
Chapter 1

DYNAMIC MANAGEMENT OF POWER CONSUMPTION

Tajana Simunic
HP Labs

Abstract Power consumption of electronic devices has become a serious concern in the
recent years. Power efficiency is necessary to lengthen the battery lifetime in
the portable systems, as well as to reduce the operational costs and the environ-
mental impact of stationary systems. Two new approaches that enable systems
to save power by adapting to changes in environment are proposed:dynamic
power management anddynamic voltage scaling. Dynamic power management
(DPM) algorithms aim to reduce the power consumption at the system level
by selectively placing components into low-power states. A new event-driven
power management algorithm that guarantees globally optimal decisions is pre-
sented that is based on Time-Indexed Semi-Markov Decision Process model
(TISMDP). TISMDP power management policies have been implemented on
four devices: two different hard disks, a laptop WLAN card and a SmartBadge
portable system [1]. The measurement results show power savings ranging from
a factor of 1.7 up to 5.0 with performance basically unaffected. Dynamic volt-
age scaling (DVS) algorithms reduce energy consumption by changing processor
speed and voltage at run-time depending on the needs of the applications run-
ning. This work extends the TISMDP power management model with a DVS al-
gorithm, thus enabling even larger power savings. The measurements of MPEG
video and MP3 audio algorithms running on the SmartBadge portable device
show savings of a factor of three in energy consumption for combined DVS and
DPM approaches.

Introduction

Power consumption has become one of the primary concerns in electronic
design due to the recent popularity of portable devices and the environmental
concerns related to desktops and servers. The battery capacity has improved
very slowly (a factor of 2 to 4 over the last 30 years), while the computa-
tional demands have drastically increased over the same time frame. Better
low-power circuit design techniques have helped to increase battery lifetime
[2,3,4]. On the other hand, managing power dissipation at higher levels can

1

2

considerably decrease energy requirements and thus increase battery lifetime
[5].

System-leveldynamic power management [6] decreases the energy con-
sumption by selectively placing idle components into lower power states. Sys-
tem resources can be modelled using state-based abstraction where each state
trades off performance for power [7]. The transitions between states are con-
trolled by commands issued by apower manager (PM) that observes the work-
load of the system and decides when and how to force power state transitions.
The power manager makes state transition decisions according to thepower
management policy. The choice of the policy that minimizes power under per-
formance constraints (or maximizes performance under power constraint) is
a constrained optimisation problem. The most common power management
policy at the system level is a timeout policy implemented in most operating
systems. The drawback of this policy is that it wastes power while waiting
for the timeout to expire [8,9]. Predictive policies developed for interactive
terminals [10,11] force the transition to a low power state as soon as a compo-
nent becomes idle if the predictor estimates that the idle period will last long
enough. An incorrect estimate can cause both performance and energy penal-
ties. Both timeout and predictive policies are heuristic in nature, and thus do
not guarantee optimal results.

In contrast, approaches based on stochastic models can guarantee optimal
results. Stochastic models use distributions to describe the times between ar-
rivals of user requests (interarrival times), the length of time it takes for a de-
vice to service a user request, and the time it takes for the device to transition
between its power states. The system model for stochastic optimisation can
be described either with memoryless distributions (exponential or geometric)
[12,13,14] or with general distributions [15]. Power management policies can
be classified into two categories by the manner in which decisions are made:
discrete time (or clock based) [12,13] andevent driven [14,15]. In addition,
policies can bestationary (the same policy applies at any point in time) ornon-
stationary (the policy changes over time). All stochastic approaches except for
the discrete adaptive approach presented in [13] are stationary. The optimal-
ity of stochastic approaches depends on the accuracy of the system model and
the algorithm used to compute the solution. In both discrete and event-driven
approaches optimality of the algorithm can be guaranteed since the underly-
ing theoretical model is based on Markov chains. Approaches based on the
discrete time setting require policy evaluation even when in low-power state
[12,13], thus wasting energy. On the other hand, event-driven models based
on only exponential distributions show little or no power savings when imple-
mented in real systems since the exponential model does not describe well the
request interarrival times of users [15].

Dynamic Management of Power Consumption 3

Dynamic voltage scaling (DVS) algorithms reduce energy consumption by
changing processor speed and voltage at run-time depending on the needs of
the applications running. Early DVS algorithms set processor speed based on
the processor utilization of fixed intervals and did not consider the individ-
ual requirements of the tasks running. There has been a number of voltage
scaling techniques proposed for real-time systems. The approaches presented
in [16,17,18,19] assume that all tasks run at their worst case execution time
(WCET). The workload variation slack times are exploited on task-by-task ba-
sis in [20], and are fully utilized in [21]. Work presented in [22] introduces a
voltage scheduler that determines the operating voltage by analysing applica-
tion requirements. The scheduling is done at task level, by setting processor
frequency to the minimum value needed to complete all tasks. For applications
with high frame-to-frame variance, such as MPEG video, schedule smoothing
is done by scheduling tasks to complete twice the amount of work in twice the
allocated time. In all DVS approaches presented in the past, scheduling was
done at the task level, assuming multiple threads. The prediction of task execu-
tion times was done either using worst case execution times, or heuristics. Such
approaches neglect that DVS can be done within a task or for single-application
devices. For, instance, in MPEG decoding, the variance in execution time on
frame basis can be very large: a factor of three in the number of cycles [23], or
range between 1 and 2000 IDCTs per frame [24] for MPEG video.

This chapter introduces a new model that combines dynamic power man-
agement and dynamic voltage scaling. The new approach is based on Time-
Indexed Semi-Markov Decision Process model (TISMDP). The power man-
agement policy optimisation problem is solvedexactly and in polynomial time
with guaranteed optimal results. Large savings are measured with TISMDP
model as it handles general user request interarrival distributions and make de-
cisions in the event-driven manner. The dynamic voltage scaling enables even
larger savings than are possible with only DPM. DVS represents the active
state as a series of states characterized by varying degrees of performance and
energy consumption. The system’s processor runs at the minimum frequency
and voltage required to sustain the performance level required by an applica-
tion and thus saves power when the system is active, in addition to the savings
obtained by DPM during idle periods. Combined savings of DPM and DVS on
the SmartBadge are as high as a factor of 3.

The remainder of the chapter is organized as follows. Section 1 describes
the stochastic models of the system components based on the experimental
data collected. Time-Indexed Semi-Markov Decision Process model for the
dynamic power management policy optimisation problem is discussed in Sec-
tion 2, followed by the expansion of TISMDP model to support DVS in Sec-
tion 3. Measured results for power managing two hard disks and a WLAN card

4

are discussed in Section 4, in addition to the DPM and DVS simulation results
for the SmartBadge. Finally, this chapter is summarized in Section 5.

1. System Model

The system model consists of three components: the user, the device and
the queue as shown in Figure 1.1. Each system component can be described
probabilistically. The user, or the application that accesses each device by
sending requests via operating system, is modelled by a request interarrival
time distribution. When one or more requests arrive, the user is said to be in
the active state, otherwise it is in the idle state. Figure 1.1 shows three different
power states for the device: active, idle and sleep. Service time distribution
describes the behaviour of the device in the active state. When the device is in
either the idle or the sleep state, it does not service any requests. Typically, the
transition to the active state is shorter from the idle state, but the sleep state has
a lower power consumption. The transition distribution models the time taken
by the device to transition between its power states. The queue models a buffer
associated with each device. The combination of interarrival time distribution
(incoming jobs to the queue) and service time distribution (jobs leaving the
queue) appropriately characterizes the behaviour of the queue. Each system
component models are described next.

User Queue

Power Manager

Device

Active

Idle

Sleep

Active

Idle

Sleep

Active

Idle

Sleep

Active

Idle

Active

Idle

Active

Idle

Figure 1.1. System Model

Dynamic Management of Power Consumption 5

1.1 User Model

The request interarrival times in the active state (the state where at least
one user’s request is queued up) for all devices are exponentially distributed.
Figure 1.2 shows the exponential cumulative distribution fitted to the measure-
ments of 11hr user trace accessing the hard disk of the PC running Windows
OS with standard software (e.g Excel, Word, MS VC++). Similar results have
been observed for the other devices in the active state [15]. Thus, the user in
active state can be modelled with rate �U and the mean request interarrival
time, 1=�U , where the probability of a device receiving a user request within
time interval t follows the cumulative probability distribution shown below.

FU (t) = 1� e��U t (1.1)

0

0.2

0.4

0.6

0.8

1

-2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Interarrival Time (s)

P
ro

b
a

b
ili

ty

experimental
exponential

Average interarrival time = 0.723 s
Average fitting error = 13%

Figure 1.2. User request arrivals in active state for hard disk

The exponential distribution does not model well the first request arrival
in the idle state. The tail distribution highlights the probability of longer idle
times that are of interest for power management. Figure 1.3 shows the mea-
surements of idle period tail distributions fitted with the Pareto and the expo-
nential distributions for the hard disk and Figure 1.4 shows the same measure-
ments for the WLAN card. The Pareto distribution shows a much better fit
for the long idle times as compared to the exponential distribution. The Pareto
cumulative distribution is defined in Equation 1.2. The Pareto parameters are
a=0.9 and b=0.65 for the hard disk, a=0.7 and b=0.02 for WLAN web requests
and a=0.7 and b=0.06 for WLAN telnet requests. SmartBadge arrivals behave
the same way as the WLAN arrivals.

FU (t) = 1� at�b (1.2)

6

0.0001

0.001

0.01

0.1

1

1 10 100 1000

Time (s)

T
a
il

 d
is

tr
ib

u
ti

o
n

Exponential
Pareto

Experimental

Figure 1.3. Hard disk idle state arrival tail distribution

WWW Trace

0.0001

0.001

0.01

0.1

1

0.01 0.1 1 10

Interarrival Time (s)

Experimental

Exponential
Pareto

Telnet Trace

0.0001

0.001

0.01

0.1

1

0.01 0.1 1 10
Interarrival Time (s)

Experimental

Exponential

Pareto

Figure 1.4. WLAN idle state arrival tail distribution

1.2 Portable Devices

A power managed device often has one or more active states in which it ser-
vices user requests, and one or more low-power states. The power manager can
trade off power for performance by placing the device into low-power states or
by adjusting the level of service in the active states. Each low power state can
be characterized by the power consumption and the performance penalty in-
curred during the transition to or from that state. Usually higher performance
penalty corresponds to lower power states. While the methods presented in
this work are general, the optimization of energy consumption under perfor-
mance constraints (or vice versa) is applied to and measured on the following
devices: WLAN card [25] on the laptop, the SmartBadge [1] and laptop and
desktop hard disks. More details about the device models are presented below.

Dynamic Management of Power Consumption 7

1.2.1 SmartBadge. The SmartBadge is used as a personal digital
assistants (PDAs) that operates as a part of a client-server system. The Smart-
Badge’s components, the power states and the transition times of each compo-
nent from standby (tsby) and off (toff) state into active state, and the transition
times between standby and off states (tso) are shown in Table 1.1.

Table 1.1. SmartBadge components

Component Active Idle Standby tsby toff tso

Pwr (mW) Pwr (mW) Pwr (mW) (ms) (ms) (ms)

Display 1000 1000 100 100 240 110
RF Link 1500 1000 100 40 80 20
SA-1100 400 170 0.1 10 35 10
FLASH 75 5 0.023 0.6 160 150
SRAM 115 17 0.13 5.0 100 90
DRAM 400 10 0.4 4.0 90 75

Total 3.5 W 2.2 W 200 mW 110 ms 250 ms 160 ms

The StrongARM processor on the SmartBadge can be configured at run-
time by a simple write to a hardware register to execute at one of 11 different
frequencies. The number of frequencies is predefined by the design of the
StrongARM processor. The transition between two different frequency settings
takes 150 microseconds. For each frequency, there is a minimum voltage the
SA-1100 needs in order to run correctly, but with lower energy consumption.
Figure 1.5 shows the frequency-voltage tradeoff.

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

100 120 140 160 180 200

Frequency (MHz)

V
o

lt
ag

e
(V

)

Figure 1.5. Frequency vs. Voltage for SA-1100

8

1.2.2 Hard Disks. Two different hard disks whose characteristics are
shown in Table 1.2 have been used in experiments: the Fujitsu MHF 2043AT
hard disk in a laptop and the IBM hard disk in a desktop. Although the power
savings in the sleep state are large (Pactive versus Psleep), the disks should
be placed into the sleep state only when the idle period between successive
accesses is long enough to justify the performance (Tactive and Tsleep) and
power overhead incurred during the transition.

Table 1.2. Disk Parameters

Model Psleep Pactive Tsleep Tactive

(W) (W) (sec) (sec)

IBM 0.75 3.48 0.51 6.97
Fujitsu 0.13 0.95 0.67 1.61

Hard disk service times in the active state follow an exponential distribution
as shown in Figure 1.6. The SmartBadge and the WLAN card measurements
have similar patterns. Equation 1.3 defines the cumulative probability of the
device servicing a user request within time interval t with the average service
rate �D.

FD(t) = 1� e��Dt (1.3)

0

0.2

0.4

0.6

0.8

1

1.2

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Service Time (s)

P
ro

b
a

b
ili

ty

experimental

exponential

Average service time = 0.008 s
Average fitting error = 6.8%

Figure 1.6. Hard disk service time distribution

The transition from sleep to active state requires a spin-up of the hard disk,
which is very power intensive. This transition, in addition to the transition from
idle to the sleep state, is best described using the uniform distribution shown
in Equation below, where t0 and t1 can be defined as tave ��t and tave +�t
respectively. Figure 1.7 shows the measurement results for the transition of

Dynamic Management of Power Consumption 9

Fujitsu hard disk from sleep to active state. Similar results can be obtained for
the other devices.

FD(t) =

8<
:

0 t � t0
t�t0
t1�t0

t0 < t � t1
1 t > t1

(1.4)

0

0.1

0.2

0.3

0.4
0.5

0.6

0.7

0.8

0.9

1

1130 1330 1530 1730 1930 2130

Transition time (ms)

C
D

F
 p

ro
b

a
b

il
it

y

Experimental

Uniform

Exponential

Figure 1.7. Hard disk transition from sleep to active state

1.2.3 WLAN card. The wireless local area network (WLAN) card
has multiple power states: two active states, transmitting, receiving, and two
inactive states, doze and off. Transmission power is 1.65W, receiving 1.4W,
the power consumption in the doze state is 0.045W [25] and in the off state it
is 0W. Once both receiving and transmission are done, the card automatically
enters the doze state. Unfortunately, savings of only 5-10% in power have been
measured with this approach, due to the overhead of having to be awake every
100ms to find out if any communication needs to take place. In client-server
systems, such as the laptop used in this work, it is clear when communication
is finished on the client side. Thus, the power manager can turn the card off
once the communication is finished, and turn in back on when the client wishes
to resume communication. Once in the off state, the card waits for the first user
request arrival before returning back to the doze state. The transitions between
the doze and the off states have been measured and are best described using
the uniform distribution. The transition from the doze state into the off state
takes on average tave = 62ms with variance of tvar = 31ms. The transition
back takes tave = 34ms with tvar = 21ms variance.

1.3 Queue

Portable devices have a buffer for storing requests that have not been ser-
viced yet. This buffer is modelled as a queue. An experiment on a hard disk

10

using a typical user trace measured a maximum queue size of 10 jobs. Be-
cause the service rate in the SmartBadge and WLAN card is higher, and the
request arrival rate is comparable, the same maximum queue size can be used.
As there is no priority associated with requests coming into the queue, active
and low-power states are differentiated only by the number of jobs pending for
service.

1.4 Model Overview

Table 1.3 shows the probability distributions used to describe each system
component derived from the experimental results. User request interarrival
times with at least one job in the queue are best modelled with the exponential
distribution. Pareto distribution best models the arrival of the first user’s re-
quest when the queue is empty. The service times in the active state follow the
exponential distribution. The transitions to and from the low power states are
uniformly distributed. The combination of these distributions is used to derive
the state of the queue. Although the experimental section of this Chapter uti-
lizes the fact that the non-exponential user and device distributions can be de-
scribed with well-known functions (Pareto or uniform), the models presented
are general in nature and thus can give optimal results with both experimental
distributions obtained at run time.

Table 1.3. System Model Overview

System Component Component State Distribution

User Queue not empty Exponential
Queue empty Pareto

Device Active Exponential
Transition Uniform

2. Dynamic Power Management

Dynamic power management (DPM) techniques selectively place system
components into low-power states when they are idle. A power managed sys-
tem can be modelled as a power state machine, where each state is character-
ized by the power consumption and the performance. In addition, state tran-
sitions have power and delay cost. Usually, lower power consumption also
implies lower performance and longer transition delay. When a component is
placed into a low-power state, such as a sleep state, it is unavailable for the
time period spent there, in addition to the transition time between the states.
The break-even time, Tbe, is the minimum time a device should spend in the
low-power state to compensate for the transition cost. The break-even time can

Dynamic Management of Power Consumption 11

be calculated directly from the power state machine of the device as shown in
Equation 1.5, where Pas; Tas and Psa; Tsa are the power consumption and the
time to transition between the active and the sleep states, and Pa; Ps are the
power consumptions in the active and the sleep states. With devices where the
transition cost into inactive state is minimal, the power management policy is
trivial (once in the idle state, shut off). In all other situations it is critical to
determine the most appropriate policy that the PM should implement.

Tbe =
PasTas + PsaTsa � Pa(Tas + Tsa)

Pa � Ps
(1.5)

Original system model

Arrival

Departure

Arrival

Sleep
No Arrival

Sleep
Arrival

Idle State
queue = 0

Sleep State
queue > 0

Sleep State
queue = 0

Active State
queue > 0

Time-indexed system model

Arrival

Departure

Arrival

Sleep
No Arrival

Sleep
Arrival

Active State
queue > 0

Sleep State
queue > 0

Idle State
queue = 0

t> n t

Idle State
queue = 0

t < t < 2 t

Idle State
queue = 0

t< t

No
Arrival

No
Arrival

Sleep State
queue = 0
t> n t+U

Sleep State
queue = 0
t+U < t &

t< 2 t +U

Sleep State
queue = 0

U< t< t + U

No
Arrival

No
Arrival

Sleep
No Arrival

Figure 1.8. Time-indexed SMDP states

This section presents the power management optimisation problem formu-
lation based on Time-Indexed Semi-Markov Decision Processes (TISMDP).
TISMDP model is a generalization of Semi-Markov decision processes (SMDP)
model. SMDP allows for at most one non-exponentially distributed transition
at a time and enables the power manager to respond on event occurrences in-
stead of being tied to a system clock as in traditional Discrete-Time Markov De-
cision Processes. Continuous-time Markov decision processes (CTMDP) [14]
can be viewed as a special case of SMDP model in which all transitions are ex-
ponentially distributed. TISMDP model introduced in this work, in contrast to
SMDP and CTMDP, uses general distributions to describe system transitions,
is still event driven and guarantees optimal results. On transitions where none
of the processes are exponential (e.g. transition from idle to sleep state, where

12

user’s requests are governed with Pareto distribution and the transition time
follows the uniform distribution), time-indexed Markov chain formulation is
used to keep the history information [27].

Time-indexing is done by dividing the time line into a set of intervals of
equal length �t. The original state space is expanded by replacing one idle
and one queue empty low-power state in SMDP model with a series of time-
indexed idle and low-power empty states in TISMDP model as shown in Fig-
ure 1.8. The expansion of idle and low-power states into time-indexed states is
done only to aid in deriving in the optimal policy. Once the policy is obtained,
the actual implementation is completely event-driven in contrast to the policies
based on discrete-time Markov decision processes.

The interevent time set is defined as T = fti; fs:t:gi = 0; 1; 2; : : : ; imaxg
where each ti is the time between the two successive event arrivals and imax

is the index of the maximum time horizon. We denote by si 2 Si the system
state at decision epoch i. At each event occurrence, the power manager issues
a command or an action that decides the next state to which the system should
transition. An action that is issued at decision epoch i is denoted by ai 2 A.
In general, commands given are functions of the state history and the policy.
Commands can be either deterministic or randomised. In the former case, a
decision implies issuing a command, in the later case it gives the probability
of issuing a command. The actions taken by the PM form a sequence which
completely describes the optimal power management policy.

The goal of TISMDP optimisation is to minimize the performance penalty
under an energy consumption constraint (or vice versa). The linear program
minimizing energy consumption under performance constraint is shown in
Equation 1.6. Additional constraints can be added easily. Because the problem
can be formulated as a linear program, globally optimal solution can be ob-
tained that is stationary (the functional dependency of PM actions on the states
does not change with time) and randomised under the presence of constraints.
The problem can be solved in polynomial time as a function of number of
states and actions.

LPD: min
X
s2S

X
a2A

costenergy(s; a)f(s; a) (1.6)

s.t.
X
a2A

f(s; a)�
X
s;2S

X
a2A

m(s;js; a)f(s;; a) = 0

X
s2S

X
a2A

y(s; a)f(s; a) = 1

X
s2S

X
a2A

costperf(s; a)f(s; a) < Constraint

Dynamic Management of Power Consumption 13

The linear program minimizes the cost in energy under a set of constraints.
The first constraint is really a set of constraints for each system state. This
constraint formulation is called a balance equation, because it specifies that
the number of ways a system can transition into any given state has to equal the
number of ways it transitions out of that state. The second constraint defines
the expected time spent in each state when action a is given. The last constraint
is the performance constraint. The next set of equations defines all variables in
the optimisation problem shown above for both the states that do not need time
indexing and for those that need it.

The average cost incurred between two successive decision epochs (events)
for states that are not time indexed is defined in Equation 1.7 as a sum of
the lump sum cost k(si; ai) incurred when action ai is chosen in state si, in
addition to the cost in state si+1 incured at rate c(si+1; si; ai) after choosing
action ai in state si. We define Si+1 as the set of all possible states that may
follow si. Equation 1.8 defines the same cost for the time-indexed states. Si+1
as the set of all possible states that may follow si. When action ai is chosen
in system state si, the probability that the next event will occur by time ti is
defined by the cumulative probability distribution F (tijsi; ai). The probability
that the system transitions to state si+1 at or before the next decision epoch ti
is defined by p(si+1jti; si; ai).

cost(si; ai) = k(si; ai)+ (1.7)
1Z

0

[E(dujsi; ai)
X
si+1

uZ

0

c(si+1; si; ai)p(si+1jti; si; ai)]dt

cost(si; ai) = k(si; ai) +
X

si+12Si+1

c(si+1; si; ai)y(si; ai) (1.8)

The probability of arriving to state si+1 given that the action ai was taken in
state si is defined by m(si+1jsi; ai) for states that do not need time indexing
as shown in Equation 1.9.

m(si+1jsi; ai) =

1Z

0

p(si+1jti; si; ai)F (dtjsi; ai) (1.9)

For time indexed state, the probability of transition to the next idle state is
defined to be m(si+1jsi; ai) = 1� p(si+1jti; si; ai) and of transition back into
the active state is m(si+1jsi; ai) = p(si+1jti; si; ai). The general cumulative
distribution of event occurrences is given by F (ti), while the probability of
getting an arrival is defined using the time indices for the system state where
ti � t � ti +�t:

p(si+1jti; si; ai) =
F (ti +�t)� F (ti)

1� F (ti)
(1.10)

14

Expected time spent in each state for the states that are not time indexed is
given in Equation 1.11, while the expected time for the time indexed states is
given in Equation 1.12:

y(si; ai) =

1Z

0

t
X
si2S

p(si+1jti; si; ai)F (dtjsi; ai) (1.11)

y(si; ai) =

ti+�tZ

ti

(1� F (t))dt

1� F (ti)
(1.12)

The A �S unknowns in the LPD, f(s; a), called state-action frequencies, are
the expected number of times that the system is in state s and command a is
issued. The exact and the optimal solution to the TISMDP policy optimization
problem belongs to the set of Markovian randomized stationary policies [26]
that can be compactly represented by associating a value x(s; a) � 1 with each
state and action pair in the TISMDP, as defined in Equation 1.13.

x(si; ai) =
f(si; ai)P

ai2A
f(si; ai)

(1.13)

2.1 Policy Implementation

The optimal policy obtained by solving the linear program given in the pre-
vious Section can be presented as a table of cumulative probabilities P (s; a)
calculated based on the probability distribution described with x(s; a). Once
the system enters a decision state (e.g. idle state), a pseudo-random number
RND is generated. The device stays in the decision state until either the transi-
tion to the low-power state as given by RND and the policy, or until a request
arrival forces the transition into the active state. The time interval for which
the policy gives the cumulative probability P (s; a) of going to the low-power
state greater than RND is the time when the device will start that transition.
Thus the policy works like a randomised timeout. Once the device is in the
low-power state, it stays there until the first request arrives, at which point it
transitions back into the active state.

Example

The SmartBadge has two decision states: idle and standby. From the idle state, it is possible to
transition to the standby or to the off state. From standby, only a transition to the off state is possible.
The optimal policy (sample is shown in Table 1.4) gives a table of probabilities determining when
the transition between the idle, the standby and the off states should occur. A sample policy may
specify that if the system has been idle for 50ms, the transition to the standby state occurs with
probability of 0.4, the transition to the off state with probability of 0.2 and otherwise the device
stays idle. If the SmartBadge was placed into standby state at time 50ms, then the probability to
transition into the off state at 100ms would be 0.8, and otherwise the device stays in the standby
state. When a user request arrives, the SmartBadge transitions back into the active state.

Dynamic Management of Power Consumption 15

Table 1.4. Sample Policy

Idle Time Idle to Standby Idle to Off Standby to Off
(ms) Probability Probability Probability

0 0 0 0
50 0.4 0.2 0
100 0.1 0.9 0.8

3. Dynamic Voltage Scaling

Dynamic Voltage Scaling (DVS) algorithms adjust the device speed and
voltage according to the workload at run-time. Since most systems do not
need peak performance at all times, decreasing the device speed and voltage
during less busy periods increases energy efficiency. Implementing a DVS al-
gorithm for a processor requires both hardware and software support that is not
commonly available yet, even though there have been a few examples of DVS
implementation such as in [28].

TISMDP policy presented in Section 2 only decides when to transition the
device into one of the low-power states. The addition of DVS algorithm en-
ables power manager to also make decisions on the CPU frequency and volt-
age setting while in the active state. Thus, instead of having only one active
state, now there is a set of active states, each characterized by different per-
formance (CPU frequency) and power consumption (CPU voltage) as shown
in Figure 1.9. The transformation from one active into multiple active states
is completely compatible with the rest of the original model, as both TISMDP
and DVS use exponential distributions to describe the behaviour in the active
states.

The newly extended power manager works as follows. At run-time, it ob-
serves user request arrivals and service completion times (e.g. frame arrivals
and decoding times), the number of jobs in the queue (e.g. number of frames
in the buffer) and the time elapsed since last entry into idle state. When in
the active state, the power manager checks if the rate of incoming or decoding
frames has changed, and then adjusts the CPU frequency and voltage accord-
ingly. Once the decoding is completed, the system enters idle state. At this
point the power manager observes the time spent in the idle state, and depend-
ing on the TISMDP policy, it decides when to transition into one of the sleep
states. When an additional processing request arrives from the user, the power
manager transitions the system back into the active state and starts the process-
ing requests. The DVS algorithm consists of two main portions: detection of
the change in request arrival or servicing rate, and the policy that adjusts the
CPU frequency and voltage. The detection is done using maximum likelihood

16

Arrival

Departure

Arrival

Sleep
No Arrival

Sleep
Arrival

Active State
f0,V0

Sleep State
queue > 0

Idle State
queue = 0

t> n t

Idle State
queue = 0

t < t < 2 t

Idle State
queue = 0

t< t

No
Arrival

No
Arrival

Sleep State
queue = 0
t> n t+U

Sleep State
queue = 0
t+U < t &

t< 2 t +U

Sleep State
queue = 0

U< t< t + U

No
Arrival

No
Arrival

Sleep
No Arrival

...

Active State
f1,V1

Active State
f
n
,V

n

Figure 1.9. Expansion of the active state

ratio that guarantees optimal results. Policy is implemented based on M/M/1
queue results to ensure constant average delay. Detecting the change in rate
is a critical part of optimally matching CPU frequency and voltage to the re-
quirements of the user. For example, the rate of MP3 audio frames coming via
RF link can change drastically due to the changes in the environment. The ser-
vicing rate can change due to variance in computation needed between MPEG
frames [23,24], or just by changing the MP3 audio source. The request (frame)
interarrival times and servicing (decoding) times follow the exponential distri-
bution as discussed in Section 1. The two distributions are characterized by the
user arrival rate, �U , and the device servicing rate, �D.

The change point detection is performed using maximum likelihood ratio,
Pmax, as shown in Equation 1.14. Maximum likelihood ratio computes the
ratio between the probability that a change in rate did occur (numerator in
Equation 1.14) and the probability that rate did not change (denominator). The
probability that the rate changed is computed by fitting the exponential distri-
bution with an old rate, �o, to the first k � 1 interarrival or servicing times
(ti), and another exponential distribution with a new rate, �n, to the rest of
the points observed in window of size w (which contains the last w interar-
rival times of user requests). The probability that the rate did not change is
computed by fitting the interarrival or decoding times with the exponential dis-

Dynamic Management of Power Consumption 17

tribution characterized by the current (or old) rate, �o.

Pmax =
�k�1
i=1 �oe

��oti�w
i=k�ne

��nti

�w
i=1�oe

��oti
(1.14)

An efficient way to compute the maximum likelihood ratio, Pmax, is to
calculate the natural log of Pmax as shown below:

ln(Pmax) = (w � k + 1)ln
�n
�o

� (�n � �o)

wX
i=k

ti (1.15)

The advantage of using ln(Pmax) is that only the sum of interarrival (or de-
coding) times needs to be updated upon every arrival (or service completion).
A set of possible rates, �, where �o; �n 2 �, is predefined, as well as the size
of the window w. Variable k is used to locate the point in time when the rate
has changed.

The change point detection algorithm consists of two major tasks: off-line
characterization and on-line threshold detection. Off-line characterization is
done using stochastic simulation of a set of possible rates to obtain the value
of ln(Pmax) that is sufficient to detect the change in rate. The results are
accumulated in a histogram, and then the value of maximum likelihood ratio
that gives very high probability that the rate has changed is chosen for every
pair of rates under consideration. In this work 99.5% likelihood is selected.

On-line detection collects the interarrival time sums at run time and calcu-
lates the maximum likelihood ratio. If the maximum likelihood ratio computed
is greater than the one obtained from the histogram, then there is 99.5% likeli-
hood that the rate change occurred, and thus the CPU frequency and the volt-
age are adjusted. We found that a window of w = 100 is large enough. Larger
windows cause longer execution times, while much shorter windows do not
contain statistically large enough sample and thus give unstable results. The
change point can be checked every k = 10 points. Larger values of k interval
mean that the changed rate is detected later, while with very small values the
detection is quicker, but also causes extra computation.

The adjustment of frequency and voltage is done using M/M/1 queue model
[27,29]. The goal is to keep the average processing queue delay constant:

Delay =
�D

�U (�U � �D)
(1.16)

When either interarrival rate, �U , or the servicing rate, �D , change, the
delay is evaluated and the new frequency and voltage are selected that will
keep the delay constant. For example, if the arrival rate for MP3 audio frames
changes, the equation shown above is used to calculate the required decod-
ing rate in order to keep the frame delay (and thus performance) constant.

18

If a different frame decoding rate is detected while processor is set to the
same frequency, then piece-wise linear approximation based on the applica-
tion frequency-performance tradeoff curve is used to obtain the new processor
frequency setting. In either case, when CPU frequency is set to a new value,
the CPU voltage is always adjusted according to Figure 1.5.

4. Results

4.1 Dynamic Power Management

Policy optimisation is performed with a linear program solver [30] in just
under 1 minute on a 300MHz Pentium processor. Large savings are measured
on three different devices: laptop and desktop hard disks and the WLAN card.
All policies implemented are compared with two bounds: always-on and ora-
cle policies. Always-on policy leaves a device in the idle state, and thus does
not save any power. Oracle policy gives the lowest possible power consump-
tion, as it transitions the device into sleep state with the perfect knowledge of
the future. It is computed off-line using a previously collected trace. Obvi-
ously, the oracle policy is an abstraction that cannot be used in run-time DPM.

Hard disk measurements have the power manager as a part of a filter driver
template attached to the vendor-specific device driver [31]. Application pro-
grams such as word processors or spreadsheets send requests to the OS. When
any event occurs that concerns the hard disk, power manager is notified. When
the PM issues a command, the filter driver creates a power transition call and
sends it to the device which implements the power transition using Advanced
Configuration and Power Interface standard [7]. The change in power state is
also detected with the digital multimeter that measures current consumption of
the hard disk.

Table 1.5. Hard Disk Measurement Comparison

Laptop Desktop
Algorithm Pwr (W) Nsd Nwd Tss(s) Pwr (W) Nsd Nwd Tss(s)

Oracle 0.33 250 0 118 1.64 164 0 166
TISMDP 0.40 326 76 81 1.92 156 25 147
Adaptive 0.43 191 28 127 1.97 168 26 134
Karlin’s 0.44 323 64 79 1.94 160 15 142
30s timeout 0.51 147 18 142 2.05 147 18 142
DTMDP 0.62 173 54 102 2.60 105 39 130
120s timeout 0.67 55 3 238 2.52 55 3 238
Always on 0.95 0 0 0 3.48 0 0 0

Comparison of power and performance penalty for all policies measured on
the laptop and the desktop is shown in Table 1.5. Performance of the policies
is compared using three different measures. Nsd is defined as the number of

Dynamic Management of Power Consumption 19

times the policy issued sleep command. Nwd gives the number of times the
sleep command was issued and the hard disk was asleep for shorter than the
time needed to recover the cost of spinning down and spinning up the disk.
Clearly, it is important to minimize Nwd while maximizing Nsd. The aver-
age length of time spent in the sleep state (Tss) should be as large as possible
while still keeping the power consumption down. From our experience with
the user interaction with the hard disk, our algorithm performs well, thus giv-
ing us low-power consumption with still good performance. In comparison,
Karlin’s policy consumes 10% more power and has worse performance. Kar-
lin’s algorithm [8] guarantees to yield a policy that consumes at worst twice
the minimum amount of power consumed by the policy computed with perfect
knowledge of the user behaviour. In addition, our policy consumes 1.7 times
less power than the default Windows timeout policy of 120s and 1.4 times less
power than the 30s timeout policy on the laptop. TISMDP policy performs bet-
ter than the adaptive model [13], and significantly better than the policy based
on discrete-time Markov decision processes (DTMDP). The event-driven na-
ture of TISMDP algorithm, as compared to algorithms based on discrete time
intervals, saves considerable amount of power while in sleep state as it does not
require policy evaluation until an event occurs. Similar results can be observed
for the desktops.

Table 1.6. WLAN Measurement Comparison

WWW Telnet
Algorithm Nsd Nwd Tp(s) Pave(W) Nsd Nwd Tp(s) Pave(W)

Oracle 395 0 0 0.467 766 0 0 0.220
TISMDP(a) 363 96 6.90 0.474 798 21 2.75 0.269
TISMDP(b) 267 14 1.43 0.477 782 33 2.91 0.296
Karlin’s 623 296 23.8 0.479 780 40 3.81 0.302
TISMDP(c) 219 9 0.80 0.485 778 38 3.80 0.310
CTMDP 3424 2866 253.7 0.539 943 233 20.53 0.361
Default 0 0 0 1.410 0 0 0 1.410

In addition to the hard disks, the measurements have been performed also
on Lucent’s WLAN 2Mb/s card [25] connected to a Linux laptop. When com-
paring different policies, a LAN-attached host reads the 2.5 hr WWW and 2hr
telnet traces collected by tcpdump [32] utility and delays or drops packets ac-
cordingly. Three different versions of TISMDP algorithm (labelled TISMDP
a,b,c) with different power and performance penalty are implemented for each
application. Since web and telnet arrivals behave differently (see Figure 1.4),
the OS observes what application is currently actively communicating and in-
forms the power manager. Performance penalty is determined with three dif-
ferent measures. Delay penalty, Tp, is the time the system had to wait to service
a request since the card was in the sleep state when it should not have been.

20

The total number of shutdowns, Nsd and the number of shutdowns where sleep
time is too short to make up for the total cost of transition, Nwd are measured
as well.

The power management policy results presented in Table 1.6, TISMDP
a,b,c, show, on average, a factor of three in power savings with a low perfor-
mance penalty for the WWW application. Karlin’s algorithm [8] has low power
consumption, but its performance penalty is an order of magnitude larger than
for TISMDP policy. A policy that models all stochastic processes with the
exponential arrivals only, CTMDP, has a larger performance penalty because
its decision is based only on the current system state and not on the previous
history. TISMDP policy applied to Telnet trace shows a factor of five in power
savings. Telnet allows larger power savings because on average it transmits and
receives much less data then the WWW browser, thus giving more chances to
shut down the card.

4.2 Dynamic Voltage Scaling

DVS algorithm is implemented as a part of a power manager on the Smart-
Badge for two different applications: MPEG video decoder and MP3 audio
decoder. During the times that the system is idle, the TISMDP power man-
agement policy described in this Chapter decides when to transition the Smart-
Badge into a sleep state. When it is in the active state (the state where audio
and video decoding occur), the power manager (PM) observes changes in the
frame arrival and decoding rates using change point detection algorithm de-
scribed previously. Once a change is detected, the PM evaluates the required
value of the processor frequency that keeps the frame delay constant. The CPU
voltage is set using results shown in Figure 1.5.

Rate change detection algorithm is compared to the ideal detection and to
the exponential moving average algorithm. Ideal detection assumes knowl-
edge of the future; thus the system detects the change in rate exactly when the
change occurs. The exponential moving average can be defined as follows:

�n = (1� g)�o + g�cur (1.17)

where �n is the new average rate, �o is the old average, �cur is the current
measured rate and g is the gain. Figure 1.10 shows the comparison results for
detecting a change from 10 fr/sec to 60 fr/sec. Change point detection algo-
rithm presented in this Chapter detects the correct rate within 10 frames and is
more stable than either of the two the exponential moving average algorithms
(with different gain values).

Three different audio clips totaling 653 seconds of audio, each running at a
different set of bit (16,32,64 Kb/s) and sample rates (16 or 32 KHz) have been
used to test the DVS algorithm. The ideal detection algorithm, the exponen-
tial average approximation used in previous work and the maximum proces-

Dynamic Management of Power Consumption 21

0

20

40

60

80

100

120

0 100 200 300 400 500 600 700 800 900 1000

Frame Number

Fr
am

es
 p

er
 s

ec

Exp. Average (gain=0.03)
Exp. Average (g=0.05)
Change Point
Ideal

Figure 1.10. Rate Change Detection Algorithms

sor performance are compared to the change point algorithm presented in this
Chapter. During decoding, the DVS algorithm detects changes in both arrival
and decoding rates for the MP3 audio sequences. The resulting energy (kJ)
and average total frame delay (s) are displayed in Table 1.7. The change point
algorithm presented in this work performs well, its results are very close to the
ideal, with no performance loss as compared to the ideal detection algorithm
that allows an average 0.1 s total frame delay (corresponding to 6 extra frames
of audio in the buffer).

Table 1.7. MP3 audio DVS

MP3 Audio Change Exp.
Sequence Result Ideal Point Ave. Max

Clip 1 Energy 196 217 225 316
Fr.Delay 0.1 0.09 0.1 0

Clip 2 Energy 189 199 231 316
Fr.Delay 0.1 0.09 0.1 0

Clip 3 Energy 190 214 232 316
Fr.Delay 0.1 0.04 0.1 0

The next set of results are for decoding two different video clips. Results
are reported for the ideal detection, the exponential average, the maximum
processor performance and change point algorithm presented in this work. The
ideal detection algorithm allows for 0.1s average total frame delay equivalent
to 2 extra frames of video in the buffer. The arrival rate varies between 9 and

22

32 frames/second. Energy (kJ) and average total frame delay (s) are shown
in Table 1.8. The results are similar to MP3 audio. The exponential average
shows poor performance and higher energy consumption due to its instability
(see Figure 1.10). The change point algorithm performs well, with significant
savings in energy and a very small performance penalty (0.11s frame delay
instead of allowed 0.1s).

Table 1.8. MPEG video DVS

MPEG Video Change Exp.
Clip Result Ideal Point Ave. Max

Football Energy 214 218 300 426
(875s) Fr.Delay 0.1 0.11 0.16 0
Terminator2 Energy 280 294 385 570
(1200s) Fr.Delay 0.1 0.11 0.16 0

Finally, the dynamic voltage scaling is combined with power management
algorithm. This experiment uses a sequence of audio and video clips, sepa-
rated by some idle time. During longer idle times, the power manager has the
opportunity to place the SmartBadge in the sleep state. Table 1.9 shows the
energy savings with only dynamic voltage scaling, only power management
and finally also for the combination of the two approaches. Combined savings
are as high as a factor of three.

Table 1.9. DPM and DVS

Algorithm Energy (kJ) Factor

None 4260 1.0
DVS 3142 1.4
DPM 2460 1.7
Both 1342 3.1

5. Summary

As most systems do not need peak performance at all times, it is possible
to transition system components into low-power states when they are idle (dy-
namic power management) and to adjust frequency and voltage of operation to
the workload (dynamic voltage scaling). This chapter presents an event-driven
power management algorithm based on Time-Indexed Semi-Markov Decision
Process (SMDP) model that guarantees globally optimal results for systems
modeled with general distributions. Large power savings, ranging from a fac-

REFERENCES 23

tor of 1.7 to a factor of 5 have been observed when using TISMDP policy
on four different portable devices: the laptop and the desktop hard disks, the
WLAN card and the SmartBadge portable device.

TISMDP model has been extended to enable dynamic voltage scaling. The
dynamic voltage scaling algorithm consists of two tasks: (i)change point detec-
tion to recognize the change in arrival or decoding rates, and (ii) the frequency
setting policy that sets the processor frequency and voltage based on the cur-
rent arrival and decoding rates in order to keep constant performance. The new
DVS algorithm gives a factor of 1.4 to 2.2 savings in energy at a small per-
formance penalty for MP3 audio and MPEG video applications running on the
SmartBadge. DPM and DVS algorithms implemented together on the Smart-
Badge have a factor of 3 energy savings.

Acknowledgments

The author wishes to thank Dr. Giovanni De Micheli and Dr. Luca Benini
for their input into this work. In addition, this work would not have been
possible without the help and support of colleagues at HP Labs and Stanford
University.

References
[1] G. Q. Maguire, M. Smith and H. W. Peter Beadle “SmartBadges: a wearable computer and communi-

cation system” , 6th International Workshop on Hardware/Software Codesign, 1998.

[2] A. Chandrakasan, R. Brodersen, Low power digital CMOS design, Kluwer, 1995.

[3] J. Rabaey, M. Pedram (Editors), Low power design methodologies, Kluwer, 1996.

[4] W. Nabel, J. Mermet (Editors), Lower power design in deep submicron electronics, Kluwer, 1997.

[5] C. Ellis, “The case for higher-level power management” , 7th IEEE Workshop on Hot Topics in Oper-
ating Systems, pp.162–167, 1999.

[6] L. Benini and G. De Micheli, Dynamic Power Management: design techniques and CAD tools,
Kluwer, 1997.

[7] Intel, Microsoft and Toshiba, “Advanced Configuration and Power Interface specification” , 1996.

[8] A. Karlin, M. Manesse, L. McGeoch and S. Owicki, “Competitive Randomized Algorithms for
Nonuniform Problems” , Algorithmica, pp. 542–571, 1994.

[9] D. Ramanathan, R. Gupta, “System Level Online Power Management Algorithms” , Design, Automa-
tion and Test in Europe, pp. 606–611, 2000.

[10] M. Srivastava, A. Chandrakasan. R. Brodersen, “Predictive system shutdown and other architectural
techniques for energy efficient programmable computation,” IEEE Transactions on VLSI Systems,
vol. 4, no. 1, pp. 42–55, March 1996.

[11] C.-H. Hwang and A. Wu, “A Predictive System Shutdown Method for Energy Saving of Event-Driven
Computation” , in International Conference on Computer Aided Design, pp. 28–32, 1997.

[12] L. Benini, G. Paleologo, A. Bogliolo and G. De Micheli, “Policy Optimization for Dynamic Power
Management” , in IEEE Transactions on Computer-Aided Design, vol. 18, no. 6, pp. 813–833, June
1999.

[13] E. Chung, L. Benini and G. De Micheli, “Dynamic Power Management for non-stationary service
requests” , Design, Automation and Test in Europe, pp. 77–81, 1999.

[14] Q. Qiu and M. Pedram, “Dynamic power management based on continuous-time Markov decision
processes” , Design Automation Conference, pp. 555–561, 1999.

24

[15] T. Simunic, L. Benini, P. Glynn, G. De Micheli, ŞEvent-driven Power Management,Ť IEEE Transac-
tions on CAD, pp.840–857, July 2001.

[16] I. Hong, D. Kirovski, G. Qu, M. Potkonjak, M. Srivastava, “Power optimization of variable voltage-
core based systems,” Proceedings of Design Automation Conference, pp.176–181, 1998.

[17] I. Hong, M. Potkonjak, M. Srivastava, “On-line Scheduling of Hard Real-time Tasks on Variable
Voltage Processor,” Proceedings of International Conference on Computer-Aided Design, Nov. 1998.

[18] T. Ishihara, H. Yasuura, “Voltage Scheduling Problem for dynamically variable voltage processors,”
Proceedings of IEEE International Symposium on Low Power Electronics and Design, pp.197–202,
1998.

[19] F. Yao, A. Demers, S. Shenker, “A scheduling model for reduced CPU energy,” IEEE Annual founda-
tions of computer sciend, pp.374–382, 1995.

[20] Y. Shin, K. Choi, “Power conscious fixed priority scheduling for hard real-time systems,” Proceedings
of Design Automation Conference, pp.134–139, 1999.

[21] S. Lee, T. Sakurai, “Run-time voltage hopping for low-power real-time systems,” Proceedings of IEEE
International Symposium on Low Power Electronics and Design, pp.806–809, 2000.

[22] T. Pering, T. Burd, R. Brodersen, “The simulation and evaluation of Dynamic Voltage Scaling Algo-
rithms” Proceedings of IEEE International Symposium on Low Power Electronics and Design, 1998.

[23] A. Bavier, A. Montz, L. Peterson, “Predicting MPEG Execution Times,” Proceedings of SIGMET-
RICS, pp.131–140, 1998.

[24] A. Chandrakasan, V. Gutnik, T. Xanthopoulos, “Data Driven Signal Processing: An Approach for En-
ergy Efficient Computing,” Proceedings of IEEE International Symposium on Low Power Electronics
and Design, pp.347–352, 1996.

[25] Lucent, IEEE 802.11 WaveLAN PC Card - User’s Guide, p.A-1.

[26] M. Puterman, Finite Markov Decision Processes, John Wiley and Sons, 1994.

[27] H. Taylor and S. Karlin, An Introduction to Stochastic Modeling, Academic Press, 1998.

[28] L. Geppert, T. Perry, “Transmeta’s magic show,” IEEE Spectrum, vol. 37, pp.26–33, May 2000.

[29] S. Ross, Stochastic Processes, Wiley Press, 1996.

[30] S. Skiena, The Algorithm Design Manual , 1997.

[31] Y. Lu, T. Šimunić and G. De Micheli, “Software Controlled Power Management” , 7th International
Workshop on Hardware/Software Codesign, pp. 157–161, 1999.

[32] V. Jacobson, C. Leres, S. McCanne, The “tcpdump” Mannual Page, Lawrence Berkeley Laboratory.

