of the energies con-
sumed during the each cycle. Models for energy consumption
and performance estimation of each system component are de-
scribed in the following sections.

A. Processor

The ARM simulator provides a cycle-accurate, instruction-
level model for ARM processors and L1 on-chip cache. The
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model was enhanced with energy consumption estimates based
on the information provided by the data sheets. Two power
states are considered: active state in which processor is running
with the on-chip cache, and the state in which the processor is
executing NOPs while waiting to fill the cache.

Note that in the case of StrongARM processor used in this
work, the data sheet values for current consumption correspond
well to the measured values. Wan [26] extended StrongARM
processor model with base current costs for each instruction.
The average power consumption for most of the instructions
is 200mW measured at 170MHz. Load and store instructions
required 260mW each. Because the difference in energy per in-
struction is minimal, it can be expected that the average power
consumption value from the data sheets is on the same level of
accuracy as the instruction-level model. Thus we can use data
sheet values to derive equivalent capacitances for the Stron-
gARM. Note that for other processors data sheet values would
need to be verified by measurement, as often data sheet values
report the maximum power consumption, instead of typical.

When the processor is executing with the on-chip cache, it
consumes the active power specified in the data sheet P, mea-
sured at given voltage V;, and frequency of operation f,,. Total
equivalent active capacitance within the processor, Ccpu,q, is

estimated as:
P,

m
— 2
V2l )
The amount of energy consumed by processor and L1l-cache at

specified processor cycle time T,y.;e and CPU core voltage Ve
is:

Ccpru,a =

2
Ecpv,active = Popv,aTeycle = CoPU,aVee (3)

When there is an on-chip cache miss, the processor stalls and ex-
ecutes NOP instructions which consume less power. Ccpu,nop
can be estimated from the power consumed during execution of
NOPs Pcpu,nop at voltage Vi, and frequency fr,:

Pcpu,NnoP
ZCPU,NOP 4
V2 @)

The energy consumed within processor core per cycle while ex-
ecuting NOPs is:

Ccpu,NnoP =

Ecpu,nop = CopunoprVe (5)

B. Memory and L2 cache

The processor issues an off-chip memory access when there is
a L1 cache miss. The cache-fill request will either be serviced by



the L2 cache if one is present in the design or directly from the
main memory. On L2 cache miss, a request is issued to the pro-
cessor to fetch data from the main memory. Data sheets specify
the memory and L2 cache access times, and energy consumed
during active and idle states of operation.

Memory access time, Trmem, is scaled by the processor cycle
time, Ttycie, to obtain the number of cycles the processor has
to wait to serve a request, Nuwqi+ (Equation 6). Wait cycles are
defined for two different types of memory accesses: sequential
and non-sequential. Sequential access is at the address immedi-
ately following the address of the previous access. In burst type
memory the sequential access is normally a fraction of the first,
non-sequential, access.

Tmem
N’(U(th Tcycle (6)
Two energy consumption states are defined for each type of
memory: active and idle. Energy consumed per cycle while
memory is in active state operating at supply voltage V4 is a
function of equivalent active capacitance, voltage of operation
and number of total access cycles (Nwait + 1):

2
Cmeded

Nwait + 1 (7)

EMem,active =
Active memory capacitance, Cmem, can be estimated from the
active power specified in the data sheet, Pp,em, measured at
voltage Vi, and frequency fr,:

Cmem =

. (®)
mJm

Multibank memory can be represented as multiple one-bank
memories.

Idle state can be further subdivided into multiple states that
describe modes of operation for different types of memories. For
example, DRAM might have two idle states: refresh and sleep.
The designer specifies the percentage of the time p; memory
spends in each idle state. Total idle energy per cycle for memory
1S:

n
EMem,idle = Tcycle Z Plpl (9)
i=0
where P; is power consumption in idle state i. Both RAM and
ROM are represented with the same memory model, but with
different parameters.

