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Abstract

Energy consumption of electronic devices has become a serious concern in recent years. Power management (PM) algorithms aim at

reducing energy consumption at the system-level by selectively placing components into low-power states. Formerly, two classes of heuristic

algorithms have been proposed for power management: timeout and predictive. Later, a category of algorithms based on stochastic control was

proposed for power management. These algorithms guarantee optimal results as long as the system that is power managed can be modeled

well with exponential distributions. We show that there is a large mismatch between measurements and simulation results if the exponential

distribution is used to model all user request arrivals. We develop two new approaches that better model system behavior for general user request

distributions.

Our approaches are event driven and give optimal results verified by measurements. The first approach we present is based on renewal

theory. This model assumes that the decision to transition to low power state can be made in only one state. Another method we developed

is based on the Time-Indexed Semi-Markov Decision Process model (TISMDP). This model has wider applicability because it assumes that

a decision to transition into a lower-power state can be made upon each event occurrence from any number of states. This model allows for

transitions into low power states from any state, but it is also more complex than our other approach. It is important to note that the results

obtained by renewal model are guaranteed to match results obtained by TISMDP model, as both approaches give globally optimal solutions.

We implemented our power management algorithms on two different classes of devices: two different hard disks and client-server WLAN

systems such as the SmartBadge [19] or a laptop. The measurement results show power savings ranging from a factor of 1 � 7 up to 5 � 0 with

insignificant variation in performance.

I. INTRODUCTION

Energy consumption has become one of the primary concerns in electronic design due to the recent popularity

of portable devices and environmental concerns related to desktops and servers. The battery capacity has improved

very slowly (a factor of 2 to 4 over the last 30 years), while the computational demands have drastically increased

over the same time frame. Better low-power circuit design techniques have helped to increase battery lifetime [1],

[2], [3]. On the other hand, managing power dissipation at higher levels can considerably reduce energy consump-

tion, and thus increase battery lifetime [4].

System-level energy-conscious design is an effective way to reduce energy consumption. System-level dynamic

power management [5] decreases the energy consumption by selectively placing idle components into lower power

states. System resources can be modeled using state-based abstraction where each state trades off performance for

power [6]. For example, a system may have an active state, an idle state, and a sleep state that has lower power

consumption, but also takes some time to transition to the active state. The transitions between states are controlled

by commands issued by a power manager (PM) that observes the workload of the system and decides when and

how to force power state transitions. The power manager makes state transition decisions according to the power

management policy. The choice of the policy that minimizes power under performance constraints (or maximizes

performance under power constraint) is a constrained optimization problem.

The most common power management policy at the system level is a timeout policy implemented in most oper-

ating systems. The drawback of this policy is that it wastes power while waiting for the timeout to expire [7], [8].

Predictive policies developed for interactive terminals [9], [10] force the transition to a low power state as soon as a

component becomes idle if the predictor estimates that the idle period will last long enough. An incorrect estimate

can cause both performance and energy penalties. Both timeout and predictive policies are heuristic in nature, and
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thus do not guarantee optimal results.

In contrast, approaches based on stochastic models can guarantee optimal results. Stochastic models use distri-

butions to describe the times between arrivals of user requests (interarrival times), the length of time it takes for a

device to service a user’s request, and the time it takes for the device to transition between its power states. The

system model for stochastic optimization can be described either with just memoryless distributions (exponential

or geometric) [11], [12], [13], [14] or with general distributions [15], [16], [17], [18]. Power management poli-

cies can also be classified into two categories by the manner in which decisions are made: discrete time (or clock

based) [11], [12] and event driven [13], [14], [15], [16], [17], [18]. In addition, policies can be stationary (the same

policy applies at any point in time) or non-stationary (the policy changes over time). All stochastic approaches

except for the discrete adaptive approach presented in [12] are stationary. The optimality of stochastic approaches

depends on the accuracy of the system model and the algorithm used to compute the solution. In both discrete and

event-driven approaches optimality of the algorithm can be guaranteed since the underlying theoretical model is

based on Markov chains. Approaches based on the discrete time setting require policy evaluation even when in

low-power state [11], [12], thus wasting energy. On the other hand, event-driven models based on exponential dis-

tribution [13], [14] show little or no power savings when implemented in real systems since the exponential model

does not describe well the request interarrival times of users [15], [16], [17], [18].

In this paper, we introduce two new models for power management at the system level that enable modeling

system transitions with general distributions, but are still event driven and guarantee optimal results. In order to

verify our models, we implemented our power management algorithms on two different classes of devices: two

different hard disks and client-server WLAN systems such as the SmartBadge [19] or a laptop. For each of these

devices, we collected a set of traces that model typical user behavior well. We found the interarrival times between

user requests are best modeled with a non-exponential distribution (a Pareto distribution shows the best fit, although

our model applies to any distribution or direct data). These results are consistent with the observations on network

traffic interarrival times presented in [20]. In addition, we measured the distributions of transition times between

active, idle and low power states for each of the systems and found non-exponential transition times into or out of a

low power state. Traditional Markov chain models presented in previous work do not apply to these devices since

user request arrivals and the transition times of a device are best modeled with non-exponential distributions. As a

result, we formulated the policy optimization problem using two different stochastic approaches.

The first approach is based on renewal theory [21], [22]. It is more concise, but also is limited to systems that

have only one decision state. The second approach is based on Time-Indexed Semi-Markov Decision Process model

(TISMDP). This model is more general but also more complex. In both cases, the policy optimization problem can

be solved exactly and in polynomial time by solving a linear program. Clearly, since both approaches guarantee

optimal solutions, they will give the same solution to a given optimization problem. Note that both approaches can

handle general user request interarrival distributions, even though in the particular examples presented in this work

we use the Pareto distribution since it showed a good fit to the data collected experimentally. The policy decisions

are made only upon request arrival or upon finishing serving a request, instead of at every time increment as in
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discrete-time model. Since policy decisions are made in event-driven manner, more power is saved by not forcing

policy re-evaluations as in discrete-time models.

We obtain globally optimal results for policy optimization using our models and in addition we present simulation

and, more importantly, real measurement results. Our results show that the reduction in power can be as large as

2 � 4 times with a small performance penalty when power managing the laptop hard disk and 1 � 7 times for the

desktop hard disk. This power reduction, which is compared against the Windows OS default timeout policy, is

very significant and shows the overall benefits of our approach. Our algorithms perform better than any other

power management algorithms tested in [23]. The measurements of optimal policy implemented on a laptop for

the WLAN card show that the reduction in power can be as large as a factor of 5 with a small performance penalty.

Finally, power management results on the SmartBadge show savings of as much as 70% in power consumption.

The remainder of the paper is organized as follows. Section III describes the stochastic models of the system

components based on the experimental data collected. We develop the model for power management based on

renewal theory in Section IV. Next, we present the Time-Indexed Semi-Markov Decision Process model for the

dynamic power management policy optimization problem in Section V. We show simulation results for the Smart-

Badge, measured results for power managing WLAN card on a laptop and both simulated and measured results for

power managing a hard disk on a laptop and a desktop running Windows OS in Section VI. Finally, we summarize

our findings and outline future directions of research in Section VII.

II. RELATED WORK

The fundamental premise for the applicability of power management schemes is that systems, or system compo-

nents, experience non-uniform workloads during normal operation time. Non-uniform workloads are common in

communication networks and in almost any interactive system. In the recent past, several researchers have realized

the importance of power management for large classes of applications. Chip-level power management features have

been implemented in mainstream commercial microprocessors [24], [25], [26], [27]. Techniques for the automatic

synthesis of chip-level power management logic are surveyed in [5].

Predictive policies for hard disks [28], [29], [30], [31], [32] and for interactive terminals [9], [10], [33] force the

transition to a low power state as soon as a component becomes idle if the predictor estimates that the idle period

will last long enough. An incorrect estimate can cause both performance and energy penalties. The distribution

of idle and busy periods for an interactive terminal is represented as a time series in [9], and approximated with a

least-squares regression model. The regression model is used for predicting the duration of future idle periods. A

simplified power management policy predicts the duration of an idle period based on the duration of the last activity

period. The authors of [9] claim that the simple policy performs almost as well as the complex regression model,

and it is much easier to implement. In [10], an improvement over the prediction algorithm of [9] is presented, where

idleness prediction is based on a weighted sum of the duration of past idle periods, with geometrically decaying

weights. The policy is augmented by a technique that reduces the likelihood of multiple mispredictions. All these

policies are formulated heuristically, then tested with simulations or measurements to assess their effectiveness.
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Another good example of heuristic power management policy is defined in the new IEEE 802.11 standard for

wireless LAN at medium access control (MAC) and physical layers [34]. The standard requires that a central access

point (AP) send out a beacon every 100ms followed by a traffic indication map (TIM). Each card that desires to

communicate has to actively listen for the beacon in order to synchronize the clock with the AP, and for the TIM to

find out if any data is arriving for it. If it does not need to transmit or receive, the card can then go to the doze state

until the next beacon. The IEEE standard does not address the need for power management at the system level. If

the card is turned off when it is not being used, much larger power savings can be observed.

Stochastic models have also been introduced to obtain optimal power management algorithms. The optimality

is guaranteed only under a set of assumptions that may or may not hold in real cases. Benini et. al. [11] formu-

lated a probabilistic system model based on discrete-time Markov decision processes (DTMDP). They rigorously

formulate the policy optimization problem and showed that it can be solved exactly and in polynomial time in the

size of the system model. The DTMDP approach requires that all state transitions follow stationary geometric

distributions, which is not true in many practical cases. Non-stationary user request rates can be treated using an

adaptive policy interpolation procedure presented in [12]. A limitation of both stationary and adaptive DTMDP

policies is that decision evaluation is repeated periodically, even when the system is idle, thus wasting power. For

example, for a 10 W processor, the DTMDP policy with evaluation period of 1s would waste as much as 1800 J

of energy from the battery during a 30min break. The advantage of the discrete time approach is that decisions

are re-evaluated periodically so the decision can be reconsidered thus adapting better to arrivals that are not truly

geometrically distributed.

An alternative to the DTMDP model is a continuous-time Markov decision process (CTMDP) model [13], [14].

In a CTMDP, the power manager (PM) issues commands upon event occurrences instead of at discrete time settings.

As a result, more energy can be saved since there is no need to continually re-evaluate the policy in the low-

power state. Results are guaranteed optimal assuming that the exponential distribution describes well the system

behavior. Unfortunately, in many practical cases the transition times may be distributed according to a more general

distribution. As a result, in real implementation the results are far from optimal [16], [17], [18]. Work presented

in [14] uses series and parallel combinations of exponential distributions to approximate general distribution of

transition times. Unfortunately, this approach is very complex and also gives a very poor approximation for the

bursty behavior observed in real systems [20], [16], [17], [18]. In fact, the authors present only simulation results

exclusively based on the exponential distribution.

In this work we present two new models for power management at the system level that accurately model system

behavior, are event driven, and guarantee optimal results. In addition, we not only simulate, but also implement our

power management policies on real systems, thus allowing us to get measurements of real power consumption. In

the next section we will develop our system model based on actual measurement results using realistic workloads.
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III. SYSTEM MODEL

In this paper we focus on the systems which can be modeled with three components: the user, device and the

queue as shown in Figure 1. While the methods presented in this paper are general, the optimization of energy

consumption under performance constraints (or vice versa) is applied to and measured on two different classes of

devices: two hard disks and client-server wireless local area network (WLAN) systems such as the SmartBadge [19]

or a laptop [35]. The SmartBadge can be used as a corporate identity card, attached (or built in) to devices such

as personal digital assistants (PDA) and mobile telephones, or incorporated in computing systems. In this work

we use it as a PDA. The WLAN card is used as an internet access on the laptop computer. The hard disks are

both part of Windows machines, one in the desktop and the other in the laptop. The queue models a memory

buffer associated with each device. In all examples, the user is an application that accesses each device by sending

requests via operating system.

User
 Queue


Power Manager


Device


Fig. 1. System Model

Power management aims at reducing energy consumption in systems by selectively placing components into low

power states. Thus, at run time, the power manager (PM) observes user request arrivals, the state of the device’s

buffer, the power state and the activity level of the device. When all user requests have been serviced, the PM can

choose to place the device into a low power state. This choice is made based on a policy. Once the device is in a

low power state, it returns to active state only upon arrival of a new request from a user. Note that a user request

can come directly from a human user, from the operating system, or even from another device.

Each system component is described probabilistically. The user behavior is modeled by a request interarrival

distribution. Similarly, the service time distribution describes the behavior of the device in the active state. The

transition distribution models the time taken by the device to transition between its power states. Finally, the

combination of interarrival time distribution (incoming jobs to the queue) and service time distribution (jobs leaving

the queue) appropriately characterizes well the behavior of the queue. These three categories of distributions

completely characterize the stochastic optimization problem. The details of each system component are described

in the next sections.
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A. User Model

As the user’s stochastic model is defined by the request interarrival time distribution, it is of critical importance

to collect a good set of traces that do a good job of representing typical user behavior. We collected an 11hr

user request trace for the PC hard disks running a Windows operating system with standard software (e.g Excel,

Word, Visual C++). In the case of the SmartBadge, we monitored the accesses to the server during multiple long

sessions. For the WLAN card we used the tcpdump utility [36] to get the user request arrival times for two different

applications (telnet and web browser).
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Fig. 2. User request arrivals in active state for hard disk

The request interarrival times in the active state (the state where one or more requests are in the queue) for all

three devices are exponential in nature. Figure 2 shows the exponential cumulative distribution fitted to measured

results of the hard disk. Similar results have been observed for the other two devices in the active state. Thus, we

can model the user in active state with rate λU and the mean request interarrival time 1
λU

where the probability of

the hard disk or the SmartBadge receiving a user request within time interval t follows the cumulative probability

distribution shown below.

FU
�
t ��� 1 � e � λUt (1)

The exponential distribution does not model well arrivals in the idle state. The model we use needs to accurately

describe the behavior of long idle times as the largest power savings are possible over the long low-power periods.

We first filter out short user request interarrival times in the idle state in order to focus on the longer idle times. The

filter interval is based on the particular device characteristics and not on the pattern of user access to the device.

Filter interval is defined as a fraction of the break-even time of the device. Break-even time is the time the device

has to stay in the low-power state in order to recuperate the cost of transitioning to and from the low-power state.

Transitioning into a low-power state during idle times that are shorter than the break-even time is guaranteed to

waste power. Thus it is desirable to filter out very short idle times. We found that filter intervals from 0.5s to about

2s are most appropriate to use for the hard disk, while for the SmartBadge and the WLAN card filter intervals are

considerably shorter (50-200ms) since these devices respond much faster than the hard disk.
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Fig. 3. Hard disk idle state arrival tail distribution

We use the tail distribution to highlight the probability of longer idle times that are of interest for power manage-

ment. The tail distribution provides the probability that the idle time is greater than t. Figure 3 shows the measured

tail distribution of idle periods fitted with Pareto and exponential distributions for the hard disk and Figure 4 shows

the same measurements for the WLAN card. The Pareto distribution shows a much better fit for the long idle times

as compared to the exponential distribution. The Pareto cumulative distribution is defined in Equation 2. Pareto

parameters are a � 0 � 9 and b � 0 � 65 for the hard disk, a � 0 � 7 and b � 0 � 02 for WLAN web requests and a � 0 � 7
and b � 0 � 06 for WLAN telnet requests. SmartBadge arrivals behave the same way as the WLAN arrivals.

FU
�
t ��� 1 � at � b (2)
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Fig. 4. WLAN idle state arrival tail distribution
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B. Portable Devices

Power managed devices typically have multiple power states. Each device has one active state in which it

services user requests, and one or more low-power states. The power manager can trade off power for performance

by placing the device into low-power states. Each low power state can be characterized by the power consumption

and the performance penalty incurred during the transition to or from that state. Usually higher performance penalty

corresponds to lower power states.

B.1 SmartBadge

The SmartBadge, shown in Figure 5, is an embedded system consisting of a Sharp’s display, WLAN RF link,

StrongARM-1100 processor, Micron’s SDRAM, FLASH, sensors, and modem/audio analog front-end on a PCB

board powered by the batteries through a DC-DC converter. The initial goal in designing the SmartBadge was to

allow a computer or a human user to provide location and environmental information to a location server through

a heterogeneous network. The SmartBadge could be used as a corporate ID card, attached (or built in) to devices

such as PDAs and mobile telephones, or incorporated in computing systems. Both the SmartBadge and the WLAN

card operate as a part of a client-server system. Thus they initiate and end each communication session. The server

just responds to their requests.
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Fig. 5. SmartBadge

The SmartBadge supports three lower power states: idle, standby and off. The idle state is entered immediately

by each component in the system as soon as that particular component is not accessed. The standby and off state

transitions can be controlled by the power manager. The transition from standby or off state into the active state can

be best described using the uniform probability distribution. Components in the SmartBadge, the power states and

the transition times of each component from standby (tsby � and off (to f f ) state into active state, and the transition

times between standby and off states (tso) are shown in Table I. Note that the SmartBadge has two types of data

memory – slower SRAM (1MB, 80ns) from Toshiba and faster DRAM (4MB, 20ns) from Micron that is used only

during MPEG decode. Memory takes longer to transition from the off to the active state as contents of RAM have

to be downloaded from FLASH and initialized. The power consumption of all components in the off state is 0mW .
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TABLE I

SMARTBADGE COMPONENTS

Component Active Idle Standby tsby to f f tso

Pwr (mW) Pwr (mW) Pwr (mW) (ms) (ms) (ms)

Display 1000 1000 100 100 240 110

RF Link 1500 1000 100 40 80 20

SA-1100 400 170 0.1 10 35 10

FLASH 75 5 0.023 0.6 160 150

SRAM 115 17 0.13 5.0 100 90

DRAM 400 10 0.4 4.0 90 75

Total 3.5 W 2.2 W 200 mW 110 ms 705 ms 455 ms

B.2 WLAN card

The wireless card has multiple power states: two active states, transmitting, receiving, and two inactive states,

doze and off. Transmission power is 1.65W, receiving 1.4W, the power consumption in the doze state is 0.045W [35]

and in the off state it is 0W. When the card is awake (not in the off state), every 100ms it synchronizes its clock to

the access point (AP) by listening to the AP beacon. After that, it listens to the TIM map to see if it can receive

or transmit during that interval. Once both receiving and transmission are done, it goes into the doze state until

the next beacon. This portion of the system is fully controlled from the hardware and thus is not accessible to the

power manager that has been implemented at the OS level.

The power manager can control the transitions between the doze and the off states. Once in the off state, the card

waits for the first user request arrival before returning back to the doze state. We measured the transitions between

the doze and the off states using cardmgr utility. The transition from the doze state into the off state takes on average

tave � 62ms with variance of tvar � 31ms. The transition back takes tave � 34ms with tvar � 21ms variance. The

transition between doze and off states are best described using the uniform distribution.

B.3 Hard Disk

The Fujitsu MHF 2043AT hard disk in the Sony Vaio laptop we used in our experiments supports two states in

which the disk is spinning – idle and active with average power consumption of 0 � 95W . When the data is read or

written, the power consumption is 2 � 5W , but since the service rate is very high, the average power is 0 � 95W . Service

times on the hard disk in the active state most closely follow an exponential distribution as shown in Figure 6. We

found similar results for the SmartBadge and the WLAN card. The average service time is defined by 1
λD

where

λD is the average service rate. Equation 3 defines the cumulative probability of the device servicing a user request

within time interval t.

FD
�
t ��� 1 � e � λDt (3)
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Fig. 6. Hard disk service time distribution

The power manager can control the transitions between the idle and the sleep state. The transition from the

sleep to the active state requires spin-up of the hard disk, which is very power intensive: 2 � 1W . While in the sleep

state, the disk consumes only 0 � 13W . Once in the sleep state, the hard disk waits for the first service request

arrival before returning to the active state. The transition between active and sleep states is best described using

the uniform distribution, where t0 and t1 can be defined as tave � ∆t and tave 	 ∆t respectively. The cumulative

probability function for the uniform distribution is shown below.

FD
�
t ���


���� ���
 0 t � t0
t � t0
t1 � t0

t0 � t � t1

1 t � t1

(4)

0


0.1


0.2


0.3


0.4

0.5


0.6


0.7


0.8


0.9


1


1130
 1330
 1530
 1730
 1930
 2130


Transition time (ms)


C
D

F
 p

ro
b

ab
ili

ty



Experimental


Uniform


Exponential


Fig. 7. Hard disk transition from sleep to active state

Figure 7 shows the large error that would be made if the transition to the sleep state were approximated using an

exponential distribution. The transition from the active state into the sleep state takes on average 0 � 67s with variance

of 0 � 1s. The transition back into the active state is much longer, requiring 1 � 6s on average with 0 � 5s variance.
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C. Queue

Portable devices normally have a buffer for storing requests that have not been serviced yet. Since we did not have

access to the detailed information about the real-time size of each queue, we measured the queue size of maximum

10 jobs with an experiment on a hard disk using a typical user trace. Because the service rate in the SmartBadge and

WLAN card is higher, and the request arrival rate is comparable, we assume that the same maximum queue size can

be used. As the requests arriving at the hard disk do not have priority associated with them, and the SmartBadge

requests by definition do not have priority, our queue model contains only the number of jobs waiting for service.

Active and low-power states can be differentiated then by the number of jobs pending for service in the queue.

D. Model Overview

Table II shows the probability distributions used to describe each system component derived from the experimen-

tal results. User request interarrival times with at least one job in the queue are best modeled with the exponential

distribution. On the other hand, we have shown that in all four applications, the Pareto distribution is best used to

model the arrival of the user’s requests when the queue is empty. Note that the queue is empty in either the idle state

or a low power state. The device is in the active state when at least one job is waiting to be serviced. We have also

shown that the service times in active state are best modeled with the exponential distribution. The transitions to

and from low power states are better modeled with a uniform distribution. The combination of these distributions

is used to derive the state of the queue. Thus in the active state two exponential distributions define the number

of jobs in the queue: the interarrival time and the service time distributions. During transitions, the queue state is

defined by the transition distribution and the distribution describing user request arrivals. During transitions and in

the low-power states the first arrival follows the Pareto distribution, but the subsequent arrivals are modeled with

the exponential distribution since for very short interarrival times the exponential distribution is very close to the

Pareto distribution and the experimental results, as can be seen in Figures 3 and 4.

TABLE II

SYSTEM MODEL OVERVIEW

System Component Distribution

Component State

User Queue not empty Exponential

Queue empty Pareto

Device Active Exponential

Transition Uniform

Although in the experimental section of this paper we utilize the fact that non-exponential user and device dis-

tributions can be described with well-known functions (Pareto or uniform), the models we present are general in

nature and thus can give optimal results with both experimental distributions obtained at run time or commonly

used theoretical distributions. We found that in the particular examples we present in this work Pareto and uniform
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distributions enabled us to obtain the optimal policy faster without sacrificing accuracy.

IV. POWER MANAGEMENT BASED ON RENEWAL THEORY

Renewal theory [21], [22] studies stochastic systems whose evolution over time contains a set of renewals or

regeneration times where the process begins statistically anew. Formally, a renewal process specifies that the

random times between system renewals be independently distributed with a common distribution F
�
x � . Thus the

expected time between successive renewals can be defined as:

E � τ ����� ∞

0
xdF

�
x � (5)

Note that the Poisson process is a simple renewal process for which renewal times are distributed with the expo-

nential distribution. In this case, the common distribution between renewals can be defined as F
�
x ��� 1 � e � λx,

and the mean time between renewals (or between exponential arrivals) is defined as E � τ ��� 1 � λ. A process can be

considered to be a renewal process only if there is a state of the process in which the whole system probabilisti-

cally restarts. This, of course, is the case in any system that is completely described by exponential or geometric

distributions, since those distributions are not history dependent (they are memoryless).

In policy optimization for dynamic power management, the complete cycle of transition from the idle state,

through the other states and then back into the idle state can be viewed as one renewal of the system. When using

renewal theory to model the system, the decision regarding transition to a lower power state (e.g. sleep state) is

made by the power manager in the idle state. If the decision is to transition to the lower power state, the system

re-enters the idle state after traversing through a set of states. Otherwise, the system transitions to the active state

on the next job arrival, and then returns to the idle state again once all jobs have been serviced.

The general system model shown in Figure 1 defines the power manager (PM), and three system components:

user, device and the queue. To provide concreteness in our examples, each component is completely specified by

the probability distributions defined in the previous section. With renewal theory, the search for the best policy

for a system modeled using stationary non-exponential distributions can be cast into a stochastic control problem.

System states used in the formulation of the renewal theory model are shown in Figure 8. In the active state, the

queue contains at least one job pending and the request arrivals and service times follow exponential distributions.

Once the queue is emptied, the system transitions to the idle state, which is also a renewal and decision point in this

system. Upon arrival of request, the system always transitions back into the active state. The PM makes a decision

on when the transition to a low-power state from the idle state should occur. As soon as the command to place the

system into the low-power state is given, the system starts a transition between the idle and the low-power states.

The transition state highlights the fact that device takes a finite and random amount of time to transition into the low

power state (governed by a uniform distribution). If during the transition time a request arrives from the user (first

request follows Pareto distribution, subsequent requests are exponential), the device starts the transition to active

state as soon as the transition to off state is completed. If no request arrives during the transition state, the device

stays in a low-power state until the next request arrives (Pareto distribution). Upon request arrival, the transition
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back into the active state starts. Once the transition into the active state is completed, the device services requests,

and then again returns to the idle state where the system probabilistically renews again.

Decision


Arrival


Departure


Arrival


No Arrival


Arrival


Active State

Idle State


Sleep State


Transition to

Active State


Transition to

Sleep State


Fig. 8. System states for renewal theory model

A. Renewal Theory Model

We formulate the power management policy optimization problem based on renewal theory in this section. We

use upper-case bold letters (e.g., M) to denote matrices, lower-case bold letters (e.g., v) to denote vectors, calli-

graphic letters (e.g., S ) to denote sets, upper-case letters (e.g., S) to denote scalar constants and lower-case letters

(e.g., s) to denote scalar variables.

The problem of power management policy optimization is to determine the optimal distribution of the random

variable Γ that specifies when the transition from the idle state to low-power state should occur based on the last

entry into the idle state. We assume that Γ takes on values in � 0 � h � 2h ��������� jh ��������� Nh � , where j is an index, h is a

fraction of the break-even time of the device, and N is the maximum time before the system goes to a low-power

state (usually set to an order of magnitude greater than break-even time). The solution to the policy optimization

problem can be viewed as a table of probabilities (Γ), where each element p
�
j � specifies the probability of transition

from idle to a low-power state indexed by time values jh.

We can formulate an optimization problem to minimize the average performance penalty under a power constraint

(Pconstraint), using the results of the ratio limit theorem for renewal processes [22], as shown in Equation 6. The

average performance penalty is calculated by averaging q
�
j � , the time penalty user incurs due to transition to

low-power state, over, t
�
j � , the expected time until renewal. The power constraint is shown as an equality as

the system will use the maximum available power in order to minimize the performance penalty. The expected

energy (∑ j p
�
j � e � j � ) is calculated using p

�
j � , the probability of issuing command to go to low-power state at time
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jh, and e
�
j � , the expected energy consumption. This expected energy has to equal the expected power constraint

(∑ j p
�
j � t � j � Pconstraint ) calculated using t

�
j � , the expected time until renewal, Pconstraint , the power constraint, and

p
�
j � . The unknown in the optimization problem is p

�
j � , the probability of issuing a command to go to low-power

state at time jh. The full derivation of all the quantities follows.

min
∑ j p

�
j � q � j �

∑ j p
�
j � t � j � (6)

s.t. ∑
j

p
�
j ��� e � j ��� t

�
j � Pconstraint ��� 0

∑
j

p
�
j � � 1

p
�
j �"! 0 # j

A.1 Computation of Renewal Time

Given the state space shown in Figure 8, we can define the expected time until renewal, t
�
j � , as follows. We

define β as the time at which the first job arrives after the queue has been emptied. The first arrival is distributed

using general probability distribution, P
�
jh � . We also define the indicator function, I(jh), that is equal to one if we

are in interval jh and is zero otherwise.

Further, as we showed in Section III, the subsequent user request arrivals follow a Poisson process with rate λU .

Finally, the servicing times of the device also can be described using exponential distribution with parameter λD.

We can now define the expected time until renewal for each time increment spent in the idle state as the sum of

expected time until renewal if arrival comes before the system starts transitioning into low-power state jh (as shown

by the first cycle in Figure 9 and the first half of Equation 7) and if the arrival comes after the transitions has already

started (the second parts of Figure 9 and Equation 7).

E[Length of idle period] +

E[Time service request]


E[Length of idle period]+

E[Time to sleep] +

E[Length of sleep] +

E[Time to active] +

E[Time to service all requests]


I
A


S
S
q

I
A


Fig. 9. Renewal Cycles

t
�
j ��� E � t � j � I � β � jh ��$Γ � jh � 	 E � t � j � I � β � jh �%$Γ � jh � (7)

Each of the two terms in Equation 7 is defined in Equations 8 and 10. Note that Figure 9 shows the components

of each of the two terms. The expected time until renewal for arrival coming before transitioning to low-power
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state at time jh (the left portion of Figure 9) is the expected time until arrival (the first term in Equation 8) and the

time needed to work off the request that just arrived (the second term). Note that the second term can be computed

based on the results from M/M/1 queueing theory due to the fact that the time to work off the request is governed

by the exponential distribution with rate λD, while the arrivals in the active state are described by the exponential

distribution with rate λU . The job departure rate has to be larger than the arrival rate (λD ! λU ), otherwise the queue

would overflow. In all cases we studied, λD is at least order of magnitude larger than λU , leading to:

E � τ jI
�
β � jh �%$Γ � jh ��� j

∑
k & 1

khP
�
β � kh � 	 1

λD � λU
P
�
β � jh � (8)

If the arrival comes after time jh when the system starts the transition to low-power state (the right portion of

Figure 9), then the expected time until renewal is the sum of the time until arrival ( jh), with expected times for

transition to low-power state and back to active states (EU1 � EU2), expected length of the low-power period and the

expected time to work off requests that arrived during the renewal period:

E � τ jI
�
β � jh ��$Γ � jh ��� (9)

P
�
β � jh �

'(((((() jh 	 EU1 	 EU2 	
E � � β � jh 	 EU1 � I � β � jh 	 EU1 �*� 	
E � � jh 	 EU1 � β � I � jh � β � jh 	 EU1 �+� λD

λD � λU
	

1
λD � λU

	 EU2
λD

λD � λU

,.------/
A.2 Computation of Costs

We can define the performance penalty that the user experiences due to transition to low power state (q
�
j � ) and

the expected energy consumption (e
�
j � ) for each state using the same set of equations, just with different values for

constants (c) as shown in Table III. Each state is labeled on the left side, while the expected time spent in that state

multiplied by the constant c is on the right side.

The constants (c) equal the power consumption in a given state for energy consumption computation. For the

performance penalty the constants should be set to zero in low-power state and idle state and to one in all other

states. For example, the constant ci is set to power consumption of the device while in the idle state when calculating

energy consumption (the first equation). Since there is no performance penalty to servicing users requests in the

idle state, the constant ci is set to zero for performance penalty calculation. On the other hand, the transition to the

active state causes performance degradation, thus the constant cta is here set to one. The same constant is set to

power required for the transition to the active state when calculating energy consumption.

The expected times spent in each state outlined in Table III are calculated as follows:0 Idle State: The expected time spent in the idle state is the expected average of the idle time until the first request

arrival (∑ j
k & 0 khP

�
β � kh � ) and the time spent in the idle state when the transition to low power state occurs before

the first arrival ( jhP
�
β ! jh � ).0 Transition To Low Power State: The transition to low power state occurs only if there has been no request

arrival before the transition started (P
�
β ! jh � ). The expected average time of the transition to low power state is
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TABLE III

CALCULATION OF COSTS

State Performance penalty or Energy consumption

Idle ci 1∑ j
k 2 0 khP 3 β 4 kh 576 jhP 3 β 8 jh 5�9

To Low Power cts 1 EU1P 3 β 8 jh 5�9
Low Power cs 1 E 1 β :;3 jh 6 EU1 5�9 I 3 β < jh 6 EU1 5 P 3 β 8 jh 5�9
To Active cta 1 EU2P 3 β 8 jh 5�9
Active ca 1 1

λD = λU
P 3 β > jh 5?6

EU2
λD

λD = λU
P 3 β 8 jh 5?6

1
λD = λU

P 3 β 8 jh 5?6
E 1 3 jh 6 EU1 : β 5 I 3 jh @ β @ jh 6 EU1 5�9 λD

λD = λU
P 3 β 8 jh 5�9

defined by the average of the uniform distribution that describes the transition (EU1).0 Low Power State: Low power state is entered only if no request arrival occured while in the idle state (P
�
β !

jh � ). The device stays in that state until the first request arrives (E � β � � jh 	 EU1 �+� I � β � jh 	 EU1 � ).0 Transition To Active State: The transition to active state occurs only when there is a successful transition to low

power state (P
�
β ! jh � ). The transition length is the expected average of uniform distribution that describes the

transition to active state (EU2).0 Active State: The device works off the request that arrived in the idle state if no transition to low power state

occured ( 1
λD � λU

P
�
β � jh � ). If the trasition to low power state did occur (terms containing P

�
β ! jh � ), then the

system is in the active state for the time it takes to work off all the requests that arrived while transitioning between

idle, low power and active states.
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A.3 Problem Formulation

The optimization problem shown in Equation 6 can be transformed into a linear program (LP) using intermediate

variables y
�
j � � p A j B

∑ j p A j B t A j B and z
�
j �C� 1 � ∑ j p

�
j � t � j � [37].

LP: min ∑
j

q
�
j � y � j � (10)

s.t. ∑
j
� e � j � y � j ��� t

�
j � z � j � PConstraint ��� 0

∑
j

t
�
j � y � j �C� 1

z ! 0

Once the values of intermediate variables y
�
j � and z

�
j � are obtained by solving the LP shown above, the probability

of transition to low-power state from idle state at time jh, p
�
j � , can be computed as follows:

p
�
j ��� y

�
j �

z
�
j � (11)

B. Policy Implementation

The optimal policy obtained by solving the LP given in Equation 10 is a table of probabilities p
�
j � . The policy

can be implemented in two different ways. If the probability distribution defined by p
�
j � is used, then on each

interval jh the policy needs to be re-evaluated until either a request arrives or the system transitions to a low-power

state. This implementation has a high overhead as it requires multiple re-evaluations. An alternative implementation

gives the same results, but it requires only one evaluation upon entry to idle state. In this case a table of cumulative

probabilities P
�
j � is calculated based on the probability distribution described with p

�
j � . Once the system enters

the idle state, a pseudo-random number RND is generated and normalized. The time interval for which the policy

gives the cumulative probability P
�
j � of going to the low-power state greater than RND is the time when the device

will be transitioned into the low-power state. Thus the policy works like a randomized timeout. The device stays

in the idle state until either the transition to the low-power state as given by RND and the policy, or until a request

arrival forces the transition into the active state. Once the device is in the low-power state, it stays there until the

first request arrives, at which point it transitions back into the active state.

Example IV.1 If a sample policy is given in Table IV, and the pseudo-random number RND generated upon entry

to idle state is 0.6, then the power manager will give a command to transition the device to low power state at time

indexed by j � 3. Thus, if the time increment used is 0.1 second, then the device will transition into low power state

once it has been idle for 0.3 seconds. If a user request arrives before 0.3 seconds have expired, then the device

transitions back to the active state.

V. POWER MANAGEMENT BASED ON TIME-INDEXED SEMI-MARKOV DECISION PROCESSES

In this section we present the power management optimization problem formulation based on Time-Indexed

Semi-Markov Decision Processes. This model is more general than the model based on renewal theory as it enables
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TABLE IV

SAMPLE POLICY

Idle Transition

Time Probability

j P(j)

0 0

1 0.1

2 0.4

3 0.9

4 1.0

multiple decision points (see Example V.1). Our goal is to minimize the performance penalty under an energy con-

sumption constraint (or vice versa). We first present the average-cost semi-Markov decision process optimization

problem [38] and then extend it to the time-indexed SMDP for modeling general interarrival times.

Example V.1 The SmartBadge has two states where decisions can be made: idle and standby. The idle state has

higher power consumption, but also a lower performance penalty for returning to the active state, as compared to

the standby state. From the idle state, it is possible to give a command to transition to the standby or the off states.

From standby, only a command to transition to the off state is possible. The optimal policy determines when the

transition between idle, standby and off states should occur.

At each event occurrence, the power manager issues a command (or action) that decides the next state to which the

system should transition. In general, commands given are functions of the state history and the policy. Commands

are modeled by decisions, which can be deterministic or randomized. In the former case, a decision implies issuing

a command. In the later case, a decison gives the probability of issuing a command. The decisions taken by the PM

form a discrete sequence � δ A 1 B � δ A 2 B ���D���*� . The sequence completely describes the PM policy π which is the unknown

of our optimization problem. Among all policies two classes are particularly relevant, as defined next.

Definition V.1 Stationary policies are policies where the same decision δ A i B � δ is taken at every decision point ti,

i � 1 � 2 ���D��� , i.e., π �E� δ � δ �D���D�+� .
For stationary policies, decisions are denoted by δ, that is a function of the system state s. Thus, stationarity means

that the functional dependency of δ on s does not change over time. When s changes, however, δ can change.

Furthermore, notice that even a constant decision does not mean that the same command is issued at every decision

point. For randomized policies, a decision is a probability distribution that assigns a probability to each command.

Thus, the actual command that is issued is obtained by randomly selecting from a set of available commands with

the probabilities specified by δ.

Definition V.2 Markov stationary policies are policies where decisions δ do not depend on the entire history but

only on the state of the system s at the current time.

February 26, 2001 DRAFT



20

Randomized Markov stationary policies can be represented as a S F A decision matrix Pπ. An element ps G a of Pπ

is the probability of issuing command a given that the state of the system is s. Deterministic Markov stationary

policies can still be represented by matrices where only one element for each row has value 1 and all other elements

are zero. The importance of these two classes of policies stems from two facts: first, they are easy to store and

implement, second, we will show that for our system model, optimal policies belong to these classes. In the next

sections, we will first present the average cost semi-Markov model (SMDP), followed by the extension to time-

indexed SMDP.

A. Semi-Markov Average Cost Model

Semi-Markov decision processes (SMDP) generalize Markov decision processes by allowing the decision maker

to choose actions whenever the system state changes, to model the system evolution in continuous time and to allow

the time spent in a particular state to follow an arbitrary probability distribution. Continuous-time Markov decision

processes [15], [13] can be viewed as a special case of Semi-Markov decision processes in which the inter-transition

times are always exponentially distributed. Figure 10 shows a progression of the SMDP through event occurrences,
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Fig. 10. SMDP Progression

called decision epochs. The power manager makes decisions at each event occurrence. The interevent time set is

defined as T ��H ti � s.t. i � 0 � 1 � 2 ���D���I� imax J where each ti is the time between two successive event arrivals and imax

is the index of the maximum time horizon. We denote by si K Si the system state at decision epoch i. Commands

are issued whenever the system state changes. We denote by ai K A an action that is issued at decision epoch i.

When action ai is chosen in system state si, the probability that the next event will occur by time ti is defined by

the cumulative probability distribution F
�
ti $ si � ai � . Also, the probability that the system transitions to state si L 1 at

or before the next decision epoch ti is given by p
�
si L 1 $ ti � si � ai � .

The SMDP model also defines cost metrics. The average cost incurred between two successive decision epochs

(events) is defined in Equation 12 as a sum of the lump sum cost k
�
si � ai � incurred when action ai is chosen in state

si, in addition to the cost in state si L 1 incured at rate c
�
si L 1 � si � ai � after choosing action ai in state si. We define Si L 1
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as the set of all possible states that may follow si.

cost
�
si � ai � u �M� k

�
si � ai � 	 ∞�

0

� F � du $ si � ai � ∑
si N 1 O Si N 1

u�
0

c
�
si L 1 � si � ai � p � si L 1 $ ti � si � ai �+� dt (12)

We can define the total expected cost for policy π until time t as a sum of all lump sum costs kv
�
s � a � up to time t

and the costs incurred at the rate c
�
s � a � while in each state s until time t:

vπ
t
�
s ��� Eπ

s


� 
 � t

0
c
�
s � a � u � du 	 vπ

t = 1

∑
v & vπ

0

kv
�
s � a �QP RS (13)

and then we can define the average expected cost for all s:

gπ � s �C� lim
t T ∞

in f
vπ

t
�
s �

t
(14)

Theorem V.1 Finding the optimal power management policy minimizing Equation 14 is equivalent to solving the

following problem:

h
�
s �M� min

a O A
H cost

�
s � a ��� g

�
s � y � s � a � 	 ∑

j O S

m
�
j $ s � a � h � j � J (15)

where h
�
s � is the so called bias (the difference between long-term average cost and the average cost per period for

a system in steady state [38]), g
�
s � is the average cost, m

�
j $ s � a � , the probability of arriving to state j given that the

action a was taken in state s is defined by:

m
�
j $ s � a ��� ∞�

0

p
�
j $ t � s � a � F � dt $ s � a � (16)

and expected time spent in each state is given by:

y
�
s � a �C� ∞�

0

t ∑
s O S

p
�
j $ t � s � a � F � dt $ s � a � (17)

Proof of Theorem V.1 is given in [38].

The following examples illustrate how the probability, the expected time and energy consumption can be derived.

Example V.2 In the active state with at least one element in the queue, we have two exponential random variables,

one for the user with parameter λU and one for the device with parameter λD. The probability density function of

the jointly exponential user and device processes defines an M/M/1 queue and thus can be described by F
�
dt $ s � a �U�

λe � λtdt, where λ � λU 	 λD. In the same way, the probabilities of transition in M/M/1 queue, p
�
j $ t � s � a � , are defined

as λU � λ for request arrival and λD � λ for request departure.

Using Equation 16 we derive that the probability of transition to the state that has an additional element in

the queue is λU � λ , while the probability of transition to the state with one less element is given by λD � λ. Note

that in this special case p
�
j $ t � s � a �V� m

�
j $ s � a � . The expected time for transition derived using Equation 17 is
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given by 1 � λ, which is again characteristic of M/M/1 queue. Energy consumption is given in Equation 12. For

this specific example, we define the power consumption in active state with Pa and we assume that there is no

fixed energy cost for transition between active states. Then the energy consumption can be computed as follows:

cost
�
s � a ��� ∞W

0
λe � λtdt � tW

0
PaλD � λdu 	 tW

0
PaλU � λdu � which is equal to Pa

λ . Note that this solution is very intuitive, as

we would expect the energy consumption to equal the product between the power consumption and the expected

time spent in the active state.

The second example considers the transition from the sleep state into the active state with one or more elements

in the queue.

Example V.3 The transition from sleep to active state is governed by two distributions. A uniform distribution

describes device transitions: FU
�
dt $ s � a � � dt � � tmaxas � tminas � , where tmaxas and tminas are maximum and minimum

transition times. The request arrival distribution is exponential: FE
�
dt $ s � a � � λU e � λU t dt. The probability of no

arrival during the transition is given by p
�
j $ t � s � a ��� e � λU t .

The probability of transition from the sleep state with a set number of queue elements, into an active state with

the same number of elements in the queue is given by: m
�
j $ s � a ��� tmaxasW

tminas

e = λU tA tmaxas � tminas B dt. The expected transition

time, y
�
s � a � , is given by

�
tmaxas 	 tminas �D� 2, which can be derived with Equation 17. Finally, the energy consumed

during the transition is defined by cost
�
s � a �U� ∞W

0

du
tmaxas � tminas

uW
0

Psadt assuming that there is no fixed energy consumed

during the transition, and that the power consumption for the transition is given by Psa. The energy consumption

can further be simplified to be 2Psa
tmaxas L tminas

. This is again equal to the product of power consumption with the

expected transition time from the sleep state into the active state.

The problem defined in Theorem V.1 can be solved using policy iteration or by formulating and solving a linear

program. There are two main advantages of a linear programming formulation: additional constraints can be added

easily, and the problem can be solved in polynomial time (in S X A). The primal linear program derived from

Equation 15 defined in Theorem V.1 can be expressed as follows:

LPP: min g
�
s � (18)

s.t. g
�
s � y � s � a � 	 h

�
s ��� ∑

j O S

m
�
j $ s � a � h � j �Y! cost

�
s � a �Z# s � a

where s and a are the state and command given in that state, g
�
s � is the average cost, h

�
s � is the bias, y

�
s � a � is the

expected time, cost
�
s � a � is the expected cost (e.g. energy), and p

�
j $ s � a � is the transition probability between the

two states.

Because the constraints of LPP are convex in g
�
s � and the Lagrangian of the cost function is concave, the solution

to the primal linear program is convex. In fact, the constraints form a polyhedron with the objective giving the

minimal point within the polyhedron. Thus, the globally optimal solution can be obtained that is both stationary

and deterministic. The dual linear program shown in Equation 19 is another way to cast the same problem (in this
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case with the addition of a performance constraint). The dual LP shows the formulation for minimizing energy

under performance constraint (opposite problem can be formulated in much the same way).

LPD: min ∑
s O S

∑
a O A

costenergy
�
s � a � f

�
s � a � (19)

s.t. ∑
a O A

f
�
s � a �[� ∑

s \ O S
∑
a O A

m
�
s G $ s � a � f

�
s G � a �M� 0

∑
s O S

∑
a O A

y
�
s � a � f

�
s � a �C� 1

∑
s O S

∑
a O A

costper f
�
s � a � f

�
s � a � � Constraint

The A X S unknowns in the LPD, f
�
s � a � , called state-action frequencies, are the expected number of times that the

system is in state s and command a is issued. It has been shown that the exact and the optimal solution to the SMDP

policy optimization problem belongs to the set of Markovian randomized stationary policies [38]. A Markovian

randomized stationary policy can be compactly represented by associating a value x
�
s � a �]� 1 with each state and

action pair in the SMDP. The probability of issuing command a when the system is in state s, x
�
s � a � , is defined in

Equation 20.

x
�
si � ai �M� f

�
si � ai �

∑ai O A f
�
si � ai � (20)

B. Time-Indexed Semi-Markov Average Cost Model

The average-cost SMDP formulation presented above is based on the assumption that at most one of the under-

lying processes in each state transition is not exponential in nature. On transitions where none of the processes

are exponential, time-indexed Markov chain formulation needs to be used to keep the history information. Without

indexing, the states in the Markov chain would have no information on how much time has passed. As for all

distributions, but the exponential, the history is of critical importance, the state space has to be expanded in order to

include the information about time as discussed in [21]. Time-indexing is done by dividing the time line into a set of

intervals of equal length ∆t. The original state space is expanded by replacing one idle and one low-power state with

a series of time-indexed idle and low-power states as shown in Figure 11. The expansion of idle and low-power

states into time-indexed states is done only to aid in deriving in the optimal policy. A time-indexed SMDP can

contain non-indexed states. Once the policy is obtained, the actual implementation is completely event-driven in

contrast to the policies based on discrete-time Markov decision processes. Thus all decisions are made upon event

occurrences. So, the decision to go to a low-power state is made once, upon entry to the idle state as discussed in

Section IV-B. Other events are user request arrivals or service completions. Note that the technique we present is

general, but in this work we will continue to refer to the examples shown in Section III.

If an arrival occurs while in the idle state, the system transitions automatically to the active state. When no arrival

occurs during the time spent in a given idle state, the power manager can choose to either stay awake, in which case

the system enters the next idle state or to transition into the low-power state. When the transition to the low-power

state occurs from an idle state, the system can arrive to the low-power state with the queue empty or with jobs
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Fig. 11. Time-indexed SMDP states

waiting in the queue. The low-power state with queue empty is indexed by the time from first entry into the idle

state from the active state, much in the same way idle states are indexed, thus allowing accurate modeling of the first

arrival. The LP formulation for average-cost SMDP still holds, but the cost, the probability and the expected time

functions have to be redefined for time-indexed states in SMDP. Namely, for the time-indexed states, Equation 12

(that calculates cost assigned to the state si with action ai) is replaced by:

cost
�
si � ai �M� k

�
si � ai � 	 ∑

si N 1 O Si N 1

c
�
si L 1 � si � ai � y � si � ai � (21)

and Equation 17 describing the time spent in the state si with action ai is replaced by:

y
�
si � ai �C� ti L ∆t�

ti

�
1 � F

�
t �D� dt

1 � F
�
ti � (22)

The probability of getting an arrival is defined using the time indices for the system state where ti � t � ti 	 ∆t:

p
�
si L 1 $ ti � si � ai ��� F

�
ti 	 ∆t ��� F

�
ti �

1 � F
�
ti � (23)

Equation 16 is replaced by the following set of equations. The probability of transition to the next idle state

is defined to be m
�
si L 1 $ si � ai ��� 1 � p

�
si L 1 $ ti � si � ai � and of transition back into the active state is m

�
si L 1 $ si � ai ���

p
�
si L 1 $ ti � si � ai � . The general cumulative distribution of event occurrences is given by F

�
ti � .

An example below illustrates how the time indexing is done.
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Example V.4 The cumulative distribution of user request arrival occurrences in the idle state follows a Pareto

distribution: F
�
ti �M� 1 � at � b

i . The transition from the idle to the low-power state follows uniform distribution with

average transition time tave � �
tmaxas 	 tminas �^� 2. The time increments are indexed by j. Thus the probability of

transition from the idle state at time increment j∆t into the low-power state with no elements in the queue is given

by: m
�
si L 1 $ si � ai � � 1 � F A j∆t L tave B

1 � F A j∆t B . This equation computes conditional probability that there will be no arrivals up

to time
�
j 	 1 � ∆t 	 tave given that there was no arrival up to time j∆t 	 tave. Note that in this way we are taking

history into account. Similarly, we can define the probability of transition from the idle state into a low-power state

with an element in the queue by: m
�
si L 1 $ si � ai ��� F A j∆t L tave B � F A j∆t B

1 � F A j∆t B .

The expected time spent in the idle state indexed with time increment N∆t can be defined by: y
�
s � a �[� A N L 1 B ∆tW

N∆t

A 1 � F A t B_B dt
1 � F A ti B ,

which after integration simplifies to: A_A N L 1 B ∆t B 1 = a � A N∆t B 1 = aA 1 � a B`A N∆t B = a . With that, we can calculate energy consumed in the

idle state, again assuming that there is no fixed energy cost and that the power consumption is defined by PI:
PI A_A N L 1 B ∆t B 1 = a � A N∆t B 1 = aA 1 � a B`A N∆t B = a .

TISMDP policies are implemented in a similar way to the renewal theory model, but there are more possible

decision points. Briefly, upon entry to each decision state, the pseudo-random number RND is generated. The

device will transition into low-power state at the time interval for which the probability of going to that state as

given by the policy is greater than RND. Thus the policy can be viewed as randomized timeout. The device

transitions into active state if the request arrives before entry into low-power state. Once the device is turned off, it

stays off until the first request arrives, at which point it transitions into active state. The detailed discussion of how

the policy is implemented if there is only one decision state has been presented in Section IV-B.

Example V.5 As mentioned in Example V.1,the SmartBadge has two states where decisions can be made: idle and

standby. From the idle state, it is possible to give a command to transition to standby or to the off state. From

standby, only a transition to the off state is possible. In this case, both the idle and the standby states are time-

indexed. The optimal policy gives a table of probabilities determining when the transition between the idle, standby

and off states should occur. For example, a policy may specify that if the system has been idle for 50ms, then the

transition to the standby state should occur with probability of 0.4, the transition to the off state with probability

of 0.2 and otherwise the device will stay idle. Once in the standby state for another 100ms the policy may specify

that the transition into the off state should occur with probability of 0.9. When a user request arrives, the system

transitions back into the active state.

In this section, we presented a power management algorithm based on Time-Indexed Semi-Markov Decision

Processes. The TISMDP model is more complex than the SMDP model, but is more accurate and is also applicable

to a wider set of problems, such as a problem that has more than one non-exponential transition occurring at the

same time. The primary difference between the TISMDP model and the renewal theory model is that TISMDP

supports multiple decision points in the system model, while renewal theory allows for only one state in which the

power manager can decide to transition the device to the low power state. For example, in systems where there are
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multiple low-power states, the power manager would not only have to make a decision to transition to low-power

state, but also could transition the system from one low-power state into another. Renewal theory cannot be used

for this case as there are multiple decision states. The main advantage of the renewal theory model is that it is more

concise and thus computes faster. The renewal theory model has only five states, as compared to O
�
N � 	 2 states in

the TISMDP model (N is the maximum time index). In addition, each of the O
�
N � states require evaluations of one

double and two single integrals, compared with a very simple arithmetic formulation for the renewal theory model.

VI. RESULTS

We perform the policy computation using the solver for linear programs [39] based on the simplex method.

The optimization runs in just under 1 minute on a 300MHz Pentium processor. We first verified the optimization

results using simulation. Inputs to the simulator are the system description, the expected time horizon (the length

of user trace), the number of simulations to be performed and the policy. The system description is characterized

by the power consumption in each state, the performance penalty, and the function that defines the transition time

probability density function and the probability of transition to other states given a command from the power

manager. Note that our simulation used both probability density functions (pdfs) we derived from data and the

original traces. When using pdfs, we just verified the correctness of our problem formulation and solution. With

real traces we were able to verify that indeed pdfs we derived do in fact match well the data from the real system,

and thus give optimal policies for the real systems. The results of the optimization are in close agreement with the

simulation results.

In the next sections, we show large savings we measured on three different devices: laptop and desktop hard

disks and the WLAN card and the simulation results showing savings in power consumption when our policy is

implemented in a SmartBadge portable system. As the first three examples (two hard disks and WLAN) have just

one state in which the decision to transition to low-power state can be made, the renewal theory model and the

TISMDP model give the same results. The last example (SmartBadge) has two possible decision states - idle and

standby state. In this case, the TISMDP model is necessary in order to obtain the optimal policy.

A. Hard Disk

We implemented the power manager as part of a filter driver template discussed in [40]. A filter driver is attached

to the vendor-specific device driver. Both drivers reside in the operating system, on the kernel level, above the ACPI

driver implementations. Application programs such as word processors or spreadsheets send requests to the OS.

When any event occurs that concerns the hard disk, power manager is notified. When the PM issues a command,

the filter driver creates a power transition call and sends it to the device which implements the power transition

using ACPI standard. The change in power state is also detected with the digital multimeter that measures current

consumption of the hard disk.

We measured and simulated three different policies based on stochastic models and compared them with two

bounds: always-on and oracle policies. Always-on policy leaves the hard disk in the active state, and thus does not
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save any power. Oracle policy gives the lowest possible power consumption, as it transitions the disk into sleep

state with the perfect knowledge of the future. It is computed off-line using a previously collected trace. Obviously,

the oracle policy is an abstraction that cannot be used in run-time DPM.

All stochastic policies minimized power consumption under a 10% performance constraint (10% delay penalty).

The results are shown in Figures 12 and 13. These figures best illustrate the problem we observed when user request

arrivals are modeled only with exponential distribution as in CTMDP model [13]. The simulation results for the

exponential model (CTMDP) show large power savings, but measurement results show no power savings and a very

high performance penalty. As the exponential model is memoryless, the resulting policy makes a decision as soon

as the device becomes idle or after a very short filtering interval (filtered 1s columns in Figures 12 and 13). If the

idle time is very short, the exponential model gets a large performance penalty due to the wakeup time of the device

and a considerable cost in shut-down and wakeup energies. In addition, if the decision upon entry to idle state is to

stay awake, large idle times, such as lunch breaks, will be missed. If the policy is forced to re-evaluate until it shuts

down (exponential), then it will not miss the long idle times. When we use a short timeout to filter out short arrival

times, and force the power manager to re-evaluate its decision (filtered exponential), the results improve. The best

results are obtained with our policy. In fact, our policy uses 2.4 times less power than the always-on policy. These

results show that it is critically important to not only simulate, but also measure the results of each policy and thus

verify the assumptions made in modeling. In fact, we found that modeling based on simple Markov chains is not

accurate, and that we do require more complex model presented in this paper.
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Fig. 12. Measured and simulated hard disk power consumption

Comparison of all policies measured on the laptop is shown in Table V, and for the desktop in Table VI. Karlin’s

algorithm analysis [7] is guaranteed to yield a policy that consumes at worst twice the minimum amount of power

consumed by the policy computed with perfect knowledge of the user behavior. Karlin’s policy consumes 10%

more power and has worse performance than the policy based on our time-indexed semi-Markov decision process

model. In addition, our policy consumes 1 � 7 times less power than the default Windows timeout policy of 120s

and 1 � 4 times less power than the 30s timeout policy on the laptop. Our policy performs better than the adaptive

model [12], and significantly better than the policy based on discrete-time Markov decision processes (DTMDP).
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Fig. 13. Measured and simulated hard disk performance

TABLE V

LAPTOP HARD DISK MEASUREMENT COMPARISON

Algorithm Pwr (W) Nsd Nwd Tss 3 s 5
Oracle 0.33 250 118

Ours 0.40 326 76 81

Adaptive 0.43 191 28 127

Karlin’s 0.44 323 64 79

30s timeout 0.51 147 18 142

DTMDP 0.62 173 54 102

120s timeout 0.67 55 3 238

always on 0.95 0 0 0

CTMDP 0.97 391 359 4

The policy based on the simple continuous-time model (CTMDP) (without re-evaluation and with initial 1s filter)

performs worse then the always-on policy, primarily due to the exponential interarrival request assumption. This

policy both misses some long idle periods, and tends to shut-down too aggressively, as can be seen from its very

short average sleep time. Better results can be obtained by using re-evaluations with filtering. Similar results can

be seen on the desktops.

Performance of the algorithms can be compared using three different measures. Nsd is defined as the number

of times the policy issued the sleep command. Nwd gives the number of times sleep command was issued and the

hard disk was asleep for shorter than the time needed to recover the cost of spinning down and spinning up the

disk. Clearly, it is important to minimize Nwd while maximizing Nsd . In addition, the average length of time spent

in the sleep state (Tss) should be as large as possible while still keeping the power consumption down. From our

experience with the user interaction with the hard disk, our algorithm performs well, thus giving us low-power

consumption with still good performance.

As mentioned earlier, we filtered request arrivals using a fraction of hard disk break-even time. The effect of

filtering arrivals into the idle state is best shown in Figure 14 for the policy with the performance penalty of the
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TABLE VI

DESKTOP HARD DISK MEASUREMENT COMPARISON

Algorithm Pwr (W) Nsd Nwd Tss 3 s 5
Oracle 1.64 164 0 166

Ours 1.92 156 25 147

Karlin’s 1.94 160 15 142

Adaptive 1.97 168 26 134

30s timeout 2.05 147 18 142

120s timeout 2.52 55 3 238

DTMDP 2.60 105 39 130

always on 3.48 0 0 0

CTMDP 3.90 326 318 4

laptop hard disk limited to 10%. For very short filter times the power consumption is very high since the overhead

of transition to and from low-power state has not been compensated. The power consumption grows for longer

filter times since more time is spent in the idle state before transitioning to the low-power state, thus wasting some

power. Note that the best filtering intervals are on the order of seconds since the hard disk break-even time is also

on the order of seconds.
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Fig. 14. Power consumption vs. filter size

The event-driven nature of our algorithm, as compared to algorithms based on discrete time intervals, saves

considerable amount of power while in sleep state as it does not require policy evaluation until an event occurs.

Waking up a 10 W processor every 1s for policy re-evaluation that takes 100ms to execute would use 1800 J of

energy during a normal 30 minute break. With an event-driven policy, the processor could be placed in a low-power

mode during the break time, thus saving a large portion of battery capacity.

B. WLAN card

For WLAN measurements we used Lucent’s WLAN 2Mb/s card [35] running on the laptop. As a mobile envi-

ronment is continually changing, it is not possible to reliably repeat the same experiment. As a result, we needed to
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use a trace-based methodology discussed in [41]. The methodology consists of three phases: collection, distillation

and modulation. We used tcpdump [36] utility to get the user’s trace for two different applications: web browsing

and telnet. During distillation we prepared the trace for the modeling step. We had a LAN-attached host read the

distilled trace and delay or drop packets according to the parameters we obtained from the measurements. In this

way, we were able to recreate the experimental environment, so that different algorithms can be reliably compared.

We implemented three different versions of our algorithm for each application, each with different power (Pave)

and performance penalty (Tpenalty). The algorithms are labeled Ours a,b,c for web browser and Ours 1,2,3 for telnet.

Since web and telnet arrivals behave differently (see Figure 4), we observe through the OS what application is

currently actively sending and use the appropriate power management policy. The performance penalty for WLAN

is a measure of the total overhead time due to turning off the card. Note that for the hard disk we measured instead

the average time in the sleep state, as the accurate real overhead was difficult to obtain. In addition to measuring

TABLE VII

DPM FOR WLAN WEB BROWSER

Policy Nsd Nwd Tpenalty Pave

(sec) (W)

Oracle 395 0 0 0.467

Ours (a) 363 96 6.90 0.474

Ours(b) 267 14 1.43 0.477

Karlin’s 623 296 23.8 0.479

Ours(c) 219 9 0.80 0.485

CTMDP 3424 2866 253.7 0.539

Default 0 0 0 1.410

the energy consumption (and then calculating average power), we also quantified the performance penalty using

three different measures. Delay penalty, Tp, is the time the system had to wait to service a request since the card

was in the sleep state when it should not have been. In addition, we measure the number of shutdowns, Nsd and

the number of wrong shutdowns, Nwd . A shutdown is viewed as wrong when the sleep time is not long enough to

make up for the energy lost during transition between the idle and off state. The number of shutdowns is a measure

of how eager the policy is, while a number of wrong shutdowns tells us how accurate the policy is in predicting a

good time to shut down the card.

The measurement results for a 2.5hr web browsing trace are shown in Table VII. Our algorithms (Ours a,b,c)

show, on average, a factor of three in power savings with a low performance penalty. Karlin’s algorithm [7] is

guaranteed to be within a factor of two of the oracle policy. Although its power consumption is low, it has a

performance penalty that is an order of magnitude larger than for our policy. A policy that assumes exponential

arrivals only, CTMDP [13], has a very large performance penalty because it makes the decision as soon as the

system enters idle state.

Table VIII shows the measurement results for a 2hr telnet trace. Again our policy performs best, with a factor of
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TABLE VIII

DPM FOR WLAN TELNET APPLICATION

Policy Nsd Nwd Tpenalty Pave

(sec) (W)

Oracle 766 0 0 0.220

Ours(1) 798 21 2.75 0.269

Ours(2) 782 33 2.91 0.296

Karlin’s 780 40 3.81 0.302

Ours(3) 778 38 3.80 0.310

CTMDP 943 233 20.53 0.361

Default 0 0 0 1.410

five in power savings and a small performance penalty. The telnet application allows larger power savings because

on average it transmits and receives much less data then the web browser, thus giving us more chances to shut down

the card.

C. SmartBadge

In contrast to the previous examples, where we implement and measure the decrease in power consumption when

using our power management policies, in this case we perform a case study on the tradeoffs between power and

performance for the SmartBadge. The SmartBadge is a good example of a system that has more than one decision

point and thus requires the TISMDP model in order to obtain an optimal policy. We first study the tradeoffs

between power and performance for policies with just one decision state (idle state), and then follow with an

example contrasting policies with one state to policies that have two decision states (idle and standby).

The results of simulation shown in Figure 15 clearly illustrate the tradeoff between different policies for one

decision state that can be implemented in the SmartBadge system. The performance penalty is defined as the

percent of time the system spends in a low-power state with a non-empty queue. In general, the goal is to have as

few requests as possible waiting for service. For systems with a hard real-time constraint, this penalty can be set

to large values to force less aggressive power management, thus resulting in less requests queued up for service.

In systems where it is not as critical to meet time deadlines, the system can stay in a low-power state longer, thus

accumulating more requests that can be serviced upon return to the active state.

Because of the particular design characteristics of the SmartBadge, the tradeoff curves of performance penalty

and power savings are very close to linear. When the probability of going to sleep is zero, no power can be saved,

but the performance penalty can be reduced by 85% as compared to the case where the probability is one. On the

other hand, about 50% of the power can be saved when the system goes to standby upon entry to idle state.

In addition to analyzing power and performance tradeoffs for policies that have only one decision state, we have

also compared the one decision state (idle) policy to a policy with two decision states (idle and standby) with the

same performance penalty. The results in Table IX clearly show that considerably larger power savings with the
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Fig. 15. SmartBadge DPM results

same performance penalty can be obtained when using a more complex policy optimization model that enables

multiple decision points (TISMDP model) instead of just one decision point (Renewal Theory model).

TABLE IX

COMPARISON OF POLICIES BY DECISION STATE NUMBER

No. Decision Power

States (W)

One state 1.84

Two states 1.47

VII. CONCLUSIONS

Dynamic power management policies reduce energy consumption by selectively placing components into low-

power states. In contrast to heuristic policies, such as timeouts, policies based on stochastic models can guarantee

optimal results. The quality of results of stochastic DPM policies depends strongly on the assumptions made. In this

work we present and implement two different stochastic models for dynamic power management. The measurement

results show large power savings.

The first approach requires that only one decision point be present in the system. This model is based on renewal

theory. The second approach allows for multiple decision points and is based on Semi-Markov Decision Process

(SMDP) model. The basic SMDP model can accurately model only one non-exponential transition occurring with

the exponential ones. We presented TISMDP model as the extension to SMDP model in order to describe more

than one non-exponential transition occurring at the same time. TISMDP model is very general, but also is more

complex. Thus, it should be used for systems that have more than one decision point.

We presented large power savings using our approach on four different portable devices: the laptop and the

desktop hard disks, the WLAN card and the SmartBadge. The measurements for the hard disks show that our

policy gives as much as 2 � 4 times lower power consumption as compared to the default Windows timeout policy.

Thus it is very beneficial to use our approach over the simple timeout. In addition, our policy obtains up to 5 times
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lower power consumption for the wireless card relative to the default policy. The power management results on the

SmartBadge show savings of as much as 70% in power consumption. Finally, the comparison of policies obtained

for the SmartBadge with the renewal model and TISMDP model clearly illustrate that whenever there is more than

one decision point available, the TISMDP model should be used as it can utilize the extra degrees of freedom and

thus obtain an optimal power management policy.
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