
To appear in ACM SIGOPS Operating Systems Review special issue on
The Interaction Among the OS, the Compiler, and Multicore Processors, April, 2009, Volume 43, Number 2

Fast Switching of Threads Between Cores

Richard Strong
UC San Diego

rstrong@cs.ucsd.edu

Jayaram Mudigonda
Jeffrey C. Mogul
Nathan Binkert

HP Labs
Jayaram.Mudigonda@hp.com

Jeff.Mogul@hp.com
Binkert@hp.com

Dean Tullsen
UC San Diego

tullsen@cs.ucsd.edu

Abstract
We address the software costs of switching threads between cores
in a multicore processor. Fast core switching enables a variety of
potential improvements, such as thread migration for thermal man-
agement, fine-grained load balancing, and exploiting asymmetric
multicores, where performance asymmetry creates opportunities
for more efficient resource utilization. Successful exploitation of
these opportunities demands low core-switching costs. We describe
our implementation of core switching in the Linux kernel, as well
as software changes that can decrease switching costs. We use de-
tailed simulations to evaluate several alternative implementations.
We also explore how some simple architectural variations can re-
duce switching costs. We evaluate system efficiency using both real
(but symmetric) hardware, and simulated asymmetric hardware, us-
ing both microbenchmarks and realistic applications.

1. Introduction
We are in the multicore era: CPU vendors currently offer as many as
16 cores per chip. One implication of the shift to multicore CPUs
is that inter-core communication costs have dropped by orders of
magnitude, compared to traditional multiprocessors. This drop cre-
ates the potential for significantly more nimble and dynamic man-
agement of executing threads, since it reduces the time for hardware
to move a migrating thread’s data working set (typically residing in
a shared cache) by similar orders of magnitude. Potential improve-
ments enabled by fast thread migration, or “core-switching”, in-
clude thermal management [7, 13], fine-grained load-balancing [3],
and exploiting asymmetric cores [20] by moving computation when
execution characteristics change.

However, we cannot exploit these opportunities while the soft-
ware costs of moving a thread remain as high as they are now,
since these costs can dominate the communication costs of mov-
ing the working set. Our research seeks to understand and reduce
these software costs.

We are particularly interested in the potential of asymmetric
multicore processors, because core-to-core performance asymme-
try appears to be a useful way to improve energy and area effi-
ciency. An asymmetric multicore CPU has cores which, while they
all execute more or less the same instruction set, vary greatly in
complexity, and hence size and energy consumption. Code that has
no need for a complex core can be run on a simpler core, often with
relatively little performance cost but with greater throughput per
watt.

The use of asymmetric multicore processors increases the need
for frequent migration of threads between cores; the potential to
gain efficiency from a core-switch can arise arbitrarily often.

Previous work has shown the potential value of multicore per-
formance asymmetry, starting with Kumar et al. [20], who first pro-
posed an asymmetric single-ISA (or “ASISA”, for short) multicore.
They used simulations to show that dynamic migration of appli-
cation code between cores of varying complexity could improve
energy efficiency. Nellans et al. [28] and Wun and Crowley [34]
independently proposed asymmetric architectures with specialized
cores, respectively, for operating system (OS) code and for net-
work code. (However, Nellans and his colleagues now suggest that
adding OS-specific caches to standard cores might be a better idea
than using additional cores for OS execution [30].)

Balakrishnan et al. [2] point out that an asymmetric multipro-
cessor can outperform a symmetric processor “in which all cores
are slow because the fast core is effective for serial portions” of a
parallelized program. Grant and Afsahi [12] evaluated an ASISA
approach in which specific kernel threads are bound to cores opti-
mized for OS performance, using actual hardware and throttling the
clock of one core to emulate the performance of a low-power core.
In previous work [25], we evaluated the use of simpler cores to run
OS (and “OS-like”) code, using simulation to show the potential
for improved energy efficiency.

Much of the prior work dynamically matches the characteris-
tics of code to the appropriate core – that is, exploiting perfor-
mance asymmetry requires switching cores during the execution
of a thread. For example, Balakrishnan et al. showed that, to get
good performance, the OS scheduler sometimes needs to migrate a
thread from a slow core to a fast, idle core[2]. Thread migration is
also necessary when balancing loads between cores (in a symmetric
or asymmetric system). However, the benefits of dynamic migra-
tion must be balanced against the costs, especially if the benefits
come from frequent migrations to exploit the performance charac-
teristics of relatively short execution segments.

Therefore, core-switching costs are a fundamental factor when
evaluating the feasibility of asymmetric multicore systems. As far
as we are aware, however, no previous work has carefully evalu-
ated the software costs of core-switching, or how these might be
reduced.

In this paper, we make the following contributions:
• We cut Linux core-switching latencies in half or better, com-

pared to previous mechanisms for thread migration.
• We explain the basis of our approach, as modifications to the

existing Linux scheduler (sec. 3).
• We show several ways to reduce the cost of software-based

core-switching (sec. 6).
• Using simulations, we explore how core-switching costs de-

pend on several architectural parameters (sec. 7).
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• We present both micro-benchmarks and macro-benchmarks
evaluating the efficiency of core-switching, on both real and
simulated hardware.

In addition:
• We describe some additional architectural changes that could

further improve core-switching efficiency (sec. 6).
• We describe several different policies for deciding when to

switch cores (sec. 9.2), although their evaluation remains as
future work.

Our ultimate goal in this paper is to provide a sound basis for
further work on multicore systems, especially but not exclusively
asymmetric multicores, that depend on rapid dynamic migration of
threads between cores.

1.1 Motivation

Hill and Marty recently pointed out [14] that asymmetric multi-
cores are an inevitable consequence of scaling to large numbers of
cores on a chip: by analogy to Amdahl’s Law, highly-parallelizable
applications will have sequential code that runs best on a core with
the best possible single-thread performance.

Earlier, Kumar et al. [20] argued for asymmetric cores because
some code gains little benefit from complex cores, and, if executed
on a simple core, will run at nearly the same speed; simpler cores
tend to consume much less energy per instruction executed. They
observed that simple cores can be a better match for memory-bound
application code. Previously, we observed that operating system
and “OS-like” code is typically memory-bound, and hence should
be a good match for energy-efficient execution on simple cores in
asymmetric CPUs [25].

Kumar et al. [20] modeled core switching at a very coarse gran-
ularity, allowing them to ignore the cost of core-switching. How-
ever, the introduction of cores specialized for OS and similar code
implies the potential for much more frequent migration, poten-
tially making performance highly sensitive to that cost. Becchi and
Crowley [3] modelled core switching for a similar architecture, us-
ing a somewhat more sophisticated model including the execution
of an OS, but while they modelled the data-communication costs
of core switching, they apparently did not try to model the kernel
software overheads.

Other scenarios that could create frequent core-switching in-
clude: compiler-initiated or programmer-initiated thread migra-
tions (e.g., due to an anticipated phase change in the applica-
tion); OS-initiated migrations in response to OS- or hardware-
detected phase changes; migration to avoid or ameliorate thermal
hot-spots [7, 13]; and migration in response to a fault for un-
implemented instruction/feature (such as floating point, vectors,
encryption, etc.) on heterogeneous multicores (or on “shared-ISA”
multicores [23]).

