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Abstract— Residential energy constitutes 38% of the total 

energy consumption in the United States [1]. Although a number 

of building simulators have been proposed, there are no 

residential electrical energy simulators capable of modeling 

complex scenarios and exploring the tradeoffs in home energy 

management. We propose HomeSim, a residential electrical 

energy simulation platform that enables investigating the impact 

of technologies such as renewable energy and different battery 

types. Additionally, HomeSim allows us to simulate different 

scenarios including centralized vs. distributed in-home energy 

storage, intelligent appliance rescheduling, and outage 

management. Using measured residential data, HomeSim 

quantifies different benefits for different technologies and 

scenarios, including up to 50% reduction in grid energy through 

a combination of distributed batteries and reschedulable 

appliances. 

Keywords— Smart grids, green energy, residential energy 

management, smart scheduling 

I. INTRODUCTION & RELATED WORK 

The focus of building energy consumption research has 

been on commercial and industrial sectors, as they constitute a 

majority of energy consumption. However, the residential 

domain contributes to 38% of total energy consumption in the 

United States and directly affects hundreds of millions of 

individuals [1]. 

There have been several published studies that instrument 

homes to get detailed energy use, but only a few concerned 

with electricity. One work analyzed records of two years of 

home electricity usage and simulates tradeoffs between utility 

pricing and energy storage using batteries [2].  A second study 

also considered photovoltaics [3]. The largest study recently 

published [4] provides the first freely available data set of 

detailed power usage information from several homes, with a 

disaggregation of the component appliance contributions. The 

algorithm developed based on this data can isolate appliance 

power non-intrusively using a learning model with 82% 

accuracy. Instrumenting homes involves a considerable 

overhead in data collection and physical testing. It does not 

enable easy comparison of various options, or studies of how 

residential energy management system should be architected.  

This is one of the key motivations behind the design of 

simulators for residential and industrial energy usage. 

Building electricity simulation involves modeling loads 

and sources with a schedule to aggregate each element’s 

provision or consumption [4]. The simulators in [3] & [5] 

study the tradeoffs between renewable generation and grid 

pricing, but only for the homes and neighborhoods where their 

study was deployed. This precludes the possibility of verifying 

their results with different usage and residence configurations. 

The Department of Energy’s NZERTF home simulator [6] 

provides an open interface for user models, allowing 

comparison of energy consumption based on user behavior 

patterns. However, usage patterns are tested on a single, 

instrumented house, with no ability to specify a different home 

configuration, thus limiting its scope. 

Commercial and open-source energy simulators provide 

the complex interactions found between elements in the 

energy grid. However, the granularity of the interactions is not 

extended to the residential domain. GridLAB-D, a 

comprehensive grid simulation platform, provides nominal 

residence and appliance modeling [7], but the simple load 

model is not able to convey the various scenarios explored in 

Section III, though some attempts have been made towards 

extending GridLAB-D in this direction [8]. Similarly, 

OpenDSS [9] provides the ability to model complex 

distribution networks at different levels of the grid, but this 

does not extend to individual end-use elements, which can 

only be specified as generic loads or sources. 

The technology of residential electricity consumption has 

been evolving. The emergence of energy storage, smart 

appliances, and automated control [3] [5] has blurred the 

distinction between loads and sources. Storage elements such 

as batteries can consume grid or renewable power for charging 

or be used as energy sources. Consequently, scheduling must 

evolve to a distributed system of interactions among elements.  

The related work demonstrates that existing residential 

electrical energy simulators lack the sophistication to handle 

emerging technologies and quantitatively compare the impact 

of different home energy management policies. 

To address these issues, we develop HomeSim, a 

simulator for evaluating residential electrical energy usage, 

storage, and generation. It is capable of modeling energy 

consumption of the typical sources and loads, including utility 

power, generators, and household appliances, as well as 

energy storage, renewables, fuel cells [5], and “smart” 

appliances. HomeSim’s model enables many configurations of 

end-use elements. Similarly, while the majority of existing 

simulators use a monolithic event-driven scheduler, HomeSim 



provides a highly extensible scheduling algorithm that can 

simulate more complex interactions among nodes and subsets 

of nodes, uniquely providing the ability to test new scenarios. 
With the added capabilities of HomeSim, we are able to 

