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Abstract—In this work we present a new methodology for 

managing power consumption of NOCs.   Power management 
problem is formulated for the first time using closed-loop control 
concepts.  We introduce an estimator and a controller that 
implement our power management methodology.  The estimator 
is capable of very fast and accurate tracking of changes in the 
system parameters.  Parameters estimated are used to form the 
system model.  Our system model combines node and network 
centric  power management decisions.   Node centric power 
management assumes no a priori knowledge of requests coming 
in from outside the core.  Thus it implements a more traditional 
dynamic voltage scaling and power management control 
algorithms.  Network-centric power management utilizes 
interaction with the other system cores regarding the power and 
the QoS needs.  The overall system model is based on Renewal 
theory, and thus guarantees globally optimal results.  We 
introduce a fast optimization method that runs multiple orders of 
magnitude faster than the previous optimization approaches 
while still having the same accuracy in obtaining the power 
management control.  Finally, our controller implements the 
results of optimization in either hardware or software. The new 
methodology for power management of NOCs is tested on a 
system consisting of four satellite units, each implementing an 
estimator and a controller capable of both node and network 
centric power management.  Our results show large savings in 
power with good QoS. 
 

Index Terms— Energy management, Low power, Regenerative 
stochastic processes, System analysis and design 
 

I. INTRODUCTION 

Future technology will make it possible to place an even 
larger number of transistors on a single die, together with 

many different layers of interconnect.  Today’s SOCs are 
designed as a tightly interconnected set of cores, where all 
components share the same system clock, and the 
communication between components is via shared-medium 
busses.   Even though design implementation is limited by 
wire density, currently wires toggle approximately only 10% 
of the time [2].  As the features sizes shrink, and the overall 
chip size increases, the interconnects start behaving as lossy 
transmission lines.  Crosstalk, electro-magnetic interference, 

and switching noise cause higher incidence of data errors.  
Line delays have become very long as compared to gate 
delays causing synchronization problems between cores. A 
significant amount of power is dissipated on long 
interconnects and in clocking network.  Lowering the power 
supplies and designing smaller logic swing circuits is one way 
to help with the overall power consumption, but it comes at 
the cost of higher data errors.  In fact, power savings obtained 
by only scaling down supply voltage levels are not sufficient 
to compensate for higher complexity, larger interconnect 
capacitance and resistance, higher operating frequency and 
increased gate leakage [5].   

One solution to these problems is to treat SOCs as micro-
networks, or Networks On Chips (NOCs) where the 
interconnections are designed using an adaptation of the 
protocol stack [1,2,7].  Networks have a much higher 
bandwidth due to multiple concurrent connections.  They have 
regular structure, so the design of global wires can be fully 
optimized and as a result their properties are more predictable.  
Overall performance and scalability increase since the 
networking resources are shared.   Scheduling of traffic on 
shared resources prevents latency increases on critical signals.  
Networking model decouples the communication layers so 
that design and synthesis of each layer is simpler and can be 
done separately.  In addition, decoupling enables easier 
management of power consumption and performance at the 
level of communicating cores. 

This work presents a new methodology for managing 
power consumption in NOCs.  The power management 
optimization problem is formulated and solved for the first 
time using a closed-loop control model with a combination of 
node and network centric power management approaches. 
Each communicating core has a power manager that consists 
of an estimator and a controller.  The estimator tracks changes 
in the state of the local core, incoming traffic to the core  
(node-centric) and the special requests for power management 
coming from the other cores on the network (network-centric).  
All estimated parameters define the system model.  Our model 
expands the Renewal model presented previously in [14] to 
combine node and network centric approaches into one, in 
addition to including expanded state space needed for 
dynamic voltage scaling in NOCs.  We guarantee globally 
optimal control based on this model.  Our new fast 
optimization methodology improves optimization speed by 
multiple orders of magnitude over the old approaches.  
Finally, we also present both hardware and software 

 
Manuscript received Aug 30, 2002.  
Tajana Simunic is with HP Labs and Stanford University, 1501 Page Mill, 

MS 1181, Palo Alto, CA 94304.  (phone: 650-236-5537, fax: 650- 857-8491; 
e-mail:  tajana@stanford.edu).  

Stephen Boyd and Peter Glynn are with Stanford University, Stanford, CA 
94305 (e-mail: boyd@stanford.edu, glynn@stanford.edu). 

mailto:boyd@stanford.edu


> TVLSI-00159-2002.R1 < 
 

2

implementations for the optimal controller.  We implemented 
our approach on a sample system of four cores in one NOC 
and document savings of a factor of four due to our 
methodology. 

The rest of the paper is organized as follows. Section II 
discusses related work. We introduce our approach for 
managing power in NOCs in Section III. The estimator, 
introduced in Section IV, tracks all changes in system 
behavior and feeds that information to our Renewal system 
model presented in Section V.  The controller, discussed in 
Section VI, implements both power management and voltage 
scaling decisions obtained from the optimization step.  A 
sample design of a power management system for NOC is 
presented in Section VII, along with the experimental results.  
Finally, the Section VIII summarizes the contributions of our 
work. 

II. RELATED WORK 
Design of Networks on Chips (NOCs) is a relatively new 

field with numerous challenges.  The first challenge is the 
design of the communication network between the cores in a 
NOC.  More recently, there have been a few publications that 
define the NOC architecture based on the packet 
communication model [4].  The work presented in [3] uses fat 
tree router topology to form an integrated packet switched 
network with message passing protocol and  32 bit packet 
sizes.  Much larger packet sizes (256 data and 38 control bits)  
and tiled architecture are suggested in [2].  The 
communication layers in NOCs can be partitioned much like 
the structure proposed by OSI Reference Model for the 
computer networks in [1,7].  MESCAL provides tools for 
correct-by-construction protocol stack [1].  The layers of 
protocols encapsulate original computation cores to maximize 
reusability.  Adapters are used to bridge the differences 
between communication needs of the cores.  An example 
implementation is Maia processor [8], which consists of 21 
satellite units connected via two-level hierarchical 
reconfigurable network.  Large energy savings were observed 
due  to the ability of Maia to reconfigure itself according to 
application needs.   