The improvements we describe can enhance both the effective-
ness and the applicability of these techniques, by reducing the over-
head of core-switching. As a simple way of evaluating our im-
provements, this paper specifically examines them in the context
of OS-initiated core-switching to an OS-optimized core during ex-
pensive system calls. In this scenario, cheaper core-switching both
increases the potential gains from using OS-specific cores, and in-
creases the number of system calls for which a core-switch is justi-
fied.

1.2 Assumptions

In this paper, we make several assumptions related to core-
switching:
• Threads only switch between cores with a single ISA. That

is, any core where a thread can run will correctly execute its
instructions. (It is possible to trap on certain unimplemented

instructions, save the thread state, and resume the thread on a
more appropriate core; see Li et al. [23] for an example. We
leave this case for future work.)

• We only care about the performance consequences of switching
a thread between cores on a single die. The code we have
developed can successfully switch threads between cores on
different sockets, but since inter-socket communication costs
are much higher, this is less useful in cases where rapid core-
switching is desirable.

2. Related work
In addition to the related work discussed elsewhere in this paper,
we summarize research in two areas: thread migration techniques
and scheduling for heterogeneous multicores.

2.1 Thread migration techniques

There is a rich history in the literature of systems that support
thread migration on conventional multiprocessors [32]. However,
the issues and priorities shift significantly on a chip multiproces-
sor, where extremely low communication costs apply much more
pressure on the software overhead of the migration mechanism.

Constantinou et al. [9] consider a variety of costs associated
with moving threads between cores on a CMP, but focus primarily
on moving and warming up state (caches, branch predictors, etc.)
and do not address the software costs.

Li et al. [22] modify the Linux scheduler to create a custom
scheduler, with a load balancer that accounts for the asymmetry
of an ASISA system. In particular, they account for the expected
costs of moving a particular thread (particularly the cost of moving
the cache working set). Their best scheduler migrates threads many
orders of magnitude more often than the original Linux scheduler.

Choi et al. [8] examine the specific case of migrating branch
predictor state when a thread switches cores, but do not address
software overhead issues.

Brown and Tullsen [6] take a different approach and propose a
“shared-thread” multiprocessor (STMP), where the hardware man-
ages thread movement. Thread state is represented in hardware that
is shared among all cores on a chip, so the hardware can move a
thread between cores without direct OS involvement. For example,
STMP would allow core-switching in a user-mode threads package.

STMP is an intriguing alternative to software-managed core-
switching, but we do not yet have the ability to experiment with
how this approach interacts with OS code. While the STMP hard-
ware can “reschedule” active threads whose state is represented in
hardware, we believe that the OS will have to be involved with
scheduling threads in several cases; for example, when threads are
blocked on OS-mediated I/O operations, or when there are too
many threads for the hardware to represent, or when the scheduling
policies must involve OS-managed state. STMP will therefore re-
quire fairly significant modifications to the operating system’s view
of the threads it manages. It is possible that many of the same is-
sues discussed in this paper will need to be addressed for an STMP
system.

2.2 Scheduling for heterogeneous multicores

Kumar et al. present scheduling policies for ASISA architectures in
both the performance [21] and power/performance [20] domains.
Those scheduling policies are sampling-based, and run at infre-
quent intervals to limit migration costs. Their assumption is that
migration points are unknown to the software, which is not the case
in the architecture that we assume.

Fedorova et al. [11], similar to [22], create a custom OS sched-
uler to account for an asymmetric system. In particular, they seek to
achieve a more balanced core assignment to increase fairness and
decrease jitter (unpredictable runtimes).
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Chakraborty et al. [19] also look at migrating OS code to dis-
tinct processors. However, their motivation is not heterogeneous
cores, but the opportunity to spread computation unlikely to use the
same working set (e.g., user and kernel code) onto separate cores
with separate caches.

3. Software approaches to core switching
We first describe our basic approach to software core-switching,
explaining why all such approaches will involve the kernel’s sched-
uler. We then describe an evolutionary sequence of increasingly
more efficient designs. Finally, we describe how we modified the
code for various specific system calls to invoke core-switching.

We have implemented all of our changes as modifications to the
Linux 2.6.18 kernel. We have tried to keep our changes relatively
limited, although our design requires minor changes to various
system call implementations (see sec. 3.6) and tightly-integrated
changes to scheduling functions.

While 2.6.18 is not the most recent kernel, it uses a scheduler
optimized for efficiency [1]. Starting with 2.6.23, Linux uses the
“Completely Fair Scheduler” (CFS), whose design the author de-
scribes as “quite radical” [26]; we have not yet analyzed this design
to how it can be optimized for efficient core-switching, and its in-
creased modularity might add some latency. There is no obvious
reason why our approach would not generalize to other operating
systems, but our expertise is in Linux.

3.1 Why core-switching is like scheduling

It might seem that moving thread T from core A to core B simply
requires transferring the thread’s architectural state from A to B.
However, this would only work if we are sure that core B is
idle before the core-switch, and if we don’t want to run another
thread on core A while T is bound to (and perhaps blocked at!)
core B. Otherwise, we need to ensure that T is currently the
most appropriate thread to run on B, and to find another thread
(perhaps the idle thread) to run on A. These are both scheduling
decisions, requiring access and updates to the kernel’s scheduling
data structures – this is why the scheduler must be involved in a
core-switch.

In all versions of our approach, therefore, kernel code (such
as a lengthy system call) that wants to initiate a core-switch calls
a SwitchCores function that, sooner or later ends up invoking
Linux’s schedule function.

Note that our approach does not replace the operating system’s
normal scheduling policies. All standard scheduling proceeds as
usual (e.g., when a thread’s quantum expires), and our code does
not core-switch at such points.

3.2 V1: Linux’s thread-migration mechanism

Our first approach was to use Linux’s existing thread-migration
mechanism, normally used for relatively long-term load-balancing
across cores. To our knowledge, Linux’s thread-migration mecha-
nism is the current state-of-the-art for core-switching.

When a task wants to migrate, it (in essence) puts itself on a
per-core migration queue, wakes up and switches control to a per-
core “migration thread,” which does the actual work of moving the
thread to the run queue of the target core. If the target core is idle,
the migration thread signals that core to invoke the scheduler (see
sec. 3.5 for how this is done), which finds the thread on the target
run queue and reawakens it. (This mechanism is also invoked when
an application uses the sched setaffinity system call in a way that
requires it to vacate the current CPU.) Note that this migration
approach involves an “extra” context switch, between the initiating
thread and the migration thread.

We wrote a version of SwitchCores, with less than 30 non-
comment source code lines, that invokes this thread-migration
mechanism.

3.3 V2: Modified scheduler

We want to remove that extra context switch, and have the initi-
ating thread migrate itself. This means that SwitchCores will di-
rectly invoke a modified version of Linux’s schedule function1.
The changes are not very extensive (43 non-comment source-code
lines), but were hard to debug because the scheduler code has many
subtle details. (This version, and some of the code described in sec.
3.6, is based on an implementation we first described in [25].)

Since we could not change the arguments to schedule, we
created a new thread-info field to pass the target CPU (core) ID
from SwitchCores. (In the Linux scheduler, each core is treated
as a distinct CPU.) If this field is set, schedule unconditionally
deactivates the thread T , then places it on a special per-core queue
AQ (for “Alternate Queue”), and then rejoins the original scheduler
code where it picks the next thread N to run on the source core.
Once schedule has context-switched the core to thread N , our
modified version checks AQ, finds T there, and (now that T is
safely dormant on the source core), inserts it in the run queue for
the target core, and signals the target core (see sec. 3.5).

This cross-core signal causes (sooner or later) schedule to run
on the target core; it finds T on its run-queue, context-switches to
T , and the core-switch is complete.

3.4 V3: Scheduler fast-paths

Through analysis of instruction-level traces from simulation runs
(see secs. 4 and 5) we discovered that our modified scheduler
executes several chunks of slow and unnecessary code. This led
us to realize that a fast-path version of schedule, tailored to the
specific case of core-switching, could run faster.

We actually created three versions: the original modified sched-
ule; a fast schedule source version, called to initiate a core-
switch, and a fast schedule target version, called at the target core
in response to the cross-core signal.

Both fast schedule source and fast schedule target omit a
number of housekeeping functions normally done in schedule
(e.g., recalculating thread priority, which involves expensive arith-
metic, and load-balancing for an about-to-be-idle core). Also,
fast schedule source sets a special per-core hint for the target core,
which tells the target’s idle loop to invoke fast schedule target
rather than schedule. Since this is a hint, we do not have to pay
the cost of locking it, although this means that we might occasion-
ally use the slow path (schedule) on the target.

Note that standard scheduling events (e.g., on the expiration of
a thread’s quantum) always use the normal slow-path (schedule),
and hence all housekeeping functions are executed approximately
as often as they would normally be done.

fast schedule target cannot omit the code that checks AQ,
because although the application thread initiates the core-switch
using fast schedule source, the check of AQ happens after
the context-switch, and thus in the idle thread, which called
fast schedule target before it yielded the CPU (and hence its PC
is still in fast schedule target). This is a subtle point; fig. 1 depicts
the timeline schematically and shows that fast schedule target al-
ways executes in the context of the idle thread (on one core or
another). For the same reason, fast schedule source can omit the
code that checks AQ.

Fig. 2 (left) shows severely abstracted pseudo-code for the
scheduler; our basic modifications for core-switching are under-

1 Apparently, Solaris uses this approach for thread migrations [10, 24].
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<execution> FSS1 FST2CSW

FST1 CSW FSS2 <execution> FSS1 CSW FST2

FST1 CSW FSS2 <execution>

Core1:

Core0:

= IPI/other signal

FSS1

FSS2

= fast_schedule_source (1st half)

= fast_schedule_source (2nd half)

FST1

FST2

= fast_schedule_target (1st half)

= fast_schedule_target (2nd half)

CSW = context switch

Key:

application thread in boldidle thread in italics

<idle thread on core1> <idle thread on core1>

<idle thread on core0>

Figure 1. Timeline showing 2 core-switches between a pair of cores, using fast-path versions of schedule

1: void schedule(void) {
2: sanity checks
3: prev = current thread;
4: more sanity checks
5: compute prev’s run-time during quantum
6: if prev wants to switch cores then
7: deactivate prev from runqueue[this core]
8: place prev on AQ[this core]
9: else

10: handle signal-related state changes for prev
11: end if
12: if no other runnable threads for this core then
13: try to borrow some threads from other cores
14: end if
15: if still nothing to run then
16: next = idle
17: else
18: next = highest-priority runnable thread for this core
19: end if
20: adjust priority for next
21: SMT-related optimizations
22: prefetch next’s kernel thread-related state and stack
23: prepare and do actual context switch
24: if AQ[this core] non-empty then
25: dequeue thread t from AQ[this core]
26: update load-balancing info for t
27: place t on runqueue[t->target core]
28: signal target core to check its runqueue
29: end if
30: }

Modifications for core-switching are underlined

1: void fast schedule source(void) {
2: sanity checks
3: prev = current thread;
4: more sanity checks
5: compute prev’s run-time during quantum
6: if prev wants to switch cores then
7: deactivate prev from runqueue[this core]
8: place prev on AQ[this core]
9: else

10: handle signal-related state changes for prev
11: end if
12: if no other runnable threads for this core then
13: try to borrow some threads from other cores
14: end if
15: if still nothing to run then
16: next = idle
17: else
18: next = highest-priority runnable thread for this core
19: end if
20: adjust priority for next
21: SMT-related optimizations
22: prefetch next’s kernel thread-related state and stack
23: prepare and do actual context switch
24: if AQ[this core] non-empty then
25: dequeue thread t from AQ[this core]
26: update load-balancing info for t
27: place t on runqueue[t->target core]
28: signal target core to check its runqueue
29: end if
30: }

Source-core fast-path; deletions are struck out

Figure 2. Abstract pseudo-code for modified versions of schedule()

lined. Fig. 2 (right) shows how we deleted parts of this code for
fast schedule source.

3.5 V4: Addressing IPI costs

Our modified scheduler needs to wake up the target core if it is
currently idle. Linux allows the idle loop either to poll for changes
to a “need resched” flag, or to pause (“quiesce”) the core and wait
for an inter-processor interrupt (IPI). Architectures that support
CPU power-down generally quiesce idle cores. Like the scheduler,
the IPI code path includes significant software overhead, which is
unnecessary in this instance.

First, the existing code to send an IPI to a specific CPU invokes
a function that sends the IPI to all members of a specified set of
CPUs. Although the set, in this case, is a singleton, the bit-map
manipulations to figure this out take a surprisingly long time. We
modified the IPI-sending function to be more efficient. All of our
benchmark results for IPI-based core-switching use this improved
code.

Second, and more important, using the IPI to invoke schedule
on the target core results in a long code path for interrupt handling.
We thus tested a version (“V4”) that forces the use of polling in our
simulated system. (Our real x86 system already used polling.)

In sec. 6.1, we discuss a simple hardware change that can yield
the time-efficiency of polling without requiring the idle core to stay
powered-up, and therefore without the power-increasing drawbacks
of V4’s naı̈ve polling.

3.6 Modified system calls

Given that our core-switching mechanism is reasonably efficient
but not free, when should we switch cores? One approach would be
to provide a simple system call (coreswitch(destcoreset, flags)) to
allow an application to explicitly initiate switching to one of a set of
cores, with policies (such as core affinity) controlled by flags. This
requires application-specific changes, so we have not yet evaluated
this approach.