explore the impact of home energy scenarios that were 
previously impossible without actual implementation and 
instrumentation. We consider lithium-iron phosphate batteries, 
an emerging technology considered to be an alternative to 
traditional lead-acid batteries due to better performance 
characteristics. Through HomeSim, we can quantify their 
benefit within different house configurations and compare to 
their theoretical benefit. We also implement two energy-saving 
improvements suggested in the related work: distributed, 
appliance-specific batteries [10] and dynamic rescheduling of 
appliances [3]. By modifying the scheduling algorithm and the 
configuration of energy elements in the home, we can test both 
scenarios in HomeSim, demonstrating 36% reduction in grid 
energy using distributed batteries, and 25% reduction using 
distributed batteries. In addition, we investigate the impact of 
outage management, taking into account the appliance 
limitations/restrictions that must be imposed and the 
scheduling policies that would improve battery consumption, 
demonstrating high green energy efficiency. The ability to 
quantitatively validate residential energy management policies 
exemplifies the benefit of our simulator vs. the previous work. 

  

Fig. 1. HomeSim System Model with dependent node interfaces 

II. HOMESIM DESIGN 

An electrical energy simulation platform can be broken 

down into two key components: the end-use elements (i.e. 

loads, sources) and the scheduler.  Fig. 1 depicts the general 

model of HomeSim, including the event-driven scheduler and 

the constituent nodes which represent energy sources, loads, 

storage, and hybrid components of a home energy 

management system. The scheduler determines which nodes 

are active at a particular iteration, and executes the 

consumption computation for them. While the core of the 

scheduler is straightforward and representative of a bottom-up 

home energy model [11], the actual computation at each step 

is configurable. While the merits of a central vs. distributed 

scheduler are debatable, for residential energy, the centralized 

approach is particularly useful when modeling complex 

interactions between loads and sources. One example is the 

growing popularity of “smart” appliances, which can modify 

their own power profiles or schedules as a function of the 

control input. HomeSim’s modular computation facilitates the 

adaptive behavior of such emerging technologies. 

Nodes provide an easy way to define all the relevant 

parameters for energy sources, loads, storage, and hybrid 

elements of a residential system. They also contain power 

profile functions, which provide a time-indexed mapping of 

node power. This provides the flexibility to model complex 

devices using a single data structure by changing the behavior 

of power profile function. Additionally, each node can be 

associated with a list of dependent nodes. This list creates a 

direct connection between nodes that affect each other. The 

result is a tree of dependent nodes under the scheduler that 

inherently captures interactions among elements that is 

lacking in other simulators. Dependency lists enable load, 

source, and storage interactions previously unavailable in 

home energy simulation. The next subsections explore these 

components and the scenarios they enable in greater detail. 

A. Nodes 

A node is the abstract data structure that encompasses the 

end-use elements of a home. This data structure has an 

identifier, which classifies the device as a source, load, or 

hybrid. Complex elements such as batteries fall into the latter 

category, as they are both producers and consumers. Each 

node has a list of dependent_nodes, which informs the 

scheduler of node-to-node interactions. In Fig. 1, the “Node: 

Washer” illustrates this idea, with the dependent “Washer 

Battery” modeling an appliance-specific battery whose 

capacity is only available to the connected node. Here, the 

washer and the battery behave differently, with the washer 

able to use the additional energy stored in its battery. This 

approach allows modeling more complex scenarios, like a 

backup generator, or virtually partitioning the hierarchy of 

nodes by the physical circuits in the home.  

TABLE I.  LOAD PARAMETERS 

Parameter Description 

AC/DC AC or DC power 

Interval The time until the next event instance 

Offset The daily time offset to begin the event 

Power Profile Power consumption profile function 

AC/DC Duration The length of a periodic event interval 

Continuous Continuous or periodic appliance 

Conversion factor Transmission/conversion loss factors 

Loads represent the sinks in our energy model, 

consuming power whenever active. From the energy traces 

[12] [13], we can further classify loads as either periodic or 

continuous, where periodic loads (i.e. dishwashers, dryers) 

have fixed intervals and frequencies, and continuous 

appliances (e.g. HVAC) have functional usage patterns over 

time. The actual energy for each load is defined by a dynamic 

power profile mapped against a fixed interval or a time-

dependent function. An appliance can also be characterized as 

operating on AC or DC power. Depending on the state of the 

incoming energy, appropriate conversion efficiency losses are 



used. Table 1 summarizes the parameters used for loads. 