Reduction of energy consumption in NOCs is another 
challenge that needs to be considered, in tandem with the 
design of the on-chip communication network [7].   Power 
savings obtained by only scaling down supply voltage levels 
are not going to be sufficient to compensate for a higher 
complexity, a larger interconnect capacitance and resistance, a 
higher operating frequency and an increased gate leakage [5].   
Previous work for energy management of NOCs mainly 
focused on controlling the power consumption of 
interconnects [6], while neglecting managing power of the 
cores.  An outline of possible approaches for energy savings 
in NOC cores is presented in [7].  Two approaches are 
suggested: node-centric and network-centric, but no specific 
implementation issues are discussed.  In this work we present 
an optimal way to implement both node and network centric 

approaches using a closed-loop control model. 
Many of the cores that are of interest in NOC design 

already have multiple power and performance states which 
can be exploited.  Dynamic power management (DPM) and 
dynamic voltage scaling (DVS) algorithms presented to date 
[10-13, 15-25] have been designed with portable systems in 
mind, not NOCs with very fast response times.   In addition, 
they are targeted devices such as hard disks or wireless LAN 
that in our case is equivalent to node-centric level in NOCs, 
thus there is not accounting for network-centric power 
management.  Most DPM and DVS algorithms are 
deterministic in nature.  Deterministic design methodology 
used in today’s designs is being replaced by statistical 
modeling, to account for unreliability of the on-chip 
communication and non-deterministic nature of user’s 
requests.  As a result, there is a need to develop stochastic 
model of NOCs to be used as the basis for optimization of 
power consumption under QoS constraints.   

In the past, stochastic models for DPM at the system level 
have been formulated using Markov models with open-loop 
control, where statistics of the device are collected and 
characterized ahead of time, and the control is derived based 
on those with no adaptation at run time [10, 12,13].  An 
exception is the adaptive approach presented in [11] that uses 
only memoryless distributions to describe the history-
dependent system behavior.  In contrast, our model of NOCs 
is based on Renewal theory concepts, which enables us to use 
non-exponential distributions to describe both node and 
network centric core behaviors.  We accurately adapt to any 
changes in the system at run-time with the first closed-loop 
power management system for NOCs.  When changes in any 
of the model parameters are detected at run-time, our new fast 
optimization method quickly re-evaluates both the power 
management and the voltage scaling control.  The next section 
gives an overview of our approach for power management in 
NOCs. 

III. POWER MANAGEMENT IN NOCS 
Networks on chips consist of a set of cores connected with 

the communication network.    Figure 1 shows a sample NOC 
we will be referring to throughout this paper.  The NOC 
consists of four cores: MPEG audio, video, speech processing 
and communication core.  The cores communicate with each 
other via router using a networking protocol.  The design of 
the networking protocol for NOCs is beyond the scope of this 
paper, but has been addressed in [2,3].   In this work we 
enhance each core’s ability to control its power states by 
enabling closed-loop integrated node and network centric 
power management with dynamic voltage scaling.   

In order to compute the power manager’s control, we need 
to develop a system model.  We model NOC using Renewal 
theory as a queuing network with a number of service points 
representing cores.   Management of energy consumption 
under QoS constraints is formulated as a closed-loop 
stochastic control problem.   
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Control theory defines three different entities in a closed-

loop control system: a system under control, an estimator and 
a controller.  Power manager (PM), as shown in Figure 2, 
contains the controller, and the estimator.  The estimator 
observes the requests coming into the core’s queue (Core 
Traffic in Figure 2), the state of the core and the incoming 
power management requests from the network (Network PM 
Request in Figure 2).  Based on the observations, it tracks any 
changes in the system parameters.  When a change is detected, 
it estimates the new parameter value, and recalculates the 
power management control using our fast optimization 
method.  The controller implements power management 
control calculated by the estimator.  It gives commands to the 
core that determine its performance and energy characteristics 
(frequency and voltage) in the active state, and chooses when 
to transition the core into one of the available low-power 
states when the core is idle.    

Core

Core
Function

Power Manager

Control
Policy

EstimatorNetwork PM
Request

Core
Traffic

Core

Router

 

Figure 2. Core’s Power Manager 

To illustrate our power management system operation, we 
will use the NOC shown in Figure 1 with streaming MP3 
audio example.  Let us assume that initially all cores in the 
NOC are in the sleep state. The MP3 core’s controller starts 
the transition from the sleep into the active state as soon as the 
user request arrives to it via core traffic input.  Right at the 
beginning of initialization of MP3 decoder, the MP3 core 
power manager also sends a network request via network PM 
request port to the communications core to start its wakeup 
process.  Thus any performance penalty that might have been 

present without network centric power management is now 
masked. Next, the MP3 core receives encoded MP3 stream 
data from the communications core via core traffic input.  
MP3 estimator watches for the changes in the incoming data 
and decoding rates or a discrepancy between measured and 
desired MP3 QoS parameters at run-time.  Upon detection, it 
recalculates the power management control using our system 
model and our fast optimization method, and thus closes the 
optimization loop.  The results of the detection are both new 
power management and dynamic voltage scaling control.  For 
example, when a new MP3 decoding session starts, the MP3 
estimator needs to match the incoming data rate with the 
decoding rate so that there is no buffer overflow (modeled as a 
queue in our system), and so QoS requirements, such as frame 
delay, are met.  This is done by setting appropriate processing 
speed and voltage during the decoding time.  In addition, once 
the current MP3 session ends, the estimator uses the 
calculated power management  policy to decide when the MP3 
core should go into a low power state.  Once the 
communication’s core services are not required anymore, the 
communication core’s PM is notifies via a network PM 
request.  At that point, if no other requests are pending, the 
communications core can enter a sleep state without any 
additional idle time.  As a result, the amount of energy wasted 
while the core is idle is reduced.  The following sections 
describe in more details our closed-loop power management 
system.    
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Figure 1. Network On a Chip 

IV. ESTIMATOR 
The main task of the estimator is to observe the system 

behavior and based on that to estimate the parameters needed 
for optimization and control.  The quality of power 
management decisions strongly depends on estimator’s ability 
to track changes of critical parameters at run-time.  NOC 
power management requires estimation of workload 
characteristics, core parameters,  and buffering behavior.   

A. Workload characteristics 
Each core’s workload includes request arrivals to the active 

state (buffer is not empty), the idle states (buffer is empty),  
and the network request arrivals.  We distinguish between 
active and idle state arrivals, as they are characterized by two 
different distributions, and they also signify a different type of 
a decision on the part of the power manager.  In the active 
state, PM decides only on the appropriate frequency and 
voltage setting, where as in the idle state the primary decision 
is which low-power state core should transition to.   The 
distribution of network requests only affects the decisions 
made by the PM in the idle and the low-power states.     

  
 (1) t

workload
workloadeeP λ−−= 1

Request arrivals to non-empty buffer (active state)  
In the active state, the workload is modeled using 

exponential distribution with request interarrival rate λworkload 
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as shown in Equation 1.  For example, the workload's 
stochastic model in the active state can be defined by the 
frame interarrival time distribution for multimedia requests. 
We measured MPEG2 video (CIF size) and MP3 audio frame 
arrival times by monitoring the accesses to the WLAN core 
and found a good fit with the exponential distribution.   

Detecting the change in rate is a critical part of optimally 
matching processing frequency and voltage to the 
requirements of the user.  For example, the rate of MP3 audio 
frames coming from WLAN core can change drastically due 
to the environment.  The servicing rate can change due to 
variance in computation needed between MPEG frames. The 
most optimal method of tracking rate changes is using the 
maximum likelihood estimator shown in Equation 2 (see [28] 
for details). 

 

 
(2) 

Maximum likelihood ratio computes the ratio between the 
probability that a change in rate did occur (numerator in 
Equation 2) and the probability that rate did not change 
(denominator).  This estimator guarantees optimal results with 
parameters defined as follows: w is the size of the window 
that holds the last set of interarrival times ∆t, c is the point in 
the past when the change in rate occurred, λn is the new rate, 
and λo is the old rate.    

An more efficient way to compute the maximum likelihood 
ratio at run time is to calculate the natural log of Pmax as 
shown in Equation  3.  Note that in this equation only the sum 
of decoding (or interarrival) times needs to be updated upon 
every service completion (or arrival).  A set of possible rates, 
Λ, and the window size, w, are predefined by the system 
designer.  Values λn and λo, come from the set Λ.   

∑
=

∆−−+−=
w

cj
jon

o

tcwP n )(ln)1()ln( max λλ
λ
λ  ( 3) 

The change point detection algorithm consists of two major 
tasks: off-line characterization and on-line threshold detection.  
Off-line characterization is done using  stochastic simulation 
over a set of all possible rates, λn and λo, to obtain the value of 
ln(Pmax) that is sufficient to detect the change in rate.  The 
results are accumulated in a histogram, and then the value of 
maximum likelihood ratio that gives very high probability that 
the rate has changed is chosen for every pair of rates under 
consideration.  In our work we selected 99.5% likelihood.  

On-line detection collects the interarrival time sums at run 
time and calculates the maximum likelihood ratio. If the 
maximum likelihood ratio computed is greater than the one 
obtained from the histogram, then there is 99.5% likelihood 
that the rate change occurred, and thus the CPU frequency and 
voltage need to be adjusted. We found that a window of 
w=100 is large enough in our experiments. Larger windows 
will cause longer execution times, while much shorter 

windows do not contain statistically large enough sample and 
thus give unstable results.    

0.001

0.01

0.1

1

0.01 0.1 1 10
Idle time (t) in sec.

Pr
ob

(T
>t

)

Experimental 1

Pareto 1

Experimental 2

Pareto 2

 
Figure 3. Experimental and Pareto Distributions 
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Once the buffer is empty, the first next arriving request 

defines the length of the idle time.  The longer the idle time, 
the more savings we obtain by transitioning to a low-power 
state.  Our measurements indicate that the distribution of 
workload idle times has to be modeled with the heavy-tailed 
distribution, such as the Pareto distribution. Similar 
conclusions based on traffic analysis for multimedia traffic in 
on-chip networks were reached in [27].  Figure 3 shows the 
log-log plot of the tail of the two experimental distributions 
collected by observing idle times in the communication packet 
arrivals over a period of two hours and the Pareto fits to each 
set of data.  The top two lines represent the first set of 
experimental results and the corresponding Pareto fit, while 
the bottom two are the second set.  Clearly, the characteristics 
of the two distributions are quite different since the usage 
patterns changed during the collection period.  Previous work 
[13] assumed that the workload is stationary and then based on 
a priori analysis developed the optimal control. When the 
workload is not stationary, as shown by this example, the 
control developed in such a way will not be optimal.  Thus it 
is important to be able to estimate Pareto parameters at run 
time, and then to recalculate the optimal control.    

The tail of the Pareto distribution with characteristic index 
a and normalizing constant b is shown in Equation 4.  The tail 
of a distribution gives the probability that the idle time will be 

as long or longer the a given time.   
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(5) 

The parameters of Pareto distribution can be estimated 
using least-squares method on N samples of idle times ∆t as 
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shown in Equation 5. Note that on the log plot (see Figure 3) 
Pareto distribution is a straight line with slope a and intercept 
b.  On every new idle time sample, only the probability value, 
PN,  and the arrival time, ∆tN, need to be updated before 
recalculating parameters a and b. 

 
Network Request arrivals 
There are two types of network requests: activation 

(wakeup) and release (sleep) of a core.  We model the 
network request arrivals with two exponential distributions 
fully defined by wakeup request arrival rate, λnetw, and the 
network sleep request rate, λnets.  The changes in network 
request rates can be tracked with the maximum likelihood 
ratio as was shown for core request arrival or servicing rates.   
The network requests can arrive at any point in time, but can 
only cause changes in core’s behavior in two distinct 
situations.   The wakeup request arrival causes core to wakeup 
immediately from a low-power state regardless of the service 
request arrival, where as a network sleep command transitions 
a core to sleep when idle, regardless of the decision of core’s 
power manager.  Thus, the network request arrivals only 
affect changes in decisions made regarding low-power state 
transitions.    Any changes of network wakeup and sleep 
request arrival rates are tracked by the estimator at run-time as 
they have an effect on the final power management control. 

B. Core parameters 
Three main core parameters to estimate include: core 

frequency and voltage scaling characteristics, the time 
distribution for servicing incoming core requests and the 
characteristics of the low-power states, such as the transition 
times to/from each state.  Some core characteristics can be 
determined at design time as they depend on hardware 
parameters alone, such as the number of core frequency and 
voltage settings.  Other parameters need to be tracked at run-
time, for example the properties of service time distributions.   

Each NOC core has at least one main processor.   Many of 
the today’s processor have multiple active and low-power 
states.  For example, each of the cores we characterize has one 
StrongARM processor as shown in Figure 1.  The processor 
can be configured at run-time by a simple write to a hardware 
register to execute at one of eleven different frequencies. The 
number of frequencies is predefined at design time. We 
measured the transition time between two different frequency 
settings at 150 microseconds.  For many applications (e.g. 
MPEG video or MP3 audio)  this transition time is small 
enough that it does not cause any perceivable overhead.  For 
each frequency, there is a minimum voltage the processor 
needs in order to run correctly, but with lower energy 
consumption.  The minimum voltage can be obtained either 
from the datasheets, or by measurements. 

Core servicing time is defined as the time it takes to process 
an incoming request to a core.  For example, servicing time 
for MP3 core is defined as the time taken by the core to 
decode an incoming MP3 frame.  The time it takes for a core 
to service requests in each of the active states follows an 

exponential distribution. Detailed measurement results have 
been presented in [13].  Although the general shape of the 
distribution remains the same, the servicing rate, (λcore), 
changes depending on the current core state.  Thus, one of 
estimator’s jobs is to track the servicing rate changes at run 
time. 

In addition to the active state, each core can support 
multiple lower power states, such as: idle, sleep and off. The 
core enters idle state as soon as all impeding requests are 
processed.  The low-power state transitions are controlled by 
the power manager. The transition time between the active 
and one of the low-power states can be best described using 
the uniform probability distribution shown in Equation 6 
where tmin and tmax are the minimum and the maximum 
transitions times.  Typically, the more energy is saved in a 
given low-power state, the longer the average transition time 
to and from that state.  The characterization of transition times 
between different power states can be done at design time, as 
it is only a function of hardware design parameters.  

 

 
(6) 
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C. Buffering (or queue) behavior 
Each core has a buffer associated with it that is used to store 

requests that have not been serviced yet.   In this work we 
model the buffer using M/M/1 queuing model since both 
arrival and servicing rates in core’s active state follow the 
exponential distribution.   Thus, the queue is characterized by 
the number of requests pending service.  For multimedia 
requests such as MPEG video and audio it is convenient to 
describe queue in terms of the number of frames waiting in the 
frame buffer.  Detailed measurement results justifying M/M/1 
queue model have already been published [13].  The estimator 
tracks changes in the queue size at run-time and feeds that 
information to the controller. 

 We do not use a queue to model the buffering of network 
requests, as such a buffer is not necessary.   Network sleep 
request causes a core to transition to sleep immediately from 
an idle state and in any other state it is ignored.  Network 
wakeup request starts the transition of core from a sleep to an 
active state.  If core was in any state other than sleep, the 
wakeup request is disregarded.    Thus, in both cases the 
network request either causes an immediate transition, or has 
no effect on the system.   

D. Estimator summary 
Table 1 summarizes main parameters and distributions 

modeled and tracked by the estimator.  Workload model 
depends on the number of requests waiting in the buffer (or 
queue).  When there is at least one request pending service in 
the queue, the estimator uses exponential distribution to model 
core’s request arrivals.  Any changes in request arrival rate, 
λworkload, are detected with maximum likelihood ratio.  As soon 
as queue is empty, an idle period begins.  The estimator uses 
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Pareto distribution to model the length of the idle times.  Two 
parameters of Pareto distribution, a and b, are estimated at 
run-time with least squares method.  The time to transition 
between various low-power states is modeled by the uniform 
distribution.  When core is actively processing requests 
pending in the queue, it is said to be in the active state.  Two 
different parameters are observed at that time: core’s rate of 
servicing requests,  λcore, and frequency vs. voltage curve 
characteristic.  Clearly, service rate directly depends both on 
the core’s frequency setting and on the type of requests 
serviced.  The frequency vs. voltage characteristic determines 
the energy consumption and the performance for a particular 
type of requests.  Finally, the network requests follow 
exponential distribution model with two different rates, λnetw 

and λnets, for wakeup and sleep network requests.  The 
estimator tracks changes in both rates using the maximum 
likelihood ratio. Given the system characteristics and 
parameters described above, we can now derive the full 
stochastic system model. 

V. STOCHASTIC SYSTEM MODEL 
Each core can be modeled using Renewal model similar to 

the one presented in [13] for portable devices.  In contrast to 
work presented in [13] , here we expand the system model to 
include voltage scaling, incoming network wakeup and sleep 
requests.  As a result, we have a unified stochastic model that 
is guaranteed to give optimal power management decisions for 
systems with communicating cores. Thus, we obtain extra 
power savings because each core can transition to sleep as 
soon as other cores send it release command (instead of 
waiting for power manager’s randomized timeout as in [13]).  
We can also wakeup a core from the sleep state preemptively 
instead of having to wait for the first request arrival and thus 
incurring the performance penalty due to the time taken to 
transition a core back into the active state. Finally, our 
expanded model integrates voltage scaling together with 
power management.  

The expanded Renewal model for each core is shown in 
Figure 4.  Each node shows the core’s queue (local buffer) 
and power states, while each arc shows the transitions 
between the states and the conditions under which the 
transitions occur. Table 1 lists the distributions that model the 
transitions.   We 
highlighted our additions to the model presented in [13].   
Now there are two ways that the core can transition to sleep: 
core sleep command and network sleep request.  Core sleep 

command is given based on core’s power management 
control, which waits for a randomized timeout value before 
starting the transition to sleep. Network sleep request causes 
an immediate transition to sleep from the idle state.  Similarly, 
there are two ways to wake up a core: request arrival and 
network wakeup request.  The wakeup request starts the 
transition to the active state even when there are no requests 
pending in the queue.    Also, now we have a sequence of 
active states representing different core frequency and voltage 
settings. 
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No Arrival
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Idle State
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Sleep State

Transition to
Active State
queue > 0

Transition to
Sleep State
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Figure 4. Renewal Model 

Table 1. System Characteristics 
Component State Distribution Parameters 

Workload Queue > 0 Exponential λworkload 
 Queue = 0 Pareto a,b 
Core Active Exponential λcore, f-V plot 
 Transition Uniform tmin, tmax 
Network Wakeup Exponential λnetw 
 Sleep Exponential λnets  Renewal theory defines a state called renewal state, in 

which the process statistically begins anew. The time between 
successive visits to renewal state is called renewal time, and 
one cycle from renewal state, through other states and then 
back is called a renewal.  The main advantage of Renewal 
model is that it guarantees globally optimal results with very 
fast optimization time.   When obtaining the optimal power 
management control, the complete cycle of transition from the 
idle state, through the other power states and then back into 
the idle state can be viewed as one renewal of the system.  The 
problem of power management optimization is to determine 
the optimal distribution of the random variable tnode_s that 
specifies when the transition from the idle state to low-power 
state should occur based on the last entry into the idle state.  
We assume that tnode_s takes on values in [0,∆t,…, j∆t,…N∆t], 
where j is an index, ∆t is a fraction of the break-even time of 
the core and N is the maximum time before the core would got 
to a low-power state (usually set to an order of magnitude 
greater than the break-even time).   Break-even time is defined 
as the minimum length of time a core should stay in a sleep 
state in order to recuperate the cost of transition to and from it.  
It is a function of hardware parameters only. 
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The solution to the optimization problem can be viewed as 
a table of probabilities (tnode_s),  where each element p(j) 
specifies the probability of transition from idle to a low-power 
state indexed by time values j∆t.  Similarly, we define the 
renewal time as t(j), the energy spent as e(j),  and the 
performance penalty incurred during a transition as d(j).  Our 
starting point in the formulation of the optimization problem is 
the calculation of renewal time, t(j). 

net

E[Length of idle period]+
E[Time to sleep] +
E[Length of sleep] +
E[Time to active] +
E[Time to service all requests]

IA

SSqIA

IA

SSq
node_s

E[Length of idle period] +
E[Time service request]

arrival arrival

departure

departure departure

net_w

Node-centric Network-centric

 
Figure 5. Renewal Time Calculation 

Figure 5 shows three different state diagrams we need to 
consider for calculation of the renewal time.  The first two 
relate to node-centric power management approach, while the 
last one is specific to the network-centric approach.   The 
expected renewal time calculations are shown right below the 
state transition diagrams.  Note that while there is only one 
way to enter the idle state from the active state (departure, or 
completion of service request), there are two different ways to 
transition to sleep out of idle (node sleep, node_s, and 
network sleep, net_s, commands) and to active out of sleep 
state (request arrival and network wakeup command, net_w).   

The calculation of the expected renewal time is shown in 
Equation 7. The five terms in this Equation mirror all possible 
transitions shown in Figure 5. 
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Evaluation of energy and performance penalty are directly 
derived from the expressions obtained for the renewal time.  
For example, if we want to know how much energy is spent in 
the idle state, eidle(j), for the condition i) of our expanded 
model, we would just use the first term in Equation 8 to obtain 
the expected time spent in the idle state and weigh it with the 
power consumed while idling, Pidle.  Equation 9 shows that 
calculation.  In a similar manner we can obtain performance 
penalty, but instead of using the power consumption, we just 
use the expected delay overhead.  Note that other QoS 
constraints can be added to this problem, such as jitter, much 
in the same manner as we calculated energy and delay 
overhead. 

Once we have calculated the expected renewal time, energy 
and performance penalty, we are ready to start the 
optimization.  The formulation of control optimization for 
Renewal model is shown in Equation 10, where p(j) is the 
probability of transitioning into low-power state after the 
system has been idle for time j∆t, d(j) is the expected 
performance penalty, t(j) is the expected time until renewal, 
e(j) is the expected energy consumed, and Pconstr is the user-
defined power constraint.  To simplify our discussion of the 
fast optimization method in the next Section, we also define p, 
a, b, and c ∈ Rn as follows:  p is the probability we are solving 
for, a represents performance penalty (d), b is the expected 
renewal time (t), and c is the energy balance equation, e-
tPconstr.  An open-loop optimization problem similar to this one 
has already been solved for portable systems in [13] by using a 
linear program solver.  The optimal control is obtained in tens 
of seconds, which is much too long for implementation of the 
closed-loop power management control presented in this 
work.  Thus, we next we describe a new, fast optimization 
algorithm capable of solving the same problem in a matter of 
milliseconds. 
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Since all four possible events: time of the request arrival 
(treq), network sleep command (tnet_s), network wakeup 
command (tnet_w) and node sleep command (tnode_s) are 
independent from each other, the actual calculation of each of 
the five terms is simplified.  As an example, we show in 
Equation 8 a detailed calculation of the expected renewal time 
described in condition i) for our expanded model.  Note that in 
this particular case network wakeup command condition is not 
needed since the system never goes to sleep.  This equation 
states that the expected renewal time is a sum of time spent in 
the idle state (k∆t), with the time needed to work off the 
request that arrived while in the idle state ( 1/ (λcore-λworkload) ), 
weighed by the probability that node request arrives at time 
k∆t, p(treq= k∆t), and the network and node sleep command 
arrive after that (p(tnet_s >k∆t) and condition tnode_s= j∆t 

expressed in the top limit on the summation).  All other terms 
in the renewal time calculation are obtained in the similar 
manner. 
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The problem in Equation 10 would be homogeneous except 
for the constraint 1tp=1. In other words, if we replace the 
vector p with p’= αp, where α>0, then p’ satisfies atp’ /btp’= 
atp /btp (i.e, has the same objective value as p), ctp’= 0, and 
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p’≥ 0.  It follows that we can replace the normalization 1tp=1 
with any other, such as, for example, btp=1. This replacement 
is possible since we can assume that a and b parameters are 
always greater than zero componentwise because they 
represent positive quantities.  This leads to the problem: 

0';1'
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'min

≥=
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ppb
pcts
pa

t

t

t

 
(11) 

which is equivalent to Equation 10 in the following sense:  if 

p’* is the solution of Equation 11, then p*=(btp’*/ 1tp’*)p’* is 
the solution of Equation 10. 

We work with the problem in Equation 11, which is a linear 
program (LP) with n variables, and two constraints. By the 
basic theorem of linear programming, there is always a 
solution which has only two nonzero entries.  Therefore the 
original problem, in Equation 10 has the same property: there 
is always a solution p* which has only two nonzero entries.  

To solve the LP in Equation 11 efficiently, we consider its 
dual problem, which is LP shown in Equation 12. The 
problem can further be reformulated as a simple, 
unconstrained maximization problem that is a function of only 
one scalar variable, u, as shown below. 
The function f(u) is piecewise linear and concave.  In other 
words, we seek two indices, k and l such that: 

lllkkk bucabucauf /)(/)()( +=+=  (14) 
with bk/ck ≥ 0 and bl/cl ≤ 0. These two indices allow us to 
solve the primal LP in Equation 11 since these two indices can 
be taken as the nonzero indices in the optimal p’.  A solution 
of the primal LP in Equation 10 can be found by setting p’j=0, 
except for j=k and j=l.  We then solve the linear equations 
ctp’=0, btp’=1, to find the optimal p’.  

Thus, obtaining the optimal result to the original problem 
reduces to solving the dual problem Equation 11, which is a 
single variable unconstrained optimization problem.  This can 
be done several ways. The simplest is to use bisection to find 
the optimal u (and more importantly, the optimal indices k and 
l).  The selection of the initial bracketing values should be 
done depending on the problem characteristics.  When 

optimizing NOC power management control, the initial 
bracketing values are determined based on core characteristics 
(e.g. break even time). The optimization is triggered by the 
estimator when any of the system parameters change. The 
final output of optimization is a table that specifies 
probabilities of transitioning a core into each of the low-power 
states.  An example of optimal control is shown in Table 2.    

Table 2. Sample controller 

Source 
Idle Time 

(ms) 
Transition 
Probability 

Node 0 0.0 
No arrival 70 0.3 
 120 1.0 
Arrival Any time 1.0 
Network Any time 1.0  

VI. CONTROLLER 
The controller’s job is to give commands to the core 

regarding both power management and voltage scaling.  
Power management decisions determine when to transition 
into a low-power state, and which of the available low-power 
states to transition to.  Dynamic voltage scaling implies a 
selection from one of the active states at run-time depending 
on the estimator’s feedback.     

The dynamic power management control can be accessed 
from either software or hardware, depending on how power 
management controller is realized. The software 
implementation of the controller can be described as follows.  
The controller generates a  pseudo-random number when the 
core becomes idle. The core remains idle until either the 
probability of transition to the low-power state is greater than 
the random number generated, or until workload arrival forces 
the core’s transition into the active state. When the core is in 
the low-power state, it stays there until the first arrival, at 
which point it transitions back into the active state.  Arrival of 
network sleep command overrides node-centric control only 
in the idle state before the transition to sleep has started.  
Similarly, network wakeup command causes the core to 
transition to active state only if it has been in a sleep state with 
no requests pending.  In all other cases the optimal control 
behaves the same way as if was only node-centric. 

0..
max

≥++
−

avbucts
v  (12) 

iiii bucauf /)(min)(max +=  (13) 

Controller sets the new processor frequency and voltage 
when either the incoming workload arrival rate (λworkload) or 
the core’s servicing rate (λcore) change.  Changes in both rates 
are tracked and computed by the estimator using maximum 
likelihood ratio.  Often the relationship between servicing rate 
and processor frequency is fixed for a given application, and 
thus needs to be estimated only once per each new 
application.  Thus, run-time estimation is primarily done for 
the core’s workload incoming rate.   

)( coreworkloadworkload

coreDelay
λ−λλ

λ
=  (15) 

The controller uses results of M/M/1 queuing theory to 
obtain the appropriate control for dynamic voltage scaling 
since both the workload arrivals and service times follow an 
exponential distribution.  The goal of the controller is to set 
the voltage and frequency of the processor for the newly 
estimated rate so that the processing delay shown in Equation 
15, and thus the number of tasks to be processed in the buffer, 
are kept constant.   For example, if the arrival rate for MP3 
audio changes, Equation 15 is used to obtain required 
decoding rate in order to keep the frame delay (and thus 
performance) constant.  When both workload and core rates 
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A. Estimator are changing, the change detected first is adapted to first. 
There are two core states in which power management 

decisions are made.  Appropriate service level is determined 
in the active state (non-empty buffer), while the decision on 
when to transition into the sleep state occurs in the idle state 
(empty buffer).  The quality of both decisions depends on the 
estimation accuracy and speed.  We first evaluate the 
estimation of the request arrivals to a non-empty buffer, 
followed by the estimation of the arrivals to an empty buffer. 

VII. RESULTS 
The power management methodology presented in this 

work is implemented for the sample NOC system shown in 
Figure 1. The system consists of four large cores: 
communication, speech processing, MPEG audio and video 
core. Power and performance characteristics of each core are 
shown in Table 3.  Three power states are supported by each 
core: active, idle, and sleep.  The transition time from active to 
sleep and back to active state (shown in Table 3 as A-S-A 
time)  is on the order of  tens of milliseconds, which is slow 
enough to allow for dynamic parameter estimation and 
periodic control recalculation.  Number of DVS settings 
reflects the discrete frequency and voltage points each cores 
processing unit can be set to.  The transition time needed to 
change from one to other frequency point is on the order of 
hundreds of microseconds (labeled as DVS switch time).   

Exponential distribution is used to model arrival times to a 
non-empty buffer (or buffer with requests pending service), 
service times of each core, the network wakeup and sleep 
request arrivals.  Each of these distributions is characterized 
with a rate: λworkload, λcore, λnet_w, and λnet_s.  Changes in these 
rates can be due to many different factors, ranging from 
changes of the type of workload, to different conditions in the 
wireless medium.  The estimator uses maximum likelihood 
ratio shown in Equation 3 to detect a change in any of the 
exponential distribution rates.   An important advantage of 
maximum likelihood ratio is that it guarantees optimal 
estimation results with relatively small computation cost. 

 
Table 3. NOC Specifications 

Specification Audio Video Comm. Speech Total
Active P(mW) 700 1885 1500 1055 5140 
Idle P(mW) 216 235 1000 208 1659 
Sleep P(mW) 0.3 1.4 100 0.6 102.2
A-S-A time(ms) 45.6 54.6 40 54.6 54.6 
# DVS Settings 11 11 3 11 11 
DVS switch (us) 150 150 100 150 150  

Since the estimation is done in the same way for each of the 
four exponential distribution rates, we present results for 
estimating when incoming arrival frame rate in the MPEG 
video core changes from 10 frames/sec to 60 frames/sec.  The 
maximum likelihood ratio approach is compared to both ideal 
and exponential average detection.   The new exponential 
average rate, λave

new, is calculated using a current estimate for 
the rate, λcur,  and weighing it against the average value 
computed to date, λave

old, with a gain parameter g:  
Each core in NOC has a power manager, that in turn 

consists of an estimator and a controller.  Estimators job is to 
estimate the parameters needed to recalculate optimal control 
depending on the changes in the core’s environment.  The 
environment includes incoming traffic from the chip network, 
and special power management requests from other cores.  
The controller implements the optimal system control.  The 
results highlight the quality of the estimators, followed by the 
controller implementation in hardware.  Lastly, energy savings 
are contrasted when using only the node-centric approach 
with the combined node and network-centric power 
management. 

cur
old
ave

new
ave gg λλλ +−= )1(  (16) 

Figure 6 shows the results of estimation. The maximum 
likelihood algorithm detects the exact change in rate. Slight 
delay is due to a number of samples needed before the change 
can be detected.  The effect of this delay is very minor to the 
overall power management control.  It is very close to ideal 
detection which knows ahead of time when the rate will 
change.  In contrast, the exponential average detection for two 
different values of gain shows very delayed and unstable 
detection characteristics.  The closer detection is to the exact 
time change in rate occurs, the more unstable exponential 
average detection becomes.  Since the computational overhead 
of maximum likelihood detection is about the same as with the 
exponential detection, clearly our approach to estimation for 
exponential rate changes is the better one to use.   
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Figure 6. Arrival rate estimation 
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Distribution of the length of time spent in the idle state, 
modeled by the Pareto distribution, also needs to be estimated 
at run time, as it is one of the most important parameters 
determining the quality of the power management control.  
Our estimator tracks changes in two critical parameters of the 
the distribution, a and b, as shown in Equation 4.  Since Pareto 
distribution follows a straight line on a log plot (see Figure 3), 
we can use the least squares method to find the line’s slope 
and intercept.  Figure 7 shows how the estimator detects a 
change in the idle time distribution on a communications core 
when the traffic pattern changes between two examples shown 
in Figure 3.  The change is most clearly observed in the 
intercept value. The Pareto parameter estimates are very fast 
and accurate, with average error of only 2%. 
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Figure 7. Dynamic Pareto Parameter Estimates 

B.  Controller 
The power manager’s controller can be realized in software, 

hardware or a combination of the two.  When critical 
parameters change very often, control and estimation should 
be realized in software.  Realizing a part of, or the whole 
controller in hardware lowers the control overhead, with very 
minor additions to an already existing hardware power 
manager (e.g. ARM cores) or an on-chip FPGA. This 
approach is very attractive especially for cores where the 
control does not change much at run time, and thus does not 
need to be recomputed very often.  Since the software 
implementation has already been discussed, we focus on the 
hardware implementation next. 

There are three different components to the optimal 
controller: the random number generator, the control and the 
timer.  The timer is used to measure the length of idle period 
before the control is evaluated.  Typically core’s processors 
already have programmable timers aboard that can be used by 
the hardware controller. The simplest hardware 
implementation for random number generator is to use Linear 
Feedback Shift Register (LFSR).   

 
Table 4. Local PM Control FPGA Synthesis Results 

LFSR LFSR Regs Control  
Bits # LABs Max ns # LABs Max ns
5-15 1 4 2 35  

Results of controller synthesis into Altera’s EPM7032 
FPGA are shown in Table 4.  Control and LFSRs take up 3 
Logic Array Blocks (LABs) for LFSR sizes ranging from 5 to 
15 bits. We found through simulation that even with as little 
as 8 bits, the hardware LFSR gives results within 5% of 
optimal.  In addition, the time it takes to arrive at the decision 
is in the nanoseconds, while the minimum idle times the 
power manager would respond to are in milliseconds.  
Controller is even faster when synthesized into gates with 
Synopsis as shown in Table 5. The LFSR area is consistently 
about 12-14% of the total area.  Even the largest design takes 
only 15 registers and 855 gates. 

 
Table 5. Local PM Control Synopsis Synthesis Results 

LFSR Regs Control  
#FFs % area #gates % area

5 14% 193 86% 
9 14% 417 86% 

15 12% 855 87% 

C. Node-centric DVS and DPM 
 In this section we present results of node-centric dynamic 

voltage scaling and power management with no consideration 

for network requests.  We start by comparing the energy 
savings controller can obtain when implementing DVS on 
MP3 audio core based on the results of (i) the ideal detection 
algorithm, (ii) the exponential average approximation and (iii) 
the maximum processor performance to (iv) the maximum 
likelihood algorithm presented in this paper.  For this purpose 
we combined six audio clips (labeled A-F) totaling 653 
seconds of audio, each running at a different set of bit and 
sample rates.  For all sequences, the frame arrival rate varies 
between 16 and 44 frames/sec. During decoding, the estimator 
detects changes in both arrival and decoding rates for the MP3 
audio sequences, and the controller responds by adjusting the 
processor frequency and voltage. The resulting energy (kJ) 
and average total frame delay (s) are displayed in Table 7. Our 
controller, which relies on maximum likelihood estimation, 
has results very close to the ideal detection in terms of both 
performance and energy savings. The maximum average 
frame delay of 0.1 s corresponds to 6 extra frames of audio in 
the buffer. 

 
Table 6. Node-centric DPM and DVS  

Algorithm Energy  (kJ) Factor 
None 4260 1.0 
DVS 2663 1.6 
DPM 2506 1.7 
Both 1556 2.7 
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 We implemented DVS for two different video clips as 
well.  The arrival rate varies between 9 and 32 frames/second.  
The ideal detection algorithm allows for 0.1s average total 
frame delay equivalent to 2 extra frames of video in the 
buffer.  Energy (kJ) and average total frame delay (s) are 
shown in Table 8. The exponential average shows poor 
performance and higher energy consumption due to its 
instability (see Figure 6).  The controller that uses results of 
our maximum likelihood estimator performs well, with 
significant savings in energy. 

Next, use a sequence of audio and video clips, separated by 
idle time to study the tradeoffs when using DVS and DPM on 
NOC.  Table 6 contrasts system energy savings obtained with 
only dynamic voltage scaling implemented,  followed by only 
power management and finally also for the combination of the 
two approaches.    We obtain savings of a factor of 2.7 when 
expanding the power manager to include dynamic voltage 
scaling with our change point detection algorithm.   

D. Network-centric Power Management 
 In this section we contrast power savings obtainable when 

using only node-centric power management, with additional 
savings we can get when implementing network-centric 
approach.  Table 9 shows energy savings obtained for the 
NOC shown in Figure 1, with specifications listed in Table 3.  
The results were obtained by simulating the power states of 
the NOC system as a whole, with real workload traces 
collected from each respective core as an input to the 
simulator.  The results report a factor of savings in energy for 
both node and network centric approaches with reference to 
not using any power management.  The lightly shaded portion 
of the table reports corresponds to only node-centric approach, 
while the darker shaded row is for a combined node and 
network-centric approaches.   

 
Table 9. Energy Savings for PM in NOCs 

 

PM  PM Type MP3 MPEG2 Comm. Speech Total
None None 1.0 1.0 1.0 1.0 1.0
Node DVS only 1.4 2.0 1.0 3.8 1.2
Centric DPM only 2.0 1.5 3.0 1.5 2.4

  DVS&DPM 2.8 3.0 3.0 5.8 3.0
Network DVS&DPM 3.7 3.6 4.2 6.1 4.1

 In node-centric PM, controlling only processing frequency 
and voltage at run time (DVS results) gives between a factor 
of 1.4 to a factor of almost four in savings pre core.  Note that 
communications core does not allow voltage and frequency 
scaling.  When only control of transition into the sleep state is 
implemented (DPM only results), savings range from a factor 
of 1.5 to a factor of 3.  The smallest savings are in video core, 
as it tends to have very few idle times.  Combining the DVS 
and DPM gives the overall savings of a factor of 3.6.    

 When network power management is included with the 
node-centric approach (the last row in Table 9), the savings in 
energy grow to a factor of 4.1 with performance penalty 
reduced by a minimum 15%.  The performance penalty of a 

core is the time the rest of the system has to wait in order for 
the core to become available after either changing processing 
frequency or waking up from the sleep state.  These savings 
show that using information about system state as it becomes 
available (network wakeup and sleep requests) can 
significantly enhance the quality of the power management 
results.  There are quite a few situations where such 
information is available. For example, when MP3 decoder 
starts, it can immediately inform the communication core that 
its services will be needed.  Thus by the time MP3 initializes 
all of its data structures, the communication core transitions 
from sleep state into the active state.  In this way no 
performance penalty is incurred due to the transition, and 

communication core was able to save power by staying asleep 
as long as possible.  In situations where such information is 
not available (node-centric approach) our closed-loop power 
management approach still gives large savings.   

 
Table 7. MP3 audio DVS 

 

MP3 
Sequence 

Result Ideal Max 
Lik. 

Exp. 
Ave. 

Max 

ACEFBD Energy (kJ)     196 217 225 316 
 Fr. Delay (s) 0.1 0.09 0.1 0 

BADECF Energy  (kJ)    189 199 231 316 
 Fr. Delay (s) 0.1 0.09 0.1 0 

CEDAFB Energy  (kJ)    190 214 232 316 
 Fr. Delay (s) 0.1 0.04 0.1 0 

 
Table 8. MPEG video DVS 

 

MPEG 
Video Clip 

Result Ideal Max 
Lik. 

Exp. 
Ave. 

Max 

Football Energy  (kJ)      214 218 300 426 
(875s) Fr. Delay (s) 0.1 0.11 0.16 0 
Terminator2 Energy  (kJ)      280 294 385 570 
(1200s) Fr. Delay (s) 0.1 0.11 0.16 0 

VIII. CONCLUSIONS 
This work presented a new methodology for managing 

power consumption in NOCs. The power management 
optimization is formulated using closed loop control concepts, 
with blended node and network centric approaches.   The first 
component of our power management system is an estimator 
that is capable of fast and accurate tracking of system changes.  
The expanded Renewal model integrates network centric 
power management with voltage scaling and node centric 
power management.  It enables the formulation of the 
optimization problem that is guaranteed to be globally 
optimal.  The optimization is done using our new fast 
optimization method, which is orders of magnitude faster than 
methods used in the past.  Lastly, we presented a controller 
implementation that manages both DVS and DPM. 

The new methodology is tested on a design of a NOC 
system consisting of four satellite units, each with the local 
power manager consisting of the estimator and the controller.  
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The estimator implementation has been shown to have 
average error of 2% when estimating Pareto parameters, and is 
right on target when estimating exponential frame arrival rate 
changes.  Our fast optimization algorithm recalculated control 
in a matter of milliseconds when the distribution parameters 
change. The final implementation of node and network centric 
power management approaches shows savings of a factor of 
four at system level while improving performance. 
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