Instead, chose a few long-running and frequently-used system
calls, and these calls then invoke core-switching. Fig. 3 shows how
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sys_read(unsigned int fd, char __user * buf,
size_t count) {

struct file *file; ssize_t ret = -EBADF;
int fput_needed; int switched = 0;

/*new*/ if ((count >= RWThresh) && OKtoSwitch(__NR_read))
/*new*/ switched = SwitchToOScore();

file = fget_light(fd, &fput_needed);
if (file) {

loff_t pos = file_pos_read(file);
ret = vfs_read(file, buf, count, &pos);
file_pos_write(file, pos);
fput_light(file, fput_needed);

}

/*new*/ if (switched)
/*new*/ switched = SwitchToAppCore();

return ret;
}

Figure 3. Example of system call modified to support core-
switching

(with lines marked /*new*/) we added code to the read system
call, to conditionally switch to an OS-specific core if the buffer
size exceeds a threshold. The costly work (mostly in vfs read) then
continues on the OS core; when done, if we did switch cores, we
switch back.

We modified a number of system calls along these lines: open,
stat, read, write, readv, writev, select, poll, fsync, fdatasync,
readfrom, sendto and sendfile. We arbitrarily set the buffer-length
threshold to 4096 bytes; we have not yet evaluated whether this is
the right setting, or whether it should vary depending on system
call or application.

In the future, we would like to experiment with dynamic mech-
anism for choosing whether to core-switch; for example, based
on recent timings for a given system call executed by a given
thread. Nellans et al. have proposed triggering core-switches us-
ing a hardware-based predictor of long privileged-mode instruction
sequences, and have shown that such a predictor could be fairly
accurate [29].

4. Simulation environment and workloads
Our simulation experiments build upon those we first described
in [25]. We used the M5 simulator [4], which supports execution
of full systems, including operating system code, and can simulate
detailed architectural models cycle-by-cycle.

With M5, we can generate detailed timelines, showing when
interesting events such as procedure calls, cache misses, and long-
latency instructions occur; these timelines have been valuable in
understanding where time is being spent. M5 can also generate
detailed traces showing, for example, when specific cores are idle
or active.

Since the x86 processor models for M5 are not yet debugged, we
used a model based on the Alpha EV6 (21264) as the “complex”
core, and an EV4-based (21064) model for the “simple” core. The
complex core has 64KB, 2-way set associative, 64B block size L1
caches, with 1-cycle access for the L1 I-cache and 2-cycle access
for the L1 D-cache. The simple core has 8KB, direct-mapped, 64B
block size, 1-cycle L1 caches. (but see sec. 7, where we evaluate
simple cores with larger L1 caches). We simulated a shared L2
cache (3.5 MBytes, 7-way set associative, 4 nsec access), and a
main-memory access time of 25 nsec.

We simulated a variety of configurations, with a naming scheme
showing the types (“C” for complex, “S” for simple) and speeds
(upper-case letters for 3GHz, lower-case for 750 MHz) of each
core: sim C with a single (uniprocessor) 3GHz complex core;

sim CC with two 3GHz complex cores; sim SS with two 3GHz
simple cores; sim Cc with two complex cores; one at 3GHz and
one at 750MHz; sim CS with one complex core and one simple
core, both at 3GHz; and sim Cs with one 3GHz complex core and
one 750MHz simple core. The first letter represents the application
core; the second represents the OS core.

For each dual-processor hardware configuration, we ran tests
using unmodified Linux, an unmodified Linux that binds Ethernet
and disk interrupts to the OS core but does not core-switch, and
our five versions of core-switching Linux (V1 ... V5), also with
interrupts bound to the OS core. For all configurations but the
unmodified Linux without interrupt-binding, we pinned the user
application process to the application core.

The simulator is fully deterministic, so we ran only one trial
per experiment. (One could perhaps introduce some artificial ran-
domness to the simulations to create differences between multiple
trials.)

4.1 Modelling core power-up

We expect that a CPU will often have one or more idle cores,
and that power could be saved by powering-down these idle cores.
(In this paper, we do not consider the specific power savings.)
This leads to some issues in modelling the performance aspects
of powering up a core.

We assume for these experiments that a core’s L1 cache state
persists during power-down. Even for our complex core’s 64 KB
L1 cache, leakage for an inactive cache is only about 0.1 W (from
CACTI [33]). Thus, little power is saved by shutting down the
cache for short intervals – especially when considering the power
cost of refilling the cache. In future work, we will also investigate
the case where the L1 cache is flushed when the core is powered
down. We also assume that register state is preserved; the “C6”
state in the Intel Core Duo [16] suggests this is feasible.

We modified M5 to simulate a configurable delay between the
time that a quiesced core receives an interrupt and the time that it
executes the first interrupt-handler instruction. See sec. 7.2 for a
discussion of this delay and how our results depend on it; simula-
tions presented elsewhere in this paper use a delay of zero.

4.2 Workloads

We ran these OS-intensive benchmarks: netperf/TCPstream
benchmark, which sends TCP data as fast as possible, and net-
perf/TCPmaerts, which receives data as fast as possible; Web,
Apache with a workload based on SPECweb; and DB, using the
ex tpcb “TPC-B-like” example from the Berkeley DB distribu-
tion [31].

Table 1. Fraction of CPU time spent in various modes
NIC Percentage of CPU time spent in mode
speed Benchmark User Kernel Interrupt Idle
1 Gbps TCPmaerts 14.8% 27.4% 17.5% 40.4%
1 TCPstream 0.1% 38.1% 18.2% 43.7%
1 Web 55.0% 25.8% 10.6% 8.6%
10 Gbps TCPmaerts 25.0% 46.2% 12.9% 15.9%
10 TCPstream 0.1% 27.0% 25.4% 47.5%
10 Web 54.5% 29.8% 8.3% 7.4%

Measurements are based on unmodified Linux on a simulated uniprocessor

Table 1 shows that these applications spend a lot of their non-
idle time in kernel or interrupt modes, although at lower network
interface (NIC) speeds the netperf benchmarks often leave the CPU
idle.

5. Microbenchmark results
Core-switching is not free; it adds direct overhead due to extra
instruction execution, and indirect overhead due to loss of cache
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affinity. (It can also improve performance if the use of distinct L1
caches on source and target cores reduces the number of conflict
and capacity misses.)

We measured the direct overhead using a microbenchmark,
which invokes core-switching as rapidly as possible. Since the
modified system calls listed in sec. 3.6 were chosen because they
spend a lot of time in the kernel, none of these are suitable. Instead,
we modified the gettid (get thread ID) call, since (unlike getpid)
it is not cached by the user-mode library, and it executes very few
kernel-mode instructions. We then wrote gettidbench, which exe-
cutes gettid N times in a tight loop, measures the total elapsed
time, and computes the mean time/call. This yields twice the mean
time per core-switch, since the system call switches to the OS core
and then back to the application core. Note that, on asymmetric
hardware, the cost of a single switch may depend on its direction.

5.1 Results on real (x86) hardware

We ran gettidbench (N = 1, 000, 000) on a dual-core Xeon model
5160 (3.0GHz, 64-Kbyte L1 caches, 4-MByte L2 cache), with
Linux compiled in 32-bit mode.

Table 2(a) shows the results. Even in single-user mode, we saw
some variation between trials, so we report the minimum and max-
imum values for the mean gettid delay; we believe the minimum
values are more likely to provide a noise-free comparison. With
mechanism V3 (scheduler fast-paths), we measured a round-trip
(two-core-switch) delay of 2870 nsec, for an excess of 1394 nsec
per core switch over the unmodified call.2 For the entire system call
this is a 1.17 speedup over mechanism V2 (modified schedule) and
a speedup of 1.43 over the time for mechanism V1 (Linux’s thread
migration).

5.2 Results on simulated hardware

We ran the benchmark on various configurations of our simulated
hardware. In this case, the simulator allowed us to measure the
actual (simulated) duration of one call to gettidbench, which avoids
the noise involved in measuring the average of many trials. Our
measured duration came after first warming up the caches with 100
calls. Table 2(b) shows the results.

Note that the delays for the sim CC configuration are quite
similar to those for the real hardware in table 2(a); since both are
3 GHz dual-core CPUs (albeit with different instruction sets), this
result helps to validate the simulations.

The lowest delays are for V4 (using polling instead of inter-
rupts); on the sim CC configuration, this represents an excess of
933 nsec. per core-switch, while on the slowest hardware, sim Cs,
the excess is 3332 nsec. Both of these represent substantial im-
provements over the existing Linux thread-migration mechanism
(V1) and over our unoptimized code (V2).

6. Speeding up software-based core-switching
Here we discuss a number of ways to further improve the speed of
software-based core-switching. Some can be implemented entirely
in software, others require hardware support.

6.1 Cross-core wakeup from quiesce

As discussed in sec. 3.5, Linux’s idle loop either polls on a
“need resched” flag, or waits for a cross-CPU interrupt. The former
mechanism is inefficient, especially for cores that can power-down;
the latter is slow, because of the interrupt-handler overhead (which
we estimate at 160 nsec on our simulated 3GHz Alpha).

2 Remember that each gettid call in this benchmark results in two core
switches.

Table 3. Microbenchmark results with cross-core wakeup
gettid delay in nsec.

Hardware Core-switching mechanism
config. V3 V4 V5 (wakeup)
sim CC 2550 1986 2042
sim SS 7982 6770 6689
sim CS 4696 3869 4087
sim Cs 8140 6781 7024

We therefore added a new cross-core wakeup instruction to
our simulated CPU architecture, wakeup(core).3 This causes the
specified core to continue from a quiesce instruction; it is a no-op
if that core is not quiesced. Our simulator continues execution on
the awakened core after a delay to account for stabilizing the core
upon power-up; the delay mechanism is as described in sec. 4.1.

We then modified fast schedule source to issue a cross-core
wakeup instruction as early as possible. This completely hides the
target-core stabilization delay, by overlapping it with a considerable
amount of instruction execution on the source core, except when
the source core is much faster than the target core. When this is
sucessful, it avoids the interrupt-handler overhead entirely. (It is
possible that we could do the wakeup later in fast schedule source
to save a little power, but it is hard to calculate the optimal point
without risking doing this too late.) The target CPU might start
running before the “need resched” flag is set, so we use a separate
per-core flag to tell it to temporarily poll rather than quiesce.

The results, shown in fig. 3, reveal that while the version us-
ing cross-core wakeups (V5) is not always faster than the always-
polling (V4) version, both are consistently faster than the fastest
interrupt-based version (V3). While V5 generally follows the same
approach as V4, it executes a few extra instructions in the critical
path to both issue the cross-core wakeup, and to reset some state
flags after the wakeup takes effect. Generally, given these simi-
lar delays, cross-core wakeups will be more energy-efficient than
polling if idle cores can be powered down.

6.2 Cross-core task-state prefetch

As shown in fig. 2, just before context-switching the schedule code
attempts to prefetch the new thread’s kernel thread state and stack.
Not all architectures support such prefetching (apparently, only
IA64 supports the stack-prefetch), and as far as we can tell, the code
only attempts to prefetch the first cache line of the thread state.

It might be possible to further speed up a core-switch if the
source core could ask the target core to prefetch thread state into
the target’s L1 cache, as soon as fast schedule source knows that
this is necessary. This could possibly be combined with the cross-
core wakeup, and we would almost certainly want to prefetch more
than one cache line of this state.

6.3 Conditional use of power-down

Powering down a core could hurt performance (even with cross-
core wakeup) if this requires flushing the core’s L1 caches. There-
fore, the kernel should only power-down a core if it is likely to be
idle for a while. The problem is how to predict whether it is ad-
vantageous to power-down or not. This problem is analogous to the
decision to use spin-wait or blocking locks, where Karlin et al. [18]
showed that the use of competitive algorithms can yield good re-
sults. These algorithms dynamically decide between spinning and
blocking based on recent history. For core-switching systems, re-
cent history could also be a good guide to the duration of future

3 This is analogous to the Intel monitor/mwait mechanism. We do not claim
that our approach is better than Intel’s, but it is simpler to simulate. Our goal
is to show how core-switching software can exploit this kind of feature.
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Table 2. Microbenchmark results

(a) dual-core x86 hardware
Mean gettid delay in nsec.

Over 10 Core-switching mechanism
trials None V1 V2 V3
min. 83 4094 3355 2870
max. 87 4320 3413 2886

Per-call delay computed from 1,000,000
iterations of the gettid call per trial.

(b) simulated hardware
gettid delay in nsec.

Hardware Core-switching mechanism
config. None V1 V2 V3 V4
sim CC 120 4669 3247 2550 1986
sim SS 130 13229 10248 7982 6770
sim CS 121 8651 6343 4696 3869
sim Cs 118 16735 11148 8140 6781

idle-core intervals. Finding the right mechanism to decide dynami-
cally whether to power down is the subject of future research.

6.4 Summary of core-switching versions

Table 4. Summary of core-switching versions
Version number Mechanism(s) used

V1 Linux’s existing thread-migration mechanism
V2 Direct invocation of modified scheduler
V3 Scheduler fast-paths for source and target
V4 Idle loop uses polling instead of interrupts
V5 Cross-core wakeup from quiesce

Table 4 summarizes the mechanisms used in the five different
core-switching versions we implemented.

7. Effects of architectural parameters
We looked at the effect of two architectural parameters on the
performance of our simulated microbenchmarks: L1 cache size,
and core-wakeup delay.

7.1 L1 cache sizes

Table 5. Effect of L1 cache size on microbenchmark results
gettid delay in nsec.

Hardware 8 KB 16 KB 16 KB 2-way
config. L1 caches L1 caches L1 caches
sim SS 6689 5692 3787
sim CS 4087 3665 2706
sim Cs 7024 6515 5515

Results based on V5 core-switching mechanism

The cost of migration will be sensitive to the sizes of the caches
(both instruction and data). The L1 caches (8KB, direct-mapped,
64B block size, 1-cycle) for our simple cores are relatively small,
so we also simulated two versions of larger caches. Both are 16KB
total size, 64B block size. One is direct-mapped, the other is two-
way set associative. Table 5 shows that, for the V5 mechanism,
increasing the simple-core L1 cache size to 16KB does indeed
improve performance, by 7% (for sim Cs, with one slow simple
core) to 15% (for sim SS, with one fast simple core). (There is
no line in this table for sim CC, since that configuration has only
complex cores, which we always model with 64KB, 2-way L1
caches.)