Sources refer to nodes that are purely generators. The 

typical residential energy source is utility power. Others 

include solar, wind, and fuel cells [3]. Consequently, 

HomeSim maintains a completely open model, with a binary 

AC/DC specification, a power profile function over time, and 

appropriate conversion factors. This allows for fine-grained 

modification of source energy data. For example, utility power 

can be a constant power function with very high magnitude, 

since utility production far exceeds residential consumption. 

The parameters for each source are provided in Table 2.  

TABLE II.  SOURCE PARAMETERS 

Parameter Description 

AC/DC AC or DC power delivery 

Power Profile Power generation profile function 

Conversion factor Transmission/conversion loss factors 

Hybrid sources such as batteries, flywheels, and plug-in 

electric vehicles (PEVs), are becoming more prominent in the 

residential domain [2]. Their ability to both supply and 

consume energy requires a separate interface. In addition to 

having a fixed capacity, these sources can also have specific 

parameters, which are outlined in Table 3.  

TABLE III.  HYBRID NODE PARAMETERS 

Parameter Description 

AC/DC AC or DC power supply 

Max Capacity The maximum stored capacity in Ah 

Current Capacity The current capacity of the node, in Ah 

Nominal Voltage The device line voltage 

Charge/Discharge 

cutoff voltage 

The maximum charge/discharge voltage 

Lower current limit The minimum device operational current 

Upper Charge/ 

Discharge current 

The maximum charge or discharge current 

limit, respectively 

Conversion factor Transmission/conversion loss factors 

Batteries are a special case of hybrid nodes, and require a 

more sophisticated model to capture additional parameters. 

Four additional parameters are modeled for batteries: the 

Peukert exponent, depth of discharge (DoD), state of health 

(SoH), and state of charge (SoC). The parameters are 

described in Table 4Error! Reference source not found.. 

The State of Charge (SoC) tracks the current level of 

discharge.  Depth of discharge (DoD) is a function of battery 

technology, and specifies the minimum level of charge that 

should remain in the battery for correct operation. Battery 

lifetime is dependent on the State of Health (SoH), which 

decreases with the number of charge/discharge cycles.  

HomeSim uses the Coulomb Counting method to estimate 

these parameters [14] whose main benefit is simplicity, as it 

only needs measurements of voltage and current.  The 

battery’s discharge current, 𝐼𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 , is: 

𝐶𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝑑  = Δ𝑡 ∗ 𝐼𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒        (1) 

𝐷𝑜𝐷𝑐𝑢𝑟𝑟 =  
𝐶𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝑑

𝐶𝑚𝑎𝑥𝑖𝑚𝑢𝑚
∗ 100%                   (2) 

The current depth of discharge can be calculated using 

Equation (2) where 𝐶𝑚𝑎𝑥𝑖𝑚𝑢𝑚 refers to the maximum capacity 

of the battery. We can then express the effective charge of the 

battery: 

𝐶𝑒𝑓𝑓  =  𝐶𝑚𝑎𝑥𝑖𝑚𝑢𝑚 ∗ (
𝐶𝑚𝑎𝑥𝑖𝑚𝑢𝑚

𝐼𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒∗𝐻
)

𝑘−1

∗
𝑆𝑜𝐻𝑜𝑙𝑑

100
     (3) 

where 𝐻  is the rated discharge time, k is the Peukert’s 

exponent, and 𝑆𝑜𝐻𝑜𝑙𝑑 is the previous 𝑆𝑜𝐻 (initialized at 100). Using 

this value and a manufacturer-provided Depth of Discharge 

(𝐷𝑜𝐷), we can calculate the current SoC and SoH: 

𝑆𝑜𝐶 = 𝐷𝑜𝐷 − 𝐷𝑜𝐷𝑐𝑢𝑟𝑟              (4) 

𝑆𝑜𝐻𝑛𝑒𝑤 = 𝑆𝑜𝐻𝑜𝑙𝑑 − (100 − 𝑆𝑜𝐻𝑑𝑒𝑎𝑑) ∗
𝐶𝑚𝑎𝑥𝑖𝑚𝑢𝑚

𝐶𝑦𝑐𝑙𝑒𝑠𝐷𝑜𝐷𝑓𝑖𝑛𝑎𝑙∗ 𝐶𝑒𝑓𝑓

 (5) 

where 𝐷𝑜𝐷𝑓𝑖𝑛𝑎𝑙  is the final discharge point after the current 

cycle through Equation (2), extended for the duration since the 
last 𝑆𝑜𝐻 update, 𝑆𝑜𝐻𝑑𝑒𝑎𝑑  is the point at which the battery is 
effectively dead (technology-dependent), and 𝐶𝑦𝑐𝑙𝑒𝑠𝐷𝑜𝐷_𝑓𝑖𝑛𝑎𝑙  

is the number of cycles over the lifetime of the system where 
the final discharge point is 𝐷𝑜𝐷𝑓𝑖𝑛𝑎𝑙 . 

TABLE IV.  BATTERY PARAMETERS 

Parameter Description 

Peukert Exponent The storage efficiency of a battery 

Depth of Discharge (DoD) The max. fractional depth of discharge 

State of Health (SoH) The fractional available battery capacity 

State of Charge (SoC) The current fractional battery capacity 

B. Scheduling Algorithms 

The standard scheduler for HomeSim is an event-driven 

scheduler over a time-ordered list of nodes, similar to other 

simulation platforms. It is the computation at each step, called 

the execute step, that distinguishes HomeSim from the 

previous home simulations. The execute step operates on the 

list of active nodes, allocating energy to each as necessary and 

determining the net consumption or generation. The 

implementation of this step can vary to handle different 

configurations of nodes and scheduling goals. In essence, the 

execute step provides an open scheduling platform. The 

following subsections investigate the different scheduling 

algorithms implemented within the execute step. 

1) Default Scheduler 

The simplest implementation is representative of the state 

of the art in renewable-enabled homes today. At each step, 

each node uses the green energy greedily and reverts to battery 

energy when there is not enough green energy. Finally, if the 

battery capacity is exhausted, the node uses grid energy. This 

is a relatively naïve scenario, and the next two subsections 

illustrate two more sophisticated cases of scheduling that are 

made possible by the flexibility of HomeSim’s infrastructure. 

 



 

Fig. 2. Schedule to prioritize distributed batteries 

2) Distributed Battery Scheduler 

The incorporation of green energy has made energy 

storage a necessity. The state of the art is a large, centralized 

battery, although the concept of appliance-specific batteries 

has been mentioned in [10]. Such distributed batteries offer 

the flexibility to allocate energy for the largest consumers, 

mitigating the stress on a centralized battery and preventing 

interference from other appliances. They can also be 

implemented by custom repartitioning and management of 

central batteries in a distributed manner. Fig. 2 illustrates how 

a distributed battery model can be run by the scheduler’s 

execute step. When the appliance is active, it will greedily 

seek out its own battery before attempting to use the central 

battery. Conversely, other appliances will not be able to access 

the node-specific battery. 

3) Smart Appliance Scheduling with Green Energy 

Prediction 

Smart appliances refer to the ability develop learned or 

automated behavior in appliances. A popular example is 

NEST thermostat [15], which learns temperature patterns in 

the home and automatically sets appropriate temperatures. 

Similarly, we envision adaptable appliances, a concept 

presented in [3], which set flexible deadlines for loads such as 

dishwashers, as their execution is typically open to 

rescheduling. While the execute phase in this case remains the 

same as in the previous section, the ability to reschedule 

appliances requires modifications of the event queue. The 

general approach is to predict the appliance usage and either 

use instantaneous or predicted green energy data to determine 

the best schedule for flexible appliances. 

 

Fig. 3. Cont. & Discrete BNs for Appliance Prediction 

Based on precedent from previous work [11] [12] [16], in 

this example we choose to perform appliance prediction using 

a learning model. With a few input variables, techniques such 

as Support Vector Machines (SVM) or Artificial Neural 

Networks (ANN) are error-prone, while Bayesian networks 

and their derivative Hidden Markov Models are more 

appropriate. We use the more versatile Bayesian network, as 

in [16], where the random variables can easily be adapted to 

match the training set. Based on our input data from MIT’s 

REDD database [12], we develop the Bayesian networks 

shown in Fig. 33 for each home appliance. Bayesian network 

probability variables can be obtained by counting. Equation 

(6) represents all the instances that a random variable matched 

the expected outcome over all training samples. The scheduler 

utilizes the data provided by the predictor to schