
> TVLSI-00159-2002.R1 <

1

Managing Power Consumption
in Networks on Chips

Tajana Simunic, Stephen Boyd, and Peter Glynn, Member, IEEE

Abstract—In this work we present a new methodology for

managing power consumption of NOCs. Power management
problem is formulated for the first time using closed-loop control
concepts. We introduce an estimator and a controller that
implement our power management methodology. The estimator
is capable of very fast and accurate tracking of changes in the
system parameters. Parameters estimated are used to form the
system model. Our system model combines node and network
centric power management decisions. Node centric power
management assumes no a priori knowledge of requests coming
in from outside the core. Thus it implements a more traditional
dynamic voltage scaling and power management control
algorithms. Network-centric power management utilizes
interaction with the other system cores regarding the power and
the QoS needs. The overall system model is based on Renewal
theory, and thus guarantees globally optimal results. We
introduce a fast optimization method that runs multiple orders of
magnitude faster than the previous optimization approaches
while still having the same accuracy in obtaining the power
management control. Finally, our controller implements the
results of optimization in either hardware or software. The new
methodology for power management of NOCs is tested on a
system consisting of four satellite units, each implementing an
estimator and a controller capable of both node and network
centric power management. Our results show large savings in
power with good QoS.

Index Terms— Energy management, Low power, Regenerative
stochastic processes, System analysis and design

I. INTRODUCTION

Future technology will make it possible to place an even
larger number of transistors on a single die, together with

many different layers of interconnect. Today’s SOCs are
designed as a tightly interconnected set of cores, where all
components share the same system clock, and the
communication between components is via shared-medium
busses. Even though design implementation is limited by
wire density, currently wires toggle approximately only 10%
of the time [2]. As the features sizes shrink, and the overall
chip size increases, the interconnects start behaving as lossy
transmission lines. Crosstalk, electro-magnetic interference,

and switching noise cause higher incidence of data errors.
Line delays have become very long as compared to gate
delays causing synchronization problems between cores. A
significant amount of power is dissipated on long
interconnects and in clocking network. Lowering the power
supplies and designing smaller logic swing circuits is one way
to help with the overall power consumption, but it comes at
the cost of higher data errors. In fact, power savings obtained
by only scaling down supply voltage levels are not sufficient
to compensate for higher complexity, larger interconnect
capacitance and resistance, higher operating frequency and
increased gate leakage [5].

One solution to these problems is to treat SOCs as micro-
networks, or Networks On Chips (NOCs) where the
interconnections are designed using an adaptation of the
protocol stack [1,2,7]. Networks have a much higher
bandwidth due to multiple concurrent connections. They have
regular structure, so the design of global wires can be fully
optimized and as a result their properties are more predictable.
Overall performance and scalability increase since the
networking resources are shared. Scheduling of traffic on
shared resources prevents latency increases on critical signals.
Networking model decouples the communication layers so
that design and synthesis of each layer is simpler and can be
done separately. In addition, decoupling enables easier
management of power consumption and performance at the
level of communicating cores.

This work presents a new methodology for managing
power consumption in NOCs. The power management
optimization problem is formulated and solved for the first
time using a closed-loop control model with a combination of
node and network centric power management approaches.
Each communicating core has a power manager that consists
of an estimator and a controller. The estimator tracks changes
in the state of the local core, incoming traffic to the core
(node-centric) and the special requests for power management
coming from the other cores on the network (network-centric).
All estimated parameters define the system model. Our model
expands the Renewal model presented previously in [14] to
combine node and network centric approaches into one, in
addition to including expanded state space needed for
dynamic voltage scaling in NOCs. We guarantee globally
optimal control based on this model. Our new fast
optimization methodology improves optimization speed by
multiple orders of magnitude over the old approaches.
Finally, we also present both hardware and software

Manuscript received Aug 30, 2002.
Tajana Simunic is with HP Labs and Stanford University, 1501 Page Mill,

MS 1181, Palo Alto, CA 94304. (phone: 650-236-5537, fax: 650- 857-8491;
e-mail: tajana@stanford.edu).

Stephen Boyd and Peter Glynn are with Stanford University, Stanford, CA
94305 (e-mail: boyd@stanford.edu, glynn@stanford.edu).

mailto:boyd@stanford.edu

> TVLSI-00159-2002.R1 <

2

implementations for the optimal controller. We implemented
our approach on a sample system of four cores in one NOC
and document savings of a factor of four due to our
methodology.

The rest of the paper is organized as follows. Section II
discusses related work. We introduce our approach for
managing power in NOCs in Section III. The estimator,
introduced in Section IV, tracks all changes in system
behavior and feeds that information to our Renewal system
model presented in Section V. The controller, discussed in
Section VI, implements both power management and voltage
scaling decisions obtained from the optimization step. A
sample design of a power management system for NOC is
presented in Section VII, along with the experimental results.
Finally, the Section VIII summarizes the contributions of our
work.

II. RELATED WORK
Design of Networks on Chips (NOCs) is a relatively new

field with numerous challenges. The first challenge is the
design of the communication network between the cores in a
NOC. More recently, there have been a few publications that
define the NOC architecture based on the packet
communication model [4]. The work presented in [3] uses fat
tree router topology to form an integrated packet switched
network with message passing protocol and 32 bit packet
sizes. Much larger packet sizes (256 data and 38 control bits)
and tiled architecture are suggested in [2]. The
communication layers in NOCs can be partitioned much like
the structure proposed by OSI Reference Model for the
computer networks in [1,7]. MESCAL provides tools for
correct-by-construction protocol stack [1]. The layers of
protocols encapsulate original computation cores to maximize
reusability. Adapters are used to bridge the differences
between communication needs of the cores. An example
implementation is Maia processor [8], which consists of 21
satellite units connected via two-level hierarchical
reconfigurable network. Large energy savings were observed
due to the ability of Maia to reconfigure itself according to
application needs.

Reduction of energy consumption in NOCs is another
challenge that needs to be considered, in tandem with the
design of the on-chip communication network [7]. Power
savings obtained by only scaling down supply voltage levels
are not going to be sufficient to compensate for a higher
complexity, a larger interconnect capacitance and resistance, a
higher operating frequency and an increased gate leakage [5].
Previous work for energy management of NOCs mainly
focused on controlling the power consumption of
interconnects [6], while neglecting managing power of the
cores. An outline of possible approaches for energy savings
in NOC cores is presented in [7]. Two approaches are
suggested: node-centric and network-centric, but no specific
implementation issues are discussed. In this work we present
an optimal way to implement both node and network centric

approaches using a closed-loop control model.
Many of the cores that are of interest in NOC design

already have multiple power and performance states which
can be exploited. Dynamic power management (DPM) and
dynamic voltage scaling (DVS) algorithms presented to date
[10-13, 15-25] have been designed with portable systems in
mind, not NOCs with very fast response times. In addition,
they are targeted devices such as hard disks or wireless LAN
that in our case is equivalent to node-centric level in NOCs,
thus there is not accounting for network-centric power
management. Most DPM and DVS algorithms are
deterministic in nature. Deterministic design methodology
used in today’s designs is being replaced by statistical
modeling, to account for unreliability of the on-chip
communication and non-deterministic nature of user’s
requests. As a result, there is a need to develop stochastic
model of NOCs to be used as the basis for optimization of
power consumption under QoS constraints.

In the past, stochastic models for DPM at the system level
have been formulated using Markov models with open-loop
control, where statistics of the device are collected and
characterized ahead of time, and the control is derived based
on those with no adaptation at run time [10, 12,13]. An
exception is the adaptive approach presented in [11] that uses
only memoryless distributions to describe the history-
dependent system behavior. In contrast, our model of NOCs
is based on Renewal theory concepts, which enables us to use
non-exponential distributions to describe both node and
network centric core behaviors. We accurately adapt to any
changes in the system at run-time with the first closed-loop
power management system for NOCs. When changes in any
of the model parameters are detected at run-time, our new fast
optimization method quickly re-evaluates both the power
management and the voltage scaling control. The next section
gives an overview of our approach for power management in
NOCs.

III. POWER MANAGEMENT IN NOCS
Networks on chips consist of a set of cores connected with

the communication network. Figure 1 shows a sample NOC
we will be referring to throughout this paper. The NOC
consists of four cores: MPEG audio, video, speech processing
and communication core. The cores communicate with each
other via router using a networking protocol. The design of
the networking protocol for NOCs is beyond the scope of this
paper, but has been addressed in [2,3]. In this work we
enhance each core’s ability to control its power states by
enabling closed-loop integrated node and network centric
power management with dynamic voltage scaling.

In order to compute the power manager’s control, we need
to develop a system model. We model NOC using Renewal
theory as a queuing network with a number of service points
representing cores. Management of energy consumption
under QoS constraints is formulated as a closed-loop
stochastic control problem.

> TVLSI-00159-2002.R1 <

3

Control theory defines three different entities in a closed-

loop control system: a system under control, an estimator and
a controller. Power manager (PM), as shown in Figure 2,
contains the controller, and the estimator. The estimator
observes the requests coming into the core’s queue (Core
Traffic in Figure 2), the state of the core and the incoming
power management requests from the network (Network PM
Request in Figure 2). Based on the observations, it tracks any
changes in the system parameters. When a change is detected,
it estimates the new parameter value, and recalculates the
power management control using our fast optimization
method. The controller implements power management
control calculated by the estimator. It gives commands to the
core that determine its performance and energy characteristics
(frequency and voltage) in the active state, and chooses when
to transition the core into one of the available low-power
states when the core is idle.

Core

Core
Function

Power Manager

Control
Policy

EstimatorNetwork PM
Request

Core
Traffic

Core

Router

Figure 2. Core’s Power Manager

To illustrate our power management system operation, we
will use the NOC shown in Figure 1 with streaming MP3
audio example. Let us assume that initially all cores in the
NOC are in the sleep state. The MP3 core’s controller starts
the transition from the sleep into the active state as soon as the
user request arrives to it via core traffic input. Right at the
beginning of initialization of MP3 decoder, the MP3 core
power manager also sends a network request via network PM
request port to the communications core to start its wakeup
process. Thus any performance penalty that might have been

present without network centric power management is now
masked. Next, the MP3 core receives encoded MP3 stream
data from the communications core via core traffic input.
MP3 estimator watches for the changes in the incoming data
and decoding rates or a discrepancy between measured and
desired MP3 QoS parameters at run-time. Upon detection, it
recalculates the power management control using our system
model and our fast optimization method, and thus closes the
optimization loop. The results of the detection are both new
power management and dynamic voltage scaling control. For
example, when a new MP3 decoding session starts, the MP3
estimator needs to match the incoming data rate with the
decoding rate so that there is no buffer overflow (modeled as a
queue in our system), and so QoS requirements, such as frame
delay, are met. This is done by setting appropriate processing
speed and voltage during the decoding time. In addition, once
the current MP3 session ends, the estimator uses the
calculated power management policy to decide when the MP3
core should go into a low power state. Once the
communication’s core services are not required anymore, the
communication core’s PM is notifies via a network PM
request. At that point, if no other requests are pending, the
communications core can enter a sleep state without any
additional idle time. As a result, the amount of energy wasted
while the core is idle is reduced. The following sections
describe in more details our closed-loop power management
system.

Router

Communications

MAC
controller

Baseband
DSP

Radio

Embedded
CPU

RAM Flash

PM

EEPROM

MPEG Video Core

DSP

RAM

PM

ARM
Core

Flash

DMA
Controller

Display
Controller

MPEG Audio Core

ARM
Core

PM

PCM
Buffer

Flash

RAM

DMA
Controller

Audio Out
Controller

Speech ProcessingPM

DSP ARM
Core

DMA
Controller

RAM

Flash

Audio In
Controller

Figure 1. Network On a Chip

IV. ESTIMATOR
The main task of the estimator is to observe the system

behavior and based on that to estimate the parameters needed
for optimization and control. The quality of power
management decisions strongly depends on estimator’s ability
to track changes of critical parameters at run-time. NOC
power management requires estimation of workload
characteristics, core parameters, and buffering behavior.

A. Workload characteristics
Each core’s workload includes request arrivals to the active

state (buffer is not empty), the idle states (buffer is empty),
and the network request arrivals. We distinguish between
active and idle state arrivals, as they are characterized by two
different distributions, and they also signify a different type of
a decision on the part of the power manager. In the active
state, PM decides only on the appropriate frequency and
voltage setting, where as in the idle state the primary decision
is which low-power state core should transition to. The
distribution of network requests only affects the decisions
made by the PM in the idle and the low-power states.

 (1) t

workload
workloadeeP λ−−= 1

Request arrivals to non-empty buffer (active state)
In the active state, the workload is modeled using

exponential distribution with request interarrival rate λworkload

> TVLSI-00159-2002.R1 <

4

as shown in Equation 1. For example, the workload's
stochastic model in the active state can be defined by the
frame interarrival time distribution for multimedia requests.
We measured MPEG2 video (CIF size) and MP3 audio frame
arrival times by monitoring the accesses to the WLAN core
and found a good fit with the exponential distribution.

Detecting the change in rate is a critical part of optimally
matching processing frequency and voltage to the
requirements of the user. For example, the rate of MP3 audio
frames coming from WLAN core can change drastically due
to the environment. The servicing rate can change due to
variance in computation needed between MPEG frames. The
most optimal method of tracking rate changes is using the
maximum likelihood estimator shown in Equation 2 (see [28]
for details).

(2)

Maximum likelihood ratio computes the ratio between the
probability that a change in rate did occur (numerator in
Equation 2) and the probability that rate did not change
(denominator). This estimator guarantees optimal results with
parameters defined as follows: w is the size of the window
that holds the last set of interarrival times ∆t, c is the point in
the past when the change in rate occurred, λn is the new rate,
and λo is the old rate.

An more efficient way to compute the maximum likelihood
ratio at run time is to calculate the natural log of Pmax as
shown in Equation 3. Note that in this equation only the sum
of decoding (or interarrival) times needs to be updated upon
every service completion (or arrival). A set of possible rates,
Λ, and the window size, w, are predefined by the system
designer. Values λn and λo, come from the set Λ.

∑
=

∆−−+−=
w

cj
jon

o

tcwP n)(ln)1()ln(max λλ
λ
λ (3)

The change point detection algorithm consists of two major
tasks: off-line characterization and on-line threshold detection.
Off-line characterization is done using stochastic simulation
over a set of all possible rates, λn and λo, to obtain the value of
ln(Pmax) that is sufficient to detect the change in rate. The
results are accumulated in a histogram, and then the value of
maximum likelihood ratio that gives very high probability that
the rate has changed is chosen for every pair of rates under
consideration. In our work we selected 99.5% likelihood.

On-line detection collects the interarrival time sums at run
time and calculates the maximum likelihood ratio. If the
maximum likelihood ratio computed is greater than the one
obtained from the histogram, then there is 99.5% likelihood
that the rate change occurred, and thus the CPU frequency and
voltage need to be adjusted. We found that a window of
w=100 is large enough in our experiments. Larger windows
will cause longer execution times, while much shorter

windows do not contain statistically large enough sample and
thus give unstable results.

0.001

0.01

0.1

1

0.01 0.1 1 10
Idle time (t) in sec.

Pr
ob

(T
>t

)

Experimental 1

Pareto 1

Experimental 2

Pareto 2

Figure 3. Experimental and Pareto Distributions

∏

∏∏

=

∆−

=

∆−
−

=

∆−

= w

j

t
o

w

cj

t
n

c

j

t
o

jo

jnjo

e

ee
P

1

1

1
max

λ

λλ

λ

λλ Request arrivals to empty buffer (idle state)
Once the buffer is empty, the first next arriving request

defines the length of the idle time. The longer the idle time,
the more savings we obtain by transitioning to a low-power
state. Our measurements indicate that the distribution of
workload idle times has to be modeled with the heavy-tailed
distribution, such as the Pareto distribution. Similar
conclusions based on traffic analysis for multimedia traffic in
on-chip networks were reached in [27]. Figure 3 shows the
log-log plot of the tail of the two experimental distributions
collected by observing idle times in the communication packet
arrivals over a period of two hours and the Pareto fits to each
set of data. The top two lines represent the first set of
experimental results and the corresponding Pareto fit, while
the bottom two are the second set. Clearly, the characteristics
of the two distributions are quite different since the usage
patterns changed during the collection period. Previous work
[13] assumed that the workload is stationary and then based on
a priori analysis developed the optimal control. When the
workload is not stationary, as shown by this example, the
control developed in such a way will not be optimal. Thus it
is important to be able to estimate Pareto parameters at run
time, and then to recalculate the optimal control.

The tail of the Pareto distribution with characteristic index
a and normalizing constant b is shown in Equation 4. The tail
of a distribution gives the probability that the idle time will be

as long or longer the a given time.

atbttP iii
−∆=∆>∆)((4

)

∑
=

∆+∑
=

∑
=

∑
=

∆−∆∆

∑
=

∑
=

−∆

=

−=

N

j
)jta

N

j
jP(

N

N

i
)

N

j jtit(Nit

N

i
)

N

j
jPiP(Nit

eb

a

1
ln

1
ln1

1 1
lnlnln

1 1
lnlnln

(5)

The parameters of Pareto distribution can be estimated
using least-squares method on N samples of idle times ∆t as

> TVLSI-00159-2002.R1 <

5

shown in Equation 5. Note that on the log plot (see Figure 3)
Pareto distribution is a straight line with slope a and intercept
b. On every new idle time sample, only the probability value,
PN, and the arrival time, ∆tN, need to be updated before
recalculating parameters a and b.

Network Request arrivals
There are two types of network requests: activation

(wakeup) and release (sleep) of a core. We model the
network request arrivals with two exponential distributions
fully defined by wakeup request arrival rate, λnetw, and the
network sleep request rate, λnets. The changes in network
request rates can be tracked with the maximum likelihood
ratio as was shown for core request arrival or servicing rates.
The network requests can arrive at any point in time, but can
only cause changes in core’s behavior in two distinct
situations. The wakeup request arrival causes core to wakeup
immediately from a low-power state regardless of the service
request arrival, where as a network sleep command transitions
a core to sleep when idle, regardless of the decision of core’s
power manager. Thus, the network request arrivals only
affect changes in decisions made regarding low-power state
transitions. Any changes of network wakeup and sleep
request arrival rates are tracked by the estimator at run-time as
they have an effect on the final power management control.

B. Core parameters
Three main core parameters to estimate include: core

frequency and voltage scaling characteristics, the time
distribution for servicing incoming core requests and the
characteristics of the low-power states, such as the transition
times to/from each state. Some core characteristics can be
determined at design time as they depend on hardware
parameters alone, such as the number of core frequency and
voltage settings. Other parameters need to be tracked at run-
time, for example the properties of service time distributions.

Each NOC core has at least one main processor. Many of
the today’s processor have multiple active and low-power
states. For example, each of the cores we characterize has one
StrongARM processor as shown in Figure 1. The processor
can be configured at run-time by a simple write to a hardware
register to execute at one of eleven different frequencies. The
number of frequencies is predefined at design time. We
measured the transition time between two different frequency
settings at 150 microseconds. For many applications (e.g.
MPEG video or MP3 audio) this transition time is small
enough that it does not cause any perceivable overhead. For
each frequency, there is a minimum voltage the processor
needs in order to run correctly, but with lower energy
consumption. The minimum voltage can be obtained either
from the datasheets, or by measurements.

Core servicing time is defined as the time it takes to process
an incoming request to a core. For example, servicing time
for MP3 core is defined as the time taken by the core to
decode an incoming MP3 frame. The time it takes for a core
to service requests in each of the active states follows an

exponential distribution. Detailed measurement results have
been presented in [13]. Although the general shape of the
distribution remains the same, the servicing rate, (λcore),
changes depending on the current core state. Thus, one of
estimator’s jobs is to track the servicing rate changes at run
time.

In addition to the active state, each core can support
multiple lower power states, such as: idle, sleep and off. The
core enters idle state as soon as all impeding requests are
processed. The low-power state transitions are controlled by
the power manager. The transition time between the active
and one of the low-power states can be best described using
the uniform probability distribution shown in Equation 6
where tmin and tmax are the minimum and the maximum
transitions times. Typically, the more energy is saved in a
given low-power state, the longer the average transition time
to and from that state. The characterization of transition times
between different power states can be done at design time, as
it is only a function of hardware design parameters.

(6)





=
<<−

−

else

ttttt
tt

uniformP
0

maxmin
minmax

min

C. Buffering (or queue) behavior
Each core has a buffer associated with it that is used to store

requests that have not been serviced yet. In this work we
model the buffer using M/M/1 queuing model since both
arrival and servicing rates in core’s active state follow the
exponential distribution. Thus, the queue is characterized by
the number of requests pending service. For multimedia
requests such as MPEG video and audio it is convenient to
describe queue in terms of the number of frames waiting in the
frame buffer. Detailed measurement results justifying M/M/1
queue model have already been published [13]. The estimator
tracks changes in the queue size at run-time and feeds that
information to the controller.

 We do not use a queue to model the buffering of network
requests, as such a buffer is not necessary. Network sleep
request causes a core to transition to sleep immediately from
an idle state and in any other state it is ignored. Network
wakeup request starts the transition of core from a sleep to an
active state. If core was in any state other than sleep, the
wakeup request is disregarded. Thus, in both cases the
network request either causes an immediate transition, or has
no effect on the system.

D. Estimator summary
Table 1 summarizes main parameters and distributions

modeled and tracked by the estimator. Workload model
depends on the number of requests waiting in the buffer (or
queue). When there is at least one request pending service in
the queue, the estimator uses exponential distribution to model
core’s request arrivals. Any changes in request arrival rate,
λworkload, are detected with maximum likelihood ratio. As soon
as queue is empty, an idle period begins. The estimator uses

> TVLSI-00159-2002.R1 <

6

Pareto distribution to model the length of the idle times. Two
parameters of Pareto distribution, a and b, are estimated at
run-time with least squares method. The time to transition
between various low-power states is modeled by the uniform
distribution. When core is actively processing requests
pending in the queue, it is said to be in the active state. Two
different parameters are observed at that time: core’s rate of
servicing requests, λcore, and frequency vs. voltage curve
characteristic. Clearly, service rate directly depends both on
the core’s frequency setting and on the type of requests
serviced. The frequency vs. voltage characteristic determines
the energy consumption and the performance for a particular
type of requests. Finally, the network requests follow
exponential distribution model with two different rates, λnetw

and λnets, for wakeup and sleep network requests. The
estimator tracks changes in both rates using the maximum
likelihood ratio. Given the system characteristics and
parameters described above, we can now derive the full
stochastic system model.

V. STOCHASTIC SYSTEM MODEL
Each core can be modeled using Renewal model similar to

the one presented in [13] for portable devices. In contrast to
work presented in [13] , here we expand the system model to
include voltage scaling, incoming network wakeup and sleep
requests. As a result, we have a unified stochastic model that
is guaranteed to give optimal power management decisions for
systems with communicating cores. Thus, we obtain extra
power savings because each core can transition to sleep as
soon as other cores send it release command (instead of
waiting for power manager’s randomized timeout as in [13]).
We can also wakeup a core from the sleep state preemptively
instead of having to wait for the first request arrival and thus
incurring the performance penalty due to the time taken to
transition a core back into the active state. Finally, our
expanded model integrates voltage scaling together with
power management.

The expanded Renewal model for each core is shown in
Figure 4. Each node shows the core’s queue (local buffer)
and power states, while each arc shows the transitions
between the states and the conditions under which the
transitions occur. Table 1 lists the distributions that model the
transitions. We
highlighted our additions to the model presented in [13].
Now there are two ways that the core can transition to sleep:
core sleep command and network sleep request. Core sleep

command is given based on core’s power management
control, which waits for a randomized timeout value before
starting the transition to sleep. Network sleep request causes
an immediate transition to sleep from the idle state. Similarly,
there are two ways to wake up a core: request arrival and
network wakeup request. The wakeup request starts the
transition to the active state even when there are no requests
pending in the queue. Also, now we have a sequence of
active states representing different core frequency and voltage
settings.

Arrival

Departure

Arrival,
Network wakup

No Arrival

Arrival

Idle State

queue = 0

Sleep State

Transition to
Active State
queue > 0

Transition to
Sleep State

Active State
foVo

queue > 0

Core sleep,
Network sleep

Figure 4. Renewal Model

Table 1. System Characteristics
Component State Distribution Parameters

Workload Queue > 0 Exponential λworkload
 Queue = 0 Pareto a,b
Core Active Exponential λcore, f-V plot
 Transition Uniform tmin, tmax
Network Wakeup Exponential λnetw
 Sleep Exponential λnets Renewal theory defines a state called renewal state, in

which the process statistically begins anew. The time between
successive visits to renewal state is called renewal time, and
one cycle from renewal state, through other states and then
back is called a renewal. The main advantage of Renewal
model is that it guarantees globally optimal results with very
fast optimization time. When obtaining the optimal power
management control, the complete cycle of transition from the
idle state, through the other power states and then back into
the idle state can be viewed as one renewal of the system. The
problem of power management optimization is to determine
the optimal distribution of the random variable tnode_s that
specifies when the transition from the idle state to low-power
state should occur based on the last entry into the idle state.
We assume that tnode_s takes on values in [0,∆t,…, j∆t,…N∆t],
where j is an index, ∆t is a fraction of the break-even time of
the core and N is the maximum time before the core would got
to a low-power state (usually set to an order of magnitude
greater than the break-even time). Break-even time is defined
as the minimum length of time a core should stay in a sleep
state in order to recuperate the cost of transition to and from it.
It is a function of hardware parameters only.

> TVLSI-00159-2002.R1 <

7

The solution to the optimization problem can be viewed as
a table of probabilities (tnode_s), where each element p(j)
specifies the probability of transition from idle to a low-power
state indexed by time values j∆t. Similarly, we define the
renewal time as t(j), the energy spent as e(j), and the
performance penalty incurred during a transition as d(j). Our
starting point in the formulation of the optimization problem is
the calculation of renewal time, t(j).

net

E[Length of idle period]+
E[Time to sleep] +
E[Length of sleep] +
E[Time to active] +
E[Time to service all requests]

IA

SSqIA

IA

SSq
node_s

E[Length of idle period] +
E[Time service request]

arrival arrival

departure

departure departure

net_w

Node-centric Network-centric

Figure 5. Renewal Time Calculation

Figure 5 shows three different state diagrams we need to
consider for calculation of the renewal time. The first two
relate to node-centric power management approach, while the
last one is specific to the network-centric approach. The
expected renewal time calculations are shown right below the
state transition diagrams. Note that while there is only one
way to enter the idle state from the active state (departure, or
completion of service request), there are two different ways to
transition to sleep out of idle (node sleep, node_s, and
network sleep, net_s, commands) and to active out of sleep
state (request arrival and network wakeup command, net_w).

The calculation of the expected renewal time is shown in
Equation 7. The five terms in this Equation mirror all possible
transitions shown in Figure 5.

]|),,()([
]|),,()([

]|),,()([
]|),,()([

]|),()([)(

tjtttttttIjtE
tjtttttttIjtE

tjtttttttIjtE
tjtttttttIjtE

tjtttttIjtEjt

snodereqwnetsnodesnetsnodereq

snodereqwnetsnodesnetsnodereq

snodereqwnetreqsnetsnodereq

snodereqwnetreqsnetsnodereq

snodereqsnetsnodereq

∆=<<>
+∆=><>

+∆=<>>
+∆=>>>

+∆=><=

(7)

Evaluation of energy and performance penalty are directly
derived from the expressions obtained for the renewal time.
For example, if we want to know how much energy is spent in
the idle state, eidle(j), for the condition i) of our expanded
model, we would just use the first term in Equation 8 to obtain
the expected time spent in the idle state and weigh it with the
power consumed while idling, Pidle. Equation 9 shows that
calculation. In a similar manner we can obtain performance
penalty, but instead of using the power consumption, we just
use the expected delay overhead. Note that other QoS
constraints can be added to this problem, such as jitter, much
in the same manner as we calculated energy and delay
overhead.

Once we have calculated the expected renewal time, energy
and performance penalty, we are ready to start the
optimization. The formulation of control optimization for
Renewal model is shown in Equation 10, where p(j) is the
probability of transitioning into low-power state after the
system has been idle for time j∆t, d(j) is the expected
performance penalty, t(j) is the expected time until renewal,
e(j) is the expected energy consumed, and Pconstr is the user-
defined power constraint. To simplify our discussion of the
fast optimization method in the next Section, we also define p,
a, b, and c ∈ Rn as follows: p is the probability we are solving
for, a represents performance penalty (d), b is the expected
renewal time (t), and c is the energy balance equation, e-
tPconstr. An open-loop optimization problem similar to this one
has already been solved for portable systems in [13] by using a
linear program solver. The optimal control is obtained in tens
of seconds, which is much too long for implementation of the
closed-loop power management control presented in this
work. Thus, we next we describe a new, fast optimization
algorithm capable of solving the same problem in a matter of
milliseconds.

)()()1(

]|),()([

_
0

tktptktptk

tjtttttIjtE

snetreq

j

k workloadcore

snodereqsnetsnodereq

∆>∆=
−

+∆

=∆=><

∑
= λλ

(8
)

Since all four possible events: time of the request arrival
(treq), network sleep command (tnet_s), network wakeup
command (tnet_w) and node sleep command (tnode_s) are
independent from each other, the actual calculation of each of
the five terms is simplified. As an example, we show in
Equation 8 a detailed calculation of the expected renewal time
described in condition i) for our expanded model. Note that in
this particular case network wakeup command condition is not
needed since the system never goes to sleep. This equation
states that the expected renewal time is a sum of time spent in
the idle state (k∆t), with the time needed to work off the
request that arrived while in the idle state (1/ (λcore-λworkload)),
weighed by the probability that node request arrives at time
k∆t, p(treq= k∆t), and the network and node sleep command
arrive after that (p(tnet_s >k∆t) and condition tnode_s= j∆t

expressed in the top limit on the summation). All other terms
in the renewal time calculation are obtained in the similar
manner.

∑
∑
∑
∑

∀≥==

=−=

=

j

j

j

j

s.t.

min

jjpjpp

Pjtjejppc

jtjp

jdjp

pb
pa

t

constr
t

t

t

0)(;1)(1

0])()()[(

)()(

)()(

(10)

)()(

]|),()([

_
0

tktptktptkP

tjtttttIjeE

snetreq

j

k
idle

snodereqsnetsnodereqidle

∆>∆=∆

=∆=><

∑
=

(9)

The problem in Equation 10 would be homogeneous except
for the constraint 1tp=1. In other words, if we replace the
vector p with p’= αp, where α>0, then p’ satisfies atp’ /btp’=
atp /btp (i.e, has the same objective value as p), ctp’= 0, and

> TVLSI-00159-2002.R1 <

8

p’≥ 0. It follows that we can replace the normalization 1tp=1
with any other, such as, for example, btp=1. This replacement
is possible since we can assume that a and b parameters are
always greater than zero componentwise because they
represent positive quantities. This leads to the problem:

0';1'
0'..

'min

≥=
=

ppb
pcts
pa

t

t

t

(11)

which is equivalent to Equation 10 in the following sense: if

p’* is the solution of Equation 11, then p*=(btp’*/ 1tp’*)p’* is
the solution of Equation 10.

We work with the problem in Equation 11, which is a linear
program (LP) with n variables, and two constraints. By the
basic theorem of linear programming, there is always a
solution which has only two nonzero entries. Therefore the
original problem, in Equation 10 has the same property: there
is always a solution p* which has only two nonzero entries.

To solve the LP in Equation 11 efficiently, we consider its
dual problem, which is LP shown in Equation 12. The
problem can further be reformulated as a simple,
unconstrained maximization problem that is a function of only
one scalar variable, u, as shown below.
The function f(u) is piecewise linear and concave. In other
words, we seek two indices, k and l such that:

lllkkk bucabucauf /)(/)()(+=+= (14)
with bk/ck ≥ 0 and bl/cl ≤ 0. These two indices allow us to
solve the primal LP in Equation 11 since these two indices can
be taken as the nonzero indices in the optimal p’. A solution
of the primal LP in Equation 10 can be found by setting p’j=0,
except for j=k and j=l. We then solve the linear equations
ctp’=0, btp’=1, to find the optimal p’.

Thus, obtaining the optimal result to the original problem
reduces to solving the dual problem Equation 11, which is a
single variable unconstrained optimization problem. This can
be done several ways. The simplest is to use bisection to find
the optimal u (and more importantly, the optimal indices k and
l). The selection of the initial bracketing values should be
done depending on the problem characteristics. When

optimizing NOC power management control, the initial
bracketing values are determined based on core characteristics
(e.g. break even time). The optimization is triggered by the
estimator when any of the system parameters change. The
final output of optimization is a table that specifies
probabilities of transitioning a core into each of the low-power
states. An example of optimal control is shown in Table 2.

Table 2. Sample controller

Source
Idle Time

(ms)
Transition
Probability

Node 0 0.0
No arrival 70 0.3
 120 1.0
Arrival Any time 1.0
Network Any time 1.0

VI. CONTROLLER
The controller’s job is to give commands to the core

regarding both power management and voltage scaling.
Power management decisions determine when to transition
into a low-power state, and which of the available low-power
states to transition to. Dynamic voltage scaling implies a
selection from one of the active states at run-time depending
on the estimator’s feedback.

The dynamic power management control can be accessed
from either software or hardware, depending on how power
management controller is realized. The software
implementation of the controller can be described as follows.
The controller generates a pseudo-random number when the
core becomes idle. The core remains idle until either the
probability of transition to the low-power state is greater than
the random number generated, or until workload arrival forces
the core’s transition into the active state. When the core is in
the low-power state, it stays there until the first arrival, at
which point it transitions back into the active state. Arrival of
network sleep command overrides node-centric control only
in the idle state before the transition to sleep has started.
Similarly, network wakeup command causes the core to
transition to active state only if it has been in a sleep state with
no requests pending. In all other cases the optimal control
behaves the same way as if was only node-centric.

0..
max

≥++
−

avbucts
v (12)

iiii bucauf /)(min)(max += (13)

Controller sets the new processor frequency and voltage
when either the incoming workload arrival rate (λworkload) or
the core’s servicing rate (λcore) change. Changes in both rates
are tracked and computed by the estimator using maximum
likelihood ratio. Often the relationship between servicing rate
and processor frequency is fixed for a given application, and
thus needs to be estimated only once per each new
application. Thus, run-time estimation is primarily done for
the core’s workload incoming rate.

)(coreworkloadworkload

coreDelay
λ−λλ

λ
= (15)

The controller uses results of M/M/1 queuing theory to
obtain the appropriate control for dynamic voltage scaling
since both the workload arrivals and service times follow an
exponential distribution. The goal of the controller is to set
the voltage and frequency of the processor for the newly
estimated rate so that the processing delay shown in Equation
15, and thus the number of tasks to be processed in the buffer,
are kept constant. For example, if the arrival rate for MP3
audio changes, Equation 15 is used to obtain required
decoding rate in order to keep the frame delay (and thus
performance) constant. When both workload and core rates

> TVLSI-00159-2002.R1 <

9

A. Estimator are changing, the change detected first is adapted to first.
There are two core states in which power management

decisions are made. Appropriate service level is determined
in the active state (non-empty buffer), while the decision on
when to transition into the sleep state occurs in the idle state
(empty buffer). The quality of both decisions depends on the
estimation accuracy and speed. We first evaluate the
estimation of the request arrivals to a non-empty buffer,
followed by the estimation of the arrivals to an empty buffer.

VII. RESULTS
The power management methodology presented in this

work is implemented for the sample NOC system shown in
Figure 1. The system consists of four large cores:
communication, speech processing, MPEG audio and video
core. Power and performance characteristics of each core are
shown in Table 3. Three power states are supported by each
core: active, idle, and sleep. The transition time from active to
sleep and back to active state (shown in Table 3 as A-S-A
time) is on the order of tens of milliseconds, which is slow
enough to allow for dynamic parameter estimation and
periodic control recalculation. Number of DVS settings
reflects the discrete frequency and voltage points each cores
processing unit can be set to. The transition time needed to
change from one to other frequency point is on the order of
hundreds of microseconds (labeled as DVS switch time).

Exponential distribution is used to model arrival times to a
non-empty buffer (or buffer with requests pending service),
service times of each core, the network wakeup and sleep
request arrivals. Each of these distributions is characterized
with a rate: λworkload, λcore, λnet_w, and λnet_s. Changes in these
rates can be due to many different factors, ranging from
changes of the type of workload, to different conditions in the
wireless medium. The estimator uses maximum likelihood
ratio shown in Equation 3 to detect a change in any of the
exponential distribution rates. An important advantage of
maximum likelihood ratio is that it guarantees optimal
estimation results with relatively small computation cost.

Table 3. NOC Specifications

Specification Audio Video Comm. Speech Total
Active P(mW) 700 1885 1500 1055 5140
Idle P(mW) 216 235 1000 208 1659
Sleep P(mW) 0.3 1.4 100 0.6 102.2
A-S-A time(ms) 45.6 54.6 40 54.6 54.6
DVS Settings 11 11 3 11 11
DVS switch (us) 150 150 100 150 150

Since the estimation is done in the same way for each of the
four exponential distribution rates, we present results for
estimating when incoming arrival frame rate in the MPEG
video core changes from 10 frames/sec to 60 frames/sec. The
maximum likelihood ratio approach is compared to both ideal
and exponential average detection. The new exponential
average rate, λave

new, is calculated using a current estimate for
the rate, λcur, and weighing it against the average value
computed to date, λave

old, with a gain parameter g:
Each core in NOC has a power manager, that in turn

consists of an estimator and a controller. Estimators job is to
estimate the parameters needed to recalculate optimal control
depending on the changes in the core’s environment. The
environment includes incoming traffic from the chip network,
and special power management requests from other cores.
The controller implements the optimal system control. The
results highlight the quality of the estimators, followed by the
controller implementation in hardware. Lastly, energy savings
are contrasted when using only the node-centric approach
with the combined node and network-centric power
management.

cur
old
ave

new
ave gg λλλ +−=)1((16)

Figure 6 shows the results of estimation. The maximum
likelihood algorithm detects the exact change in rate. Slight
delay is due to a number of samples needed before the change
can be detected. The effect of this delay is very minor to the
overall power management control. It is very close to ideal
detection which knows ahead of time when the rate will
change. In contrast, the exponential average detection for two
different values of gain shows very delayed and unstable
detection characteristics. The closer detection is to the exact
time change in rate occurs, the more unstable exponential
average detection becomes. Since the computational overhead
of maximum likelihood detection is about the same as with the
exponential detection, clearly our approach to estimation for
exponential rate changes is the better one to use.

0

20

40

60

80

100

120

0 100 200 300 400 500 600 700 800 900 1000

Frame Number

Fr
am

es
 p

er
 se

c

Exp. Average (g=0.03)
Exp. Average (g=0.05)
Max. Likelihood
Ideal

Figure 6. Arrival rate estimation

> TVLSI-00159-2002.R1 <

10

Distribution of the length of time spent in the idle state,
modeled by the Pareto distribution, also needs to be estimated
at run time, as it is one of the most important parameters
determining the quality of the power management control.
Our estimator tracks changes in two critical parameters of the
the distribution, a and b, as shown in Equation 4. Since Pareto
distribution follows a straight line on a log plot (see Figure 3),
we can use the least squares method to find the line’s slope
and intercept. Figure 7 shows how the estimator detects a
change in the idle time distribution on a communications core
when the traffic pattern changes between two examples shown
in Figure 3. The change is most clearly observed in the
intercept value. The Pareto parameter estimates are very fast
and accurate, with average error of only 2%.

0.01

0.1

1

0 20 40 60 80 1
Sample Number

Es
tim

at
e

V
al

ue

00

Estimate (a)
Estimate(b)

Figure 7. Dynamic Pareto Parameter Estimates

B. Controller
The power manager’s controller can be realized in software,

hardware or a combination of the two. When critical
parameters change very often, control and estimation should
be realized in software. Realizing a part of, or the whole
controller in hardware lowers the control overhead, with very
minor additions to an already existing hardware power
manager (e.g. ARM cores) or an on-chip FPGA. This
approach is very attractive especially for cores where the
control does not change much at run time, and thus does not
need to be recomputed very often. Since the software
implementation has already been discussed, we focus on the
hardware implementation next.

There are three different components to the optimal
controller: the random number generator, the control and the
timer. The timer is used to measure the length of idle period
before the control is evaluated. Typically core’s processors
already have programmable timers aboard that can be used by
the hardware controller. The simplest hardware
implementation for random number generator is to use Linear
Feedback Shift Register (LFSR).

Table 4. Local PM Control FPGA Synthesis Results

LFSR LFSR Regs Control
Bits # LABs Max ns # LABs Max ns
5-15 1 4 2 35

Results of controller synthesis into Altera’s EPM7032
FPGA are shown in Table 4. Control and LFSRs take up 3
Logic Array Blocks (LABs) for LFSR sizes ranging from 5 to
15 bits. We found through simulation that even with as little
as 8 bits, the hardware LFSR gives results within 5% of
optimal. In addition, the time it takes to arrive at the decision
is in the nanoseconds, while the minimum idle times the
power manager would respond to are in milliseconds.
Controller is even faster when synthesized into gates with
Synopsis as shown in Table 5. The LFSR area is consistently
about 12-14% of the total area. Even the largest design takes
only 15 registers and 855 gates.

Table 5. Local PM Control Synopsis Synthesis Results

LFSR Regs Control
#FFs % area #gates % area

5 14% 193 86%
9 14% 417 86%

15 12% 855 87%

C. Node-centric DVS and DPM
 In this section we present results of node-centric dynamic

voltage scaling and power management with no consideration

for network requests. We start by comparing the energy
savings controller can obtain when implementing DVS on
MP3 audio core based on the results of (i) the ideal detection
algorithm, (ii) the exponential average approximation and (iii)
the maximum processor performance to (iv) the maximum
likelihood algorithm presented in this paper. For this purpose
we combined six audio clips (labeled A-F) totaling 653
seconds of audio, each running at a different set of bit and
sample rates. For all sequences, the frame arrival rate varies
between 16 and 44 frames/sec. During decoding, the estimator
detects changes in both arrival and decoding rates for the MP3
audio sequences, and the controller responds by adjusting the
processor frequency and voltage. The resulting energy (kJ)
and average total frame delay (s) are displayed in Table 7. Our
controller, which relies on maximum likelihood estimation,
has results very close to the ideal detection in terms of both
performance and energy savings. The maximum average
frame delay of 0.1 s corresponds to 6 extra frames of audio in
the buffer.

Table 6. Node-centric DPM and DVS

Algorithm Energy (kJ) Factor
None 4260 1.0
DVS 2663 1.6
DPM 2506 1.7
Both 1556 2.7

> TVLSI-00159-2002.R1 <

11

 We implemented DVS for two different video clips as
well. The arrival rate varies between 9 and 32 frames/second.
The ideal detection algorithm allows for 0.1s average total
frame delay equivalent to 2 extra frames of video in the
buffer. Energy (kJ) and average total frame delay (s) are
shown in Table 8. The exponential average shows poor
performance and higher energy consumption due to its
instability (see Figure 6). The controller that uses results of
our maximum likelihood estimator performs well, with
significant savings in energy.

Next, use a sequence of audio and video clips, separated by
idle time to study the tradeoffs when using DVS and DPM on
NOC. Table 6 contrasts system energy savings obtained with
only dynamic voltage scaling implemented, followed by only
power management and finally also for the combination of the
two approaches. We obtain savings of a factor of 2.7 when
expanding the power manager to include dynamic voltage
scaling with our change point detection algorithm.

D. Network-centric Power Management
 In this section we contrast power savings obtainable when

using only node-centric power management, with additional
savings we can get when implementing network-centric
approach. Table 9 shows energy savings obtained for the
NOC shown in Figure 1, with specifications listed in Table 3.
The results were obtained by simulating the power states of
the NOC system as a whole, with real workload traces
collected from each respective core as an input to the
simulator. The results report a factor of savings in energy for
both node and network centric approaches with reference to
not using any power management. The lightly shaded portion
of the table reports corresponds to only node-centric approach,
while the darker shaded row is for a combined node and
network-centric approaches.

Table 9. Energy Savings for PM in NOCs

PM PM Type MP3 MPEG2 Comm. Speech Total
None None 1.0 1.0 1.0 1.0 1.0
Node DVS only 1.4 2.0 1.0 3.8 1.2
Centric DPM only 2.0 1.5 3.0 1.5 2.4

 DVS&DPM 2.8 3.0 3.0 5.8 3.0
Network DVS&DPM 3.7 3.6 4.2 6.1 4.1

 In node-centric PM, controlling only processing frequency
and voltage at run time (DVS results) gives between a factor
of 1.4 to a factor of almost four in savings pre core. Note that
communications core does not allow voltage and frequency
scaling. When only control of transition into the sleep state is
implemented (DPM only results), savings range from a factor
of 1.5 to a factor of 3. The smallest savings are in video core,
as it tends to have very few idle times. Combining the DVS
and DPM gives the overall savings of a factor of 3.6.

 When network power management is included with the
node-centric approach (the last row in Table 9), the savings in
energy grow to a factor of 4.1 with performance penalty
reduced by a minimum 15%. The performance penalty of a

core is the time the rest of the system has to wait in order for
the core to become available after either changing processing
frequency or waking up from the sleep state. These savings
show that using information about system state as it becomes
available (network wakeup and sleep requests) can
significantly enhance the quality of the power management
results. There are quite a few situations where such
information is available. For example, when MP3 decoder
starts, it can immediately inform the communication core that
its services will be needed. Thus by the time MP3 initializes
all of its data structures, the communication core transitions
from sleep state into the active state. In this way no
performance penalty is incurred due to the transition, and

communication core was able to save power by staying asleep
as long as possible. In situations where such information is
not available (node-centric approach) our closed-loop power
management approach still gives large savings.

Table 7. MP3 audio DVS

MP3
Sequence

Result Ideal Max
Lik.

Exp.
Ave.

Max

ACEFBD Energy (kJ) 196 217 225 316
 Fr. Delay (s) 0.1 0.09 0.1 0

BADECF Energy (kJ) 189 199 231 316
 Fr. Delay (s) 0.1 0.09 0.1 0

CEDAFB Energy (kJ) 190 214 232 316
 Fr. Delay (s) 0.1 0.04 0.1 0

Table 8. MPEG video DVS

MPEG
Video Clip

Result Ideal Max
Lik.

Exp.
Ave.

Max

Football Energy (kJ) 214 218 300 426
(875s) Fr. Delay (s) 0.1 0.11 0.16 0
Terminator2 Energy (kJ) 280 294 385 570
(1200s) Fr. Delay (s) 0.1 0.11 0.16 0

VIII. CONCLUSIONS
This work presented a new methodology for managing

power consumption in NOCs. The power management
optimization is formulated using closed loop control concepts,
with blended node and network centric approaches. The first
component of our power management system is an estimator
that is capable of fast and accurate tracking of system changes.
The expanded Renewal model integrates network centric
power management with voltage scaling and node centric
power management. It enables the formulation of the
optimization problem that is guaranteed to be globally
optimal. The optimization is done using our new fast
optimization method, which is orders of magnitude faster than
methods used in the past. Lastly, we presented a controller
implementation that manages both DVS and DPM.

The new methodology is tested on a design of a NOC
system consisting of four satellite units, each with the local
power manager consisting of the estimator and the controller.

> TVLSI-00159-2002.R1 <

12

The estimator implementation has been shown to have
average error of 2% when estimating Pareto parameters, and is
right on target when estimating exponential frame arrival rate
changes. Our fast optimization algorithm recalculated control
in a matter of milliseconds when the distribution parameters
change. The final implementation of node and network centric
power management approaches shows savings of a factor of
four at system level while improving performance.

ACKNOWLEDGMENT
Many thanks to my HP Labs colleagues, Mat Hans, Brian
Delaney, and Andrea Acquaviva, for their help with this work.

REFERENCES
[1] M. Sgroi, M. Sheets, A. Mihal, K. Keutzer, S. Malik, J. Rabaey, A.

Sangiovanni-Vincentelli, ``Addressing the System-on-a-Chip
Interconnect Woes through Communication-Based Design,'' Design
Automation Conference, pp. 667-672, 2001.

[2] W. Dally, B. Towles, “Route Packets, Not Wires: On-Chip
Interconnection Networks,” Design Automation Conference, pp. 684-
689, 2001.

[3] P. Guerrier, A. Greiner, “A Generic Architecture for On-Chip Packet-
Switched Interconnections,” Design, Automation and Test in Europe,
pp. 250-256, 2000.

[4] K. Goossens, J. Merbergen, A. Peeters, P. Wielage, “Networks on
Silicon: Combining Best-Effor and Guaranteed Services,” Design,
Automation and Test in Europe, pp. 423-426, 2002.

[5] International Technology Roadmap for Semiconductors: 2001.
[6] T. Ye, L. Benini, G. De Micheli, “Analysis of Power Consumption on

Switch Fabrics in Network Routers,” Design Automation Conference,
pp. 600-605, 2002.

[7] L. Benini, G. De Micheli, “Powering Networks on Chips,” International
Symposium on System Synthesis, Invited Talk, 2002.

[8] M. Wan, H. Zhang, V. George, M. Benes, A. Abnous, V. Prabhu, J.
Rabaey, “Design Methodology of a Low-Energy Reconfigurable Single-
Chip DPS System,” Journal of VLSI Signal Processing, 2000.

[9] “SA-1110 Microprocessor Technical Reference Manual,” Intel, 2000.
[10] L. Benini, G. Paleologo, A. Bogliolo and G. De Micheli, ``Policy

Optimization for Dynamic Power Management'', IEEE Transactions on
Computer-Aided Design, vol. 18, no. 6, pp. 813-833, June 1999.

[11] E. Chung, L. Benini and G. De Micheli, ``Dynamic Power Management
for non-stationary service requests'', Design, Automation and Test in
Europe, pp. 77-81, 1999.

[12] Q. Qiu, Q. Wu, M. Pedram, “Dynamic Power Management in a Mobile
Multimedia System with Guaranteed Quality-of-Service,” Design
Automation Conference, pp. 701-707, 2001.

[13] T. Simunic, L. Benini, P. Glynn, G. De Micheli, “Event-driven Power
Management,” IEEE Transactions on CAD, pp.840-857, July 2001.

[14] T. Simunic, S. Boyd, “Managing Power Consumption in Networks on
Chips,” Design, Automation and Test in Europe, pp. 110-116, 2002.

[15] M. Weiser, B. Welch, A. Demers, S. Shenker, ``Scheduling for reduced
CPU energy,'' Symposium on Operating Systems Design and
Implementation pp.13-23, Nov. 1994.

[16] K. Govil, E. Chan, H. Wasserman, ``Comparing algorithms for Dynamic
speed-setting of a low-power CPU,'' International Conference on
Mobile Computing and Networking, Nov. 1995.

[17] F. Yao, A. Demers, S. Shenker, ``A scheduling model for reduced CPU
energy,'' IEEE Foundations of computer science, pp.374-382, 1995.

[18] I. Hong, M. Potkonjak, M. Srivastava, ``On-line Scheduling of Hard
Real-time Tasks on Variable Voltage Processor,'' International
Conference on Computer-Aided Design, Nov. 1998.

[19] T. Ishihara, H. Yasuura, ``Voltage Scheduling Problem for dynamically
variable voltage processors,'' IEEE International Symposium on Low
Power Electronics and Design, pp.197-202, 1998.

[20] Y. Shin, K. Choi, ``Power conscious fixed priority scheduling for hard
real-time systems,'' Design Automation Conference, pp.134-139, 1999.

[21] S. Lee, T. Sakurai, ``Run-time voltage hopping for low-power real-time
systems,'' IEEE International Symposium on Low Power Electronics and
Design, pp.806-809, 2000.

[22] Y. Zhang, X. Hu, D. Chen, ``Task Scheduling and Voltage Selection for
Energy Minimization,'' Design Automation Conference, pp.130-135,
2002.

[23] G. Quan, X. Hu, “Minimum Energy Fixed-Priority Scheduling for
Variable Voltage Processors,” Design, Automation and Test in Europe,
pp. 782-787, 2002.

[24] D. Rakhmatov, S. Vrudhula, C. Chakrabarti, ``Battery-Conscious Task
Sequencing for Portable Devices Including Voltage/Clock Scaling,''
Design Automation Conference, pp.333-337, 2002.

[25] T. Pering, T. Burd, R. Brodersen, ``Voltage scheduling in the IpARM
microprocessor system',' IEEE International Symposium on Low Power
Electronics and Design, pp.96-101, 2000.

[26] A. Bavier, A. Montz, L. Peterson, ``Predicting MPEG Execution Times,''
SIGMETRICS, pp.131-140, 1998.

[27] G. Varatkar, R. Marculescu, ``Traffic Analysis for On-chip Networks
Design of Multimedia Applications,'' Design Automation Conference,
pp.402-407, 2002.

[28] S. Eliason, Maximum Likelihood Estimation, Sage Publications, 1993.
[29] S. Boyd, L. Vandenberghe, Convex Optimization, Lecture Notes,

Stanford University, Winter 2001.

	INTRODUCTION
	related work
	POWER MANAGEMENT IN NOCs
	ESTIMATOR
	Workload characteristics
	Core parameters
	Buffering (or queue) behavior
	Estimator summary

	STOCHASTIC SYSTEM MODEL
	CONTROLLER
	RESULTS
	Estimator
	Controller
	Node-centric DVS and DPM
	Network-centric Power Management

	CONCLUSIONS