The L2 cache access time and energy consumption are treated
the same way as any other memory. L2 cache organization is
determined from the number of banks, lines per bank, and words
per line. Line replacement can follow any of the well-known
replacement policies. Cache hit rate is strongly dependent on
its organization, which in turn affects the total memory access
time and the energy consumption. Note that we are simulating
details of the L2 cache access, and thus know the exact L2 cache
miss rate.

C. Interconnect and Pins

The interconnects on the PCB can contribute a large por-
tion of the off-chip capacitance. Capacitance per unit length
of the interconnect is a parameter in the energy model that
can be obtained from the PCB manufacturer. The length of an
interconnect can be estimated by the designer based on the ap-
proximate placement of the selected components on the PCB.
Pin capacitance values are reported on the data sheets.

For each component the average length of the clock line, data
and address buses between the processor and the component

are provided as one of the input simulation parameters. Hence,
the designer is free to use any wire-length estimate [14] or mea-
surement. The interconnect lengths used in our simulation of
SmartBadge come from the prototype board layout.

The total capacitance switched during one cycle is shown in
Equation 10. It depends on the capacitance of one interconnect
line and the pins attached to it, Cswitch, and the number of
lines switched during the cycle, Nswitch -

Cline = Nswitchoswitch (10)
The total energy consumed per cycle, Erpterconnect, is a func-
tion of the voltage swing on the lines that switched, V4, total
capacitance switched, Cjine, and the total time to access the
memory, Nygit + 1:

2
Cline Vdd

—_— 11
Nwait +1 ( )

Erine =

D. DC-DC Converter

DC-DC converter losses can account for a significant fraction
of the total energy consumption. Figure 3 from the datasheets
shows the dependence of efficiency on the DC-DC converter
output current. Total current drawn from the DC-DC converter

fency ()

Fig. 3. DC-DC Converter Efficiency
by the system each cycle, Ioy¢, is a sum of the currents drawn
by each system component. A component current, I, is defined
by:

E.

I=——°
¢ ‘/cTcycle

(12)
where E. is the energy consumed by the component during cycle
of length T, at operating voltage V.

Total current drawn from the battery, Ir.: can be calculated
as:
Iout

yltel (13)

Iyos =
Efficiency, npc, can be estimated using linear interpolation from
the data points derived from the output current versus efficiency
plot in the data sheet. From our experience, a table with 20
points derived from the data sheets gives enough information
for accurate linear estimation of values not directly represented
in the table.
Total energy DC-DC converter draws out of the battery each
cycle is:

EDC’bat = Ibat‘/batTcycle (14)

The energy consumed by the DC-DC converter, Epc, is differ-
ence between the energy provided by the battery, Epcper and
the energy consumed from the DC-DC converter by all other
components, Foyt:

Epc = Epcbat — Eout (15)



E. Battery Model

The main battery characteristic is its rated capacity measured
in mWhr. Since total available battery capacity varies with the
discharge rate, manufacturers specify plots in the datasheets
with discharge rate versus battery efficiency similar to the one
shown below.
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Fig. 4. Battery Efficiency

The discharge rate (or discharge current ratio) is given by:

I(LUE

Rr =
Irated

(16)

where I,,teqd, the rated discharge current, is derived from the
battery specification and I,,e is the average current drawn by
the DC-DC converter. As battery cannot respond to instanta-
neous changes in current, a first order time constant 7 is defined
to determine the short-term average current drawn from the
battery [23]. Given 7, and processor cycle time T,yc1., we can
compute Npq¢, the number of cycles over which average DC-DC
current is calculated:

-

Npat = 17
bat Tcycle ( )
then, I,y is computed as:
1 Npat
Tove = — Isystem l 1
N D Doustem(cycle) (18)
cycle=1

where Igystem is the instantaneous current drawn from the bat-
tery. With discharge current ratio, we estimate battery effi-
ciency using battery efficiency plot such as the one shown in
Figure 4. The total energy loss of the battery per cycle, Eqt,
is the product of energy drained from the battery by the system
with the efficiency loss (1 — nBat):

Egat = (1 - nBat)IaveVBatTcycle (19)

Given the battery capacity model described above, battery
estimation is performed as follows. First, the designer charac-
terizes the battery with its rated capacity, the time constant
and the table of points describing the discharge plot similar to
the one shown in Figure 4. During each simulation cycle dis-
charge current ratio is computed from the rated battery current
and average DC-DC current calculated from the last Npqt cy-
cles. Efficiency is calculated using linear interpolation between
the points from the discharge plot. Total energy drawn from the
battery during the cycle is obtained from Equation 19. Lower
efficiency means that less battery energy remains and thus the
battery lifetime is proportionally lower. For example, if battery
efficiency is 60% and its rated capacity is 100mAhr at 1V, then
the battery would be drained in 12 minutes at average DC-DC
current of 300mA . With efficiency of 100% the battery would
last 1 hour.

IV. VALIDATION OF THE SIMULATION METHODOLOGY

We validated the cycle-accurate power simulator by compar-
ing the computed energy consumption with measurements on
the SmartBadge prototype implementation. The SmartBadge
prototype consists of the StrongARM-1100 processor, DC-DC
Converter, FLASH and SRAM on a PCB board. All the com-
ponents except the CPU core are powered through the 3.3V
supply line. CPU core runs on 1.5V supply. DC-DC converter
is powered by the 3.5V supply. DC-DC converter efficiency ta-
ble contains 22 points derived from the plot shown in Figure 3.
Stripline interconnect model is used with 1.6pF/cm capacitance
calculated based on the PCB board characteristics [13]. Table I
shows other system components. Average current consumed by
the processor’s power supply and the total current drawn from
the battery are measured with digital multimeters. Execution
time is measured using the processor timer.

TABLE I
DHRYSTONE TEST CASE SYSTEM DESIGN

Component Cycle T. Active P Idle P Pin Cap. Line L.
Units (ns) (mW) (mW) (pF) (cm)
SA-1100 5-20 400 170 5 /A

FLASH (1MB) 80 74 0.5 10 2

SRAM (1MB) 90 55 0.01 8 3

Industry standard Dhrystone benchmark is used as a vehicle
for methodology verification. Measurements and simulations
have been done for ten different operating frequencies of SA-
1100 and SA-110 processors. Dhrystone test case is run 10 mil-
lion times, 445 instructions per loop. Simulations ran on HP
Vectra PC with Pentium IT MMX 300 MHz processor and 128
MB of memory. Hardware ran 450 times faster than the sim-
ulations without the energy models. Simulations with energy
models were slightly slower (about 7%). Figure 5 show aver-
age processor core and battery currents. Average simulation
current is obtained by dividing the total energy consumed by
the processor core or the battery with their respective supply
voltages and the total execution time.

Simulation results are within 5% of the hardware measure-
ments for the same frequency of operation. The methodology
presented in this paper for cycle-accurate energy consumption
simulation is very accurate and thus can be used for architecture
design exploration in embedded system designs. An example of
such exploration is presented next.
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V. EMBEDDED MPEG DECODER SYSTEM DESIGN
EXPLORATION

The primary motivation for the development of cycle-accurate
energy consumption simulation methodology is to provide an
easy way for embedded system designers to evaluate multi-
ple hardware and software architectures with respect to per-
formance and energy consumption constraints. In this section
we will present an application of the simulation methodology
to embedded MPEG video decoder system design exploration.
The MPEG decoder design consists of the processor, the off-chip
memory, the DC-DC converter, output to the LCD display, and
the interface to the source of the MPEG stream. The input and
output portions of the MPEG decoder design will not be consid-
ered at this point. We focus on selection of memory hierarchy
that is most energy efficient.

TABLE II
MEMORY ARCHITECTURES FOR MPEG DESIGN

Name First Burst Actjve Idle Line Pin Manuf .
Acc. Acc. Pur Pur Cap. Cap.
(ns) (ns) (mW) (mW) (pF) (pF)
FLASH 80 N/a 75 0.5 4.8 10 Intel
BFLASH 80 40 600 2.5 4.8 10 TI
SRAM 90 N/A 185 0.1 8 8 Toshiba
BSRAM 90 45 365 1.7 8 8 Micron
BSDRAM 30 15 430 10 8 8 Micron
L2 cache 20 10 1985 330 3.2 5 Motorola

The characteristics of memory components considered are
shown in Table II. Two different instruction memories were
evaluated — low-power FLASH and power-hungry burst FLASH.
We looked at three different data memories — low-power SRAM,
faster burst SRAM and very power-hungry burst SDRAM. Both
instruction and data memories are 1MB in size. We consid-
ered using L2 cache in addition to L1 cache. Unified L2 cache
is 256Kb, 4-way set associative. The hardware configurations
simulated are shown in Table III. The MPEG video decode
sequence we used has 12 frames running at 30 frames/second,
with two I, three P and seven B-frames. We found that the
results we obtained with a shorter video sequence matched well
the results obtained with the longer trace.

TABLE III
HARDWARE CONFIGURATIONS

Name Instruction Data L2 cache

‘ Memory Memory Present
Original FLASH SRAM no
L2 cache FLASH BSDRAM yes
Burst SRAM BFLASH BSRAM no
Burst SDRAM BFLASH BSDRAM no

Figure 6 shows the amount of time each system component is
active during the MPEG decode and the amount of energy con-
sumed. The original configuration is limited by the bandwidth
of data memory. L2 cache is very fast, but also consumes too
much energy. Burst SDRAM design fully solves the memory
bandwidth problem with least energy consumption. Instruction
memory constitutes a very small portion of the total energy due
to the relatively large L1 cache in comparison to the MPEG code
size. The DC-DC converter consumes a significant amount of
total energy and thus should be considered in system simula-
tions. We conclude from this example that using faster and
more power-hungry memory can be energy efficient.

14 4 L2 Cache

[]Data Memory [1DC-DC Converter

12 4 W Interconnect & Pin
W12 Cache

[ Data Memory

W Instruction Memory
[ Processor

W Instruction Memory 025
[Processor

020
08 1

06 4

Execution Time (s)
Energy (mwhr)

04

024

0 T T 1
L2 Cache Burst SRAM  Burst SDRAM

Original L2 Cache Burst SRAM  Burst SDRAM

Original

Fig. 6.

Performance and energy consumption for hardware architectures

The analysis of peak energy consumption and the fine tun-
ing of the architectures can be done by studying the energy
consumption and the memory access patterns over a period of
time. Figure 7 shows the energy consumption over time of the
processor with burst FLASH and SRAM. Peak energy consump-
tion can reach twice the average consumption, so the thermal
characteristics of the hardware design, the DC-DC converter
and the battery have to be specified accordingly.
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Fig. 7. Cycle-accurate Energy Plot

For best battery utilization, it is important to match the
current consumption of the embedded system to the discharge
characteristic of the battery. On the other hand, the more ca-
pacity battery has, the heavier and more expensive it will be.
Figure 8 shows that the instantaneous battery efficiency varies
greatly over time with MPEG decode running on the hardware
described above.
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Fig. 8. Battery Efficiency for MPEG Decoder

Lower capacity batteries have larger efficiency losses. Fig-
ure 9 shows that the total decrease in battery lifetime when



continually running MPEG algorithm on a battery with lower
rated discharge current can be as high as 16%. The battery’s
time constant was set to 7 = 1ms.
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Fig. 9. Percent Decrease in Battery Lifetime for MPEG Decoder

The design exploration example presented in this section illus-
trates how the methodology for cycle-accurate energy consump-
tion simulation can be used to select and fine-tune hardware
configuration that gives the best trade-off between performance
and energy consumption.

The main limitation of cycle-accurate energy simulator is that
the impact of code optimizations is not easily evaluated. For
example, in order to evaluate energy efficiency of two different
implementations of a particular portion of software, the designer
would need to obtain cycle-by-cycle plots and then manually
relate cycles to the software portion of interest. The profiling
methodology presented next addresses this limitation.

VI. PROFILING OF SOFTWARE ENERGY CONSUMPTION

Source Code Software Profile
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Fig. 10. Profiler Architecture

The profiler architecture is shown in Figure 10. Shaded por-
tion represents the extension we made to the cycle-accurate en-
ergy simulator to enable code profiling. Profiling for energy
and performance enables designers to identify those portions of
their source code that need to be further optimized in order
to either decrease energy consumption, increase performance or
both. Our profiler enables designers to explore multiple different
hardware and software architectures, as well as to do statisti-
cal analysis based on the input samples. In this way the design
can be optimized for both energy consumption and performance
based on the expected input data set.

The profiler operates as follows. Source code is compiled using
a compiler for a target processor (e.g. application or operating
system code). The output of the compiler is the executable that

the cycle-accurate simulator executes (represented in this figure
as assembly code that is input into the simulator) and a map of
locations of each procedure in the executable that a profiler uses
to gather statistics (the map is correspondence of assembly code
blocks to procedures in 'C’ source code). In order to increase
the simulation speed, a user-defined profiling interval is set, so
that the profiler gathers statistics only at predetermined time
increments. Usually an interval of 1us is sufficient. Note that
longer intervals will give slightly faster execution time, with a
loss of accuracy. Very short intervals (on the other of a few
cycles) have larger calculation overhead. For example, energy
consumption calculation gives approximately 10% overhead to
standard cycle-accurate performance simulation. Profiling with
an interval of 1us gives negligible overhead over energy simula-
tion (less then 1%), with still accurate results.

During each cycle of operation, the cycle-accurate energy con-
sumption simulator calculates the current total execution time
and energy consumption of all system components as shown in
Equation 1. The profiler works concurrently with the cycle-
accurate simulator. It periodically samples the simulation re-
sults (using sample interval specified by the user) and maps the
energy and performance to the function executed using infor-
mation gathered at the compile time. Once the simulation is
complete, the results of profiling can be printed out by the total
energy or time spent in each function.

TABLE IV
SAMPLE ENERGY PROFILING

Name Cumulative Self
‘ (mWhr) (mWhr) ‘
main 3.20E-01 2.52E-02
III_hybrid 6.71E-02
SubBandSynthesis 3.72E-02
III_stereo 2.75E-02
III_reorder 2.02E-02
III_antialias 1.45E-02
III_dequantize_sample 1.40E-02
III_hufman_decode 3.74E-03
III_get_scale_factor 1.28E-04
decode.-info 3.20E-05
III_hybrid 6.71E-02 6.36E-03
inv_mdctL 6.07E-02
SubBandSynthesis 3.72E-02 1.95E-02
chendct32_scaled 1.77E-02
III_stereo 2.75E-02 2.75E-02
III_reorder 2.02E-02 2.02E-02
III_antialias 1.45E-02 1.45E-02
III_dequantize_sample 1.40E-02 1.40E-02
III_hufman_decode 3.74E-03 1.53E-03
huffman_decoder 2.17E-03
initialize_huffman 1.03E-05
hsstell 3.20E-05

The main advantage of the profiler is that it allows designers
to obtain energy consumption breakdown by procedures in their
source code after running only one simulation. This information
is of critical importance when designing an embedded system, as
it enables designers to quickly identify and address the areas in
the source code that will provide largest overall energy savings.
A good example of profiler usage is shown in Table IV. The ta-
ble shows a portion of energy profile for MP3 audio decode. The
first column gives the name of the top procedure, followed by its
children. The next column gives the total energy spent for that
procedure. For example, the total energy spent running the pro-
gram (main) is 0.32mWhr. The final column gives the amount
of energy spent only in that particular procedure. For exam-
ple, under main it is clear that III_hybrid and its descendants



spend the most energy, 0.0671mW hr. Looking at the entry for
III_hybrid, it is easy to see that the largest portion of energy
is consumed by its child, inv_mdctL. Therefore, the procedures
to focus optimization on are inv_mdctL and SubBandSynthesis.
Although in this example we showed source code profile of to-
tal battery energy consumption, the profiler can report energy
consumption for any system component, such as SRAM or the
interconnect.

The profiler allows for fast and accurate evaluation of software
and hardware architectures. Most importantly, it gives good
guidance to the designer during the design process without re-
quiring manual intervention. In addition, the profiler accounts
for all embedded system components, not just the processor and
the L1 cache as most general-purpose profilers do. In the next
section we present a real design example that uses the profiler
to guide the implementation of the source code optimizations
described earlier for the MP3 audio decoder running on the
SmartBadge.

VII. OpTiMIZING MP3 AUDIO DECODER

The block diagram of the MPEG Layer IIT audio decoding
algorithm (MP3) is shown in Figure 11. It consists of three
blocks: frame unpacking, reconstruction, and inverse mapping.
The first step in decoding is synchronizing the incoming bit-
stream and the decoder. Huffman decoding of the subband co-
efficients is performed before requantization. Stereo processing,
if applicable, occurs before the inverse mapping which consists
an inverse modified cosine transform (IMDCT) followed by a
polyphase synthesis filterbank. We obtained the original MP3
audio decoder software from the International Organization for
Standardization [28]. Our design goal was to obtain real-time
performance with low energy consumption while keeping in full
compliance with the MPEG standard.

PCM audio
samples

Encoded
Bitstream Frame

Unpacking

Inverse
Mapping

. Reconstruction q

Fig. 11. MP3 Audio Decoder Architecture

Given the limited compiler support available [16], our ap-
proach to code optimization is based on manual code re-writing
and optimization guided by our profiler. Code transformation
are applied in layers, starting from a high level of abstraction
and moving down to very detailed and architecture-specific op-
timization. In the next three subsections, we will describe in
detail the three optimization layers, moving from high to low
abstraction. The results of optimizations applied to the MP3
decoder will be presented in the last subsection. Note that all
the optimizations presented in the following subsections were
performed manually.

A. Algorithmic optimization

The top layer in the optimization hierarchy targets algo-
rithms. The original specification is first profiled to identify
all computational kernels, i.e., the procedures where most time
and power are spent. Each computational kernel is then ana-
lyzed from a functional viewpoint. Then, the alternative algo-
rithms for implementing the same functionality are considered
and compared with the original one. At this level of abstraction,
we consider only high-level estimators of algorithmic efficiency
(such as number of basic operations).

Our approach to algorithmic optimization in MP3 decoding
has been conservative. First, we focused on just one compu-
tational kernel where a large fraction of run time (and power)

was spent, namely the subband synthesis. Second, we did not
try to develop new original algorithms but we used previously
published algorithmic enhancements [29], [30] that are still fully
compliant to the MPEG standard. The new algorithm incorpo-
rates an integer implementation of the scaled Chen discrete co-
sine transform (DCT) instead of a generic DCT in the polyphase
synthesis filterbank. The use of a scaled DCT reduces the DCT
multiply count by 28%.

B. Data optimization

At a lower level of abstraction than the algorithmic level, we
optimize code by changing the representation of the data ma-
nipulated by the algorithms. The main objective is to match
the characteristics of the target architecture with the processed
data. In our case, the executable specification of the MPEG
decoder performed most computations using doubles, while the
processor SA-1100 has no hardware floating point support. As
a result, a direct implementation of the decoding algorithm,
even after algorithmic optimization, was unacceptably slow and
power-consuming. Trying to reduce the precision of floating
point computation, such as discussed in [31], would have helped
only marginally as the processor would have to emulate in soft-
ware all the floating point operations.

To overcome this problem, we developed a fixed-precision li-
brary and we implemented all computational kernels of the al-
gorithm using fixed precision numbers. The number of decimal
digits can be set at compile time. The ARM architecture is de-
signed to support computation with 32-bits integers with maxi-
mum efficiency. Hence, little can be gained by reducing data size
below 32 bits. On the other hand, when multiplying two 32-bit
numbers, the result is a 64-bit number and directly truncating
the result of a multiplication to 32 digits frequently leads to in-
correct results because of overflow. To increase robustness, 64-
bit numbers have been used for fixed-point computation. This
data type is supported by the ARM compiler through the defi-
nition of a long long integer type. Computing with long long
integers is less efficient than using 32-bit integers, but results
are accurate and the risk of overflow is minimized.

Data optimization produced significant energy savings and
speedups for almost all computational kernels of MP3 without
any perceivable degradation in quality. The fixed-point library
developed for this purpose contains macros for conversion from
fixed-point to floating point, accuracy adjustment, elementary
function computation.

C. Instruction flow optimization

Moving further down in abstraction level, the third layer of
optimizations targets low-level instruction flow. After exten-
sive profiling, the most critical loops are identified and carefully
analyzed. Source code is then re-written to make computation
more efficient. Well-known techniques such as loop merging, un-
rolling, software pipelining, loop invariant extraction, etc. [36],
[35] have been applied. In the innermost loops, code can be
written directly as inline assembly, to better exploit specialized
instructions.

Instruction flow optimizations have been extensively applied
in the MP3 decoder, obtaining significant speedup. We do not
describe these optimizations in detail because they are common
knowledge in the optimizing compilers literature [36], [35]. How-
ever, in our case most optimizations were performed manually
due to lack of support by the ARM compiler.

A simple example of this class of transformation is the use
of the multiply-accumulate instruction (MLAL) available in the
ARM SA-1100 core. The inner loops of subband synthesis and



inverse modified cosine transform (the two key computational
kernels of MP3 decoder), contain matrix multiplications which
can be implemented efficiently with multiply-accumulate. In
this case, we forced the ARM compiler to use the MLAL instruc-
tion by inlining it in assembly.

D. Results of MP3 audio decode optimization

Table V shows the top three functions in energy consumption
for each code revision we worked on. The original code has a
very large overhead due to floating point emulation - about 80%
of energy consumption. The next largest issue is the redesign of
SubBandSynthesis function that implements the polyphase syn-
thesis filterbank. The details of each optimization type, namely
algorithmic, data and instruction-level optimizations, have been
presented above.

TABLE V
PROFILING FOR MP3 IMPLEMENTATIONS

increase. Although the energy savings of algorithmic versus
data and instruction-level optimizations as compared to origi-
nal code are comparable, the performance improvement of data
and instruction-level optimizations is significant. Note that the
increase in energy consumption and the decrease in performance
of Flash is due to the increase in code size with the algorith-
mic change in SubBandSynthesis procedure. The total improve-
ment in system performance and energy consumption more than
makes up for the degradation of Flash performance and energy
consumption. Combined optimizations give real-time perfor-
mance for MP3 audio decode which is a primary constraint for
this project. In addition, lower energy consumption enables
longer battery life. Note that faster implementation that is also
more energy efficient might imply higher power consumption,
which can be an issue for thermal design of the device. In the
case presented in this paper, it was critical to get real-time per-
formance with longer battery lifetime. The average and peak
power consumption constraints are met with our final design.