Adding associativity further improves performance, by 15% for
sim Cs to 33% for sim SS. The large impact of associtivity implies
that we are seeing a lot of conflict misses.

Based on our examination of detailed miss-rate statistics, we
speculate that the 8KB I-cache creates lots of capacity misses,
which are mostly eliminated by the 16KB direct-mapped cache.
However, the D-cache miss rate benefits both from the larger size
and again from the associativity, implying that it suffers from the
conflict misses.

7.2 Core-wakeup delay

When a powered-down core is powered up, some time passes until
the voltages have stabilized enough for the core to safely execute
instructions. This delay is imposed by the RC time constant defined
by the capacitance of the core and the resistance in the power
wiring. We used a delay model provide by Matteo Monchiero [27];
with parameters chosen for a 65-nm process and a maximum core
current of 10A, the model predicts a power-on time of about 16.3
nsec, or about 50 cycles at 3 GHz and 12.5 cycles at 750 MHz.
For comparison, James et al. report that “a single POWER6 core
is capable of causing a 13W power step within about 20 clock
cycles” [17].

We ran M5 simulations in which the wakeup delay was very
conservatively set to 1000 cycles for all cores (at both 3 GHz and
750 MHz). Table 6 shows the results. Increasing the delay has no
effect on the non-switching and V4 (always-polling) versions, since
neither of these ever quiesces (powers down) a core. Similarly, it
adds roughly the expected delay for the V1, V2, and V3 configura-
tions (333 nsec to wake up the 3GHz cores, and 1333 nsec to wake
up the 750 MHz core). When using the cross-core wakeup (V5),
there is essentially no effect from the added wakeup delay, since
the wakeup is generated much earlier than necessary to cover 1000
cycles (and, therefore, to cover a shorter, more realistic delay).

In the one case of the sim Cs configuration, where one core is
much faster than the other, when switching from the fast core to
the slow core, the cross-core wakeup does not happen soon enough
to finish the 1000-cycle delay before the IPI is generated. We also
simulated a 250-cycle delay, and found that in this case, the core
does wake up before the IPI is sent, but just slightly too late to set
the “I am polling” flag before the source core decides to send the
IPI.

8. Macrobenchmark results
We ran a variety of “macrobenchmarks” on both the real dual-
core x86 and on a variety of simulated configurations. These are
relatively simple throughput-oriented benchmarks, which represent
realistic execution scenarios and are designed to stress the code that
core-switches during lengthy system calls. In the simulations, this
means running some OS code on the simpler (or slower) core; on
the real hardware, both cores are equally fast.

These macrobenchmarks do not, unfortunately, prove that “real
applications” in general can profit from frequent low-latency core
switching. To do so would require simulations with realistic work-
loads, which would be much lengthier than we have been able to
support to date.

Remember also that the core-switching configurations are not
meant to give better throughput than the non-switching systems,
but rather to enable more frequent power-down of complex cores.
Therefore, in our macrobenchmark results, we are not looking
for throughput improvements from our various implementations of
core-switching; we only care that they do not significantly reduce
performance.
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Table 6. Effect of power-up delay on performance
Wakeup gettid delay in nsec.

HW delay Core-switching mechanism
config. (cycles) None V1 V2 V3 V4 V5
sim CC 0 120 4669 3247 2550 1986 2042
sim CC 1000 120 5216 3914 3224 1986 2059
sim SS 0 130 13229 10248 7982 6770 6689
sim SS 1000 130 13977 10916 8630 6770 6690
sim CS 0 121 8651 6343 4696 3869 4087
sim CS 1000 121 9376 6847 5393 3869 4081
sim Cs 0 118 16735 11148 8140 6781 7024
sim Cs 250 118 16891 11480 8555 6781 7930
sim Cs 1000 118 16514 12835 9822 6781 9503

Table 9. Core-switch counts for 1 Web trial, dual-core X86
Core-switches by system call

Benchmark read write open fsync poll sendfile
Web 2131 7 1829 6 3649 3640

8.1 Simulation pitfalls

Simulations of TCP-based benchmarks can be problematic, as de-
scribed by Hsu et al. [15]. TCP performance depends on, among
other things, the apparent round-trip time (RTT); changes in the
RTT during a connection can cause packet losses or spurious re-
transmissions. Unfortunately, some of the techniques we use to
make simulations more efficient cause changes in apparent RTT.
We boot the system and start the benchmark in a fast simulation
mode, then checkpoint and switch to a detailed simulation, possi-
bly using slower CPU cores. This sudden change in CPU speed can
lead to increased software delays in packet processing, causing a
sudden increase in the apparent RTT.

We took some steps to avoid this problem, such as slowing down
the simulated CPU clock speeds during the pre-checkpoint phase,
and increasing the simulated LAN latency; these steps mean that
the relative effects on RTT of core speed are reduced. However,
increasing the total RTT too much means that TCP connections do
not ramp up fast enough, leaving the CPUs idle.

8.2 Web benchmark

We simulated the Web benchmark, which is Apache with a work-
load loosely based on SPECweb4, for a simulated time of 133
msec., after a warmup period of 333 msec. using M5’s simpler CPU
model. Table 7 shows the results. The NIC speed has no signifi-
cant effect, because this benchmark nearly saturates the CPUs, as
shown in table 1. Note that all of the “bound” configurations, with
the exception of sim SS, achieve essentially the same throughput,
because (except for sim SS) all of these are executing non-interrupt
code on a full-speed complex core. (One trial failed due to a simu-
lator bug.)

For this benchmark, core-switching imposes a fairly significant
cost depending on the configuration of the OS core. (A fast The
results show that the V2–V5 kernels generally outperform the V1
kernel, but it is not clear whether the differences between the V2–
V5 kernels themselves are consistent.

4 Very loosely, it turns out. We discovered that all responses are “404 Not
found” due to a buggy mod specweb99.so. For complex reasons, we cannot
fix this bug. It has the effect of making the benchmark more latency-
sensitive, since the responses are all short, and it also makes comparisons
between relatively brief simulation trials simpler, because all responses are
about the same length. However, in order to trigger any core-switching at
all on server response transmissions, we therefore set the core-switching
threshold for reads and writes to 256B, rather than 4KB. This setting
is possibly too aggressive for efficient operation, but it ensures that this
benchmark does reflect core-switching costs.

Table 10. Simulated throughput for ex tpcb

HW Kernel configuration
config. Unmod Bound V1 V2 V3 V4 V5
sim C 11411 NA NA NA NA NA NA
sim CC 10467 12006 7251 3291 3002 11416 11631
sim SS 4562 4789 4307 4355 4402 4413 4419
sim Cc 3819 10541 7276 7419 7615 7627 7746
sim CS 4563 10320 8556 8680 8872 8857 8952
sim CS∗ 5510 11644 9092 9233 9422 9439 9619
sim Cs 2336 9007 5930 5900 6054 6063 6298
sim Cs∗ 2608 9442 6240 6098 6240 6258 6306

Values are transactions/sec. rates (for 100 transactions)
∗: this trial used 16KB L1 caches

We also ran this benchmark on the dual-core Xeon hardware,
using trials of 15 seconds. Again, the throughput was identical,
saturating the 1 Gbit/sec NIC, independent of kernel configuration.

Table 9 shows that several different system calls accounted for
the majority of the core-switches during this benchmark. (poll is
normally used to wait for available input; sendfile is used to trans-
mit data directly from a file to the network, without copying it into
and out of user space.) We note, however, that in profiles made on
the simulated system, only the writev system call consumes signif-
icant CPU time, possibly implying that Apache on the simulated
system is not using sendfile.

We also simulated quad-core configurations (using the notation
from sec. 4, sim CCSS, sim CCCC, and sim CCss), where Apache
is bound to the two complex cores, and system calls and interrupts
are bound to the two other cores. The results in Table 8 show that
in these tests, the fastest core-switching kernel is V4, as we would
expect, but there is little difference between the V2–V5 kernels.
(One trial failed due to an M5 bug, and another died with a kernel
crash, apparently because of a synchronization bug in our core-
switching code which allowed a timer interrupt during a critical
section.) As explained in sec. 9.2, we have not yet really solved
the scheduling problem for core-switching with multiple choices
of targets, but profiles show a rough balance of effort between the
two OS cores.

8.3 Database benchmark

Our DB benchmark uses the ex tpcb “TPC-B-like” example from
the Berkeley DB distribution [31]. (One should not mistake this
for a full-scale database.) Normally, ex tpcb’s throughput is domi-
nated by disk I/O, which makes it hard to evaluate the cost of com-
putation. We eliminated most disk I/O delays by using a RAM disk
on the real hardware, and by setting the access time to zero in M5’s
disk simulator.

In these tests, the configuration apparently handled all interrupts
on the OS, so while the other configurations differ from unmod in
that they pin user-mode code to the application core, they do not
actually change where the interrupts happen.
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Table 7. Simulated Web results on dual-core CPUs
NIC speed = 1 GBit/sec NIC speed = 10 GBit/sec

Hardware Kernel configuration
config. Unmod. Bound V1 V2 V3 V4 V5 Unmod. Bound V1 V2 V3 V4 V5
sim C 1231 NA NA NA NA NA NA 1229 NA NA NA NA NA NA
sim CC 2087 1354 706 486 1300 1329 1301 2326 1339 1046 1261 1296 1319 1117
sim SS 1079 615 490 572 578 585 583 1062 617 476 567 585 587 594
sim Cc 1560 1393 724 780 852 870 (M5 bug) 1629 1391 579 155 701 696 938
sim CS 1706 1340 847 1163 1184 1176 1161 1759 1339 872 1162 1171 1178 1169
sim Cs 1417 1373 482 696 690 704 688 1481 1379 481 695 712 700 703
sim CS (16KB L1) 1772 1344 953 1192 1211 1204 1196 1777 1330 964 1191 1199 1204 1196
sim Cs (16KB L1) 1464 1382 574 734 764 762 754 1505 1375 513 764 791 774 753

Values are KB transferred during 0.133 seconds.

Table 8. Simulated Web results on quad-core CPUs
NIC speed = 1 GBit/sec NIC speed = 10 GBit/sec

Hardware Kernel configuration
config. Unmod. Bound V1 V2 V3 V4 V5 Unmod. Bound V1 V2 V3 V4 V5
sim CCSS 2897 2739 685 1187 1222 1239 1227 2937 2795 683 1192 1227 1238 1233
sim CCCC 3425 3431 1318 1278 1301 1322 (M5 bug) 3335 3390 1326 (crashed) 1318 1330 1293
sim CCss 2175 1704 348 1100 1133 1142 1140 2139 1758 350 1104 1136 1149 1134

Values are KB transferred during 0.133 seconds.

Table 10 shows the results, for trials of 100 transactions, on
various simulated hardware configurations. (For this benchmark,
we found it unnecessary to use a warmup period, and we core-
switched only on fdatasync and not on other system calls.) Even
though the application is single-threaded, and actually shows a
slight slowdown when going from one to two cores under the
vanilla kernel, we do see some speedup when using either the
bound configuration or (in some cases) core-switching. (We are
not sure why the V2 and V3 configurations for sim CC perform so
poorly.)

Table 10 also shows that, in general, the unmodified kernel is the
worst performer. This is mostly an artifact of the single-threaded
application, which on the unmodified kernel tends to run on core
0; in our configurations, the slower core is numbered 0. When we
bind the user-mode code to the faster core, this leads to an artificial
speedup (except for sim SS and sim CC, which have no “faster”
core). In the cases of sim SS and sim CC, pinning the user code to
core 1 has the effect of separating its execution from the interrupts
on core 0, and the modest speedup of bound over unmod may be
the result of more parallelism and/or fewer cache conflicts.

Somewhat surprisingly, the V5 kernel usually performs better
than the V4 kernel; perhaps the idle-loop polling used in V4 causes
interference with the non-idle core.

Table 11 shows the results, for trials of 20,000 transactions, on
the dual-core Xeon hardware. As far as we can tell, there is no
meaningful impact of the core-switching code on this benchmark,
even though it spends ca. 33% of its time in the operating system.

Table 12 shows that essentially all of the core-switches happen
during the fdatasync system call, which flushes a file’s kernel
buffers to the disk (and hence makes a transaction durable).

We also obtained procedure profiles for this benchmark from the
M5 simulator. For the uniprocessor (sim C) trial, the system spent
56% of the CPU in user mode, 24% in system calls (including 13%
in fdatasync), and 8% in interrupt handlers. For the unmodified
kernel on the sim CC dual processor, the primary CPU spent 53%
of its time in user mode, 22% in system calls (12% in fdatasync),
and 7% in interrupt code; the secondary CPU was mostly idle.

For comparison, we looked at the sim CS CPU (with 8KB L1
caches). For the V5 kernel, the application core spent 42% of it time
in user mode, 43% idle, 9% in system calls, and negligible time in
interrupts or fdatasync. The OS core spent 55% of its time idle,
15% in interrupt code, and 24% in system calls – almost entirely
in fdatasync. Thus, even though the simple OS core spends more

Table 11. Throughput for ex tpcb on dual-core X86

N = 100 trials
20,000 transactions/trial

Core-switching Mean Std. Max.
mechanism TPS dev. TPS
None 21532 71 21692
V1 21462 78 21623
V2 21467 85 21583
V3 21491 62 21619
V3, work-conserving 21446 75 21576

Table 12. Core-switch counts for 1 ex tpcb trial, dual-core X86

Core-switches by system call
Benchmark read write open fdatasync
ex tpcb 81 23 196 200029

CPU time executing fdatasync than a complex core does, there is
enough spare OS core time to maintain throughput, while allowing
the high-power complex core to be quiesced (in low-power mode)
for almost half of the time.

8.4 Network streaming benchmarks

We simulated the netperf/TCPstream benchmark, which sends
TCP data as fast as possible, and netperf/TCPmaerts, which re-
ceives data as fast as possible. These ran for a simulated time of
167 msec., after a 33msec warmup period. Tables 13 and 14, re-
spectively, show the results. and our V5 core-switching kernel (also
with bound interrupts). Except for the Unmod trials, the application
itself was bound to core 1.

In tests with a 1 Gbit/sec, TCPstream on the unmodified kernel
got essentially full wire bandwidth, except on the sim SS config-
uration, which with two simple cores seems underpowered. Core-
switching clearly causes a slowdown on CPUs with a slow or sim-
ple OS core. There is some variation based on the core-switching
version.

There is no clear pattern as to which core-switching kernel
performs the best. The benchmarks are configured to send and
receive data in buffers of 64KB per system call, which makes core-
switching relatively infrequent. Perhaps the variation between trials
is due to the effects described in section 8.1. The use of core-
switching, however, does move significant CPU time from the fast
core to the slow core, which reduces throughput. Also, since almost
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Table 13. Simulated Netperf results: TCPstream
NIC speed = 1 GBit/sec NIC speed = 10 GBit/sec

Hardware Kernel configuration
config. Unmod. Bound V1 V2 V3 V4 V5 Unmod. Bound V1 V2 V3 V4 V5
sim C 21185 NA NA NA NA NA NA 47639 NA NA NA NA NA NA
sim CC 21185 21185 21185 21185 21185 21185 21185 46623 65049 47158 47823 48378 48536 48031
sim SS 13920 19196 14354 14377 13965 14003 13954 13861 19162 14334 14404 13909 13920 13958
sim Cc 21185 21185 13546 13683 13698 13769 13734 46180 41563 13468 13680 13728 13778 13746
sim CS 21185 21185 14413 14471 13952 13948 14037 46185 60718 14421 14484 13951 14002 14014
sim Cs 21185 20939 7139 7128 6990 6973 6990 46120 23103 7105 7139 6987 6987 7021
sim CS (16KB L1) 21185 21185 17287 17734 17871 17828 18101 46172 62680 17357 17700 17766 17827 18046
sim Cs (16KB L1) 21185 21185 7845 7970 7965 8030 8036 46146 26547 7836 7953 7965 8002 8039

Values are KB transferred during 0.167 seconds.

Table 14. Simulated Netperf results: TCPmaerts
NIC speed = 1 GBit/sec NIC speed = 10 GBit/sec

Hardware Kernel configuration
config. Unmod. Bound V1 V2 V3 V4 V5 Unmod. Bound V1 V2 V3 V4 V5
sim C 17793 NA NA NA NA NA NA 20417 NA NA NA NA NA NA
sim CC 17668 16549 16302 16424 16425 16425 16425 20266 18966 18688 18826 18827 18827 18827
sim SS 17268 16545 16018 16144 16144 16148 16147 18655 19018 17164 17840 17852 17913 17913
sim CS 17668 16554 16020 16140 16145 16144 16166 20266 18966 17751 17960 17960 18023 18023
sim Cs 21185 13546 11382 11458 11494 11499 11494 24155 13847 11631 11829 11902 11902 11902

Values are KB transferred during 0.167 seconds.

no time is spent in user mode, the application core is almost entirely
idle, and need not be drawing power.

At 10 Gbit/sec, we could not saturate the network; the CPU
was the bottleneck. Interestingly, on the sim CC configuration, the
bound configuration yielded 40% more throughput than the un-
modified configuration. A profile of the unmodified configuration
shows that the scheduler has put both the user code and inter-
rupt handling on the same core, leaving the other core fully idle
except for clock ticks. The bound configuration spread the load
somewhat more evenly over both cores. Again, core-switching does
cause a slowdown for CPUs with slower OS cores, and there is
no clear winner among the core-switching kernels. Core-switching
and interrupt-binding forces most of the load onto the OS core,
again leaving the application core mostly idle.

With TCPmaerts, the results seem inconsistent, possibly be-
cause of the effects described in section 8.1; profiles show even the
uniprocessor CPU mostly idle. Table 14 therefore omits some rows,
to save space.

Table 15. Core-switch counts for 1 netperf trial, dual-core X86
Core-switches by system call

Benchmark read write open socketcall poll
netperf/tcpstream 273 0 120 431216 10
netperf/tcpmaerts 410 1 460 431240 10

On the real dual-core Xeon system, with a 1 Gbit/sec NIC,
multiple trials of both streaming benchmarks always transferred
between 941.2 and 941.45 Mbit/sec regardless of the software
configuration (core-switching or unmodified Linux), implying that
the system was network-limited. (We have no 10 Gbit/sec NIC for
this system.) We did measure the number of times, during one 60-
second trial of each benchmark, various system calls performed
core-switches. Table 15 shows that almost all of these core switches
were in the socketcall system call. (Linux on x86 differs from
Linux on Alpha in that its C library funnels the socket API through
this one system call.)

9. Future work
Here we discuss several aspects of our ongoing work.

9.1 Energy measurements

Our primary motivation (based on Kumar et al. [20]) for rapid core
switching is to enable the potential energy efficiencies of asymmet-
ric multicores. In this paper, we have not reported energy savings,
because we do not yet have accurate energy models for asymmet-
ric hardware. We are in the process of porting the Wattch power-
analysis framework [5] to M5, which should allow reasonably ac-
curate modelling of dynamic power consumption.

9.2 Policies for core switching

Core-switching introduces policy questions: (1) which core to
choose, and (2) whether to switch to a core that is busy. Here we
describe some preliminary work that addresses those issues; we do
not yet have the full experimental results that would show which
policies are the most efficient.

On a two-core machine, the first question is easy; the second re-
duces to whether the policy is work-conserving. A work-conserving
policy would not switch a thread to a busy target core, causing the
thread to block, if the source core would become idle. It is not obvi-
ous whether a work-conserving policy would decrease overall en-
ergy efficiency (by doing work on a more-complex core than neces-
sary) or increase it (by finishing the task sooner, and thus spending
less energy on always-on system components).

On a machine with more than one core of each type, the which-
core-to-choose question arises. Policy options include static bind-
ing (e.g., threads on application core Xa always switch to OS core
Xo); round-robin (for load balancing), or affinity-favoring. If the
policy both favors affinity and is work-conserving, there is also a
choice as to how to break ties (i.e., should we switch to the same
core as before even if that core is busy?)

We implemented a many-core version of SwitchCores that in-
vokes a SelectOSCore function controlled by three policy settings:
WC (for work-conserving), AF (for affinity instead of round-robin),
and PA (for preferring affinity over work-conserving). Switch-
Cores also invokes a corresponding SelectAppCore function, anal-
ogous to SelectOSCore except that it never chooses to leave the
thread running on an OS core.

The resulting code has a complex decision tree. The most ex-
pensive aspect is the need to search for idle cores when doing
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round-robin scheduling, but, we have not yet seen any significant
difference in overhead versus our simpler scheduling policy.

10. Summary
Core-switching costs will become increasingly important with the
use of asymmetric multicores. In this paper, we showed how to
significantly speed up core-switching using both software tech-
niques and small architectural changes. We evaluated these changes
using both microbenchmarks and macrobenchmarks on both real
and simulated hardware. Core-switching to slower OS cores on
frequent, expensive system calls sometimes reduces performance
– and sometimes improves performance – but it also provides
opportunities to power-down complex application cores. We also
discussed several scheduling-policy issues that arise from core-
switching.
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