TABLE VII

MP3 Code Rev. | 1st [ 2nd [ 3rd |
Original Floating Pt. SubBandSynthesis III_stereo
code 80.31% 10.31% 1.43)
Algorithmic Floating Pt. III_stereo III_reorder
Opts. 62.73Y, 6.12Y, 5.62}%
Data & SubBandSynthesis inv_mdctL III_stereo
Instruction 34.32), 18.22Y, 7.32),
Combined inv.mdctL III_stereo main

Opts. 18.98% 8.61% 7.87h

PERFORMANCE FOR MP3 IMPLEMENTATIONS

We will use the SubBandSynthesis function redesign as a ve-
hicle to illustrate the use of our profiler. In the initial stage,
we transferred all critical operations to fixed-point from float-
ing point. The transfer resolved the issue with floating-point
operations, but at the same time increased SubBandSynthesis
fraction of total energy six times. Next we introduced a series of
instruction-level optimizations that resulted in 30% decrease of
SubBandSynthesis fraction of total energy, to 34.32% as shown
in the Table V. In parallel we had decided to try the algorithmic
changes on the current code.

Profiling results in Table V show that the algorithmic opti-
mizations considerably reduced the energy consumption of Sub-
BandSynthesis function - it does not appear in the top three
functions, and in fact it is only 3.2% of the total energy con-
sumption. The final step is to combine the algorithmic changes
with the data and instruction-level changes, resulting in de-
crease of SubBandSynthesis fraction of energy consumption to
6% of total.

TABLE VI
ENERGY FOR MP3 IMPLEMENTATIONS

MP3 Code Battery CPU Flash RAM DC-DC Lines
‘ Revision (mWhr) (mWhr) ‘ (mWhr) ‘ (mWhr) ‘ (mWhr) ‘ (mWhr) ‘

Original 0.446 0.089 0.005 0.178 0.045 0.129
code 0% 0% 0% 0% 0% 0%

Algorithmic 0.107 0.020 0.007 0.040 0.011 0.029
Opts. 76% 7% -44, 77 767 77h

Data & 0.130 0.025 0.004 0.051 0.013 0.037
Instruction 1% 1% 27, 71 71 1%

Combined 0.105 0.019 0.007 0.040 0.010 0.028
Opts. TTh 78% -41%, 78/ 77 78%

System and component energy consumptions are shown in
Table VI for different revisions of source code optimization.
Positive percentages show energy decrease with respect to the
original code. Table VII shows the same results, but for perfor-
mance measurements. Positive percentages show performance

MP3 Code System Flash RAM
‘ Revision ‘ (s) (s) (s) ‘
Original 68.490 0.396 6.309
code 0% 0% 0%
Algorithmic 34.562 0.746 2.776
Opts. 50% -8, 561
Data & 9.185 0.381 4.186
Instruction 87 4 34,
Combined 5.193 0.718 2.093
Opts. 92/, -81% 67/

The final MP3 audio decoder compliance to the MPEG stan-
dard has been tested as a function of precision for fixed-point
computation. We used the compliance test provided by the
MPEG standard [32], [33]. The range of RMS error between
the samples defines the compliance level. Table VIII shows that
results. Clearly, the larger number of precision bits results in
better compliance. In our final MP3 audio decoder we used 27
bits precision.

TABLE VIIT
FIXED-POINT PRECISION AND COMPLIANCE

Precision Compliance
# bits
15 None
20 Partial
27 Full

Using our design tools to guide software optimization process
we have been able to increase performance by 92% while de-
creasing energy consumption by 77%, with full compliance to
the MP3 audio decode standard.

VIII. CONCLUSIONS

We developed a methodology for cycle-accurate simulation
of performance and energy consumption in embedded sys-
tems. Accuracy, modularity and ease of integration with the
instruction-level simulators widely used in industry make this
methodology very applicable to the embedded system hardware
and software design exploration. Simulation is found to be
within 5% of the hardware measurements for Dhrystone bench-
mark. We presented MPEG video decoder embedded system
design exploration as an example of how our methodology can



be used in practice to aid in the selection of the best hardware
configuration.

We have also developed a tool for profiling energy consump-
tion of software in embedded systems. Profiling results enabled
us to quickly and easily target the redesign the MP3 audio de-
coder software. Our final MP3 audio decoder is fully compliant
with the MPEG standard and runs in real time with low en-
ergy consumption. Using our design tools we have been able to
increase performance by 92% while decreasing energy consump-
tion by 77%.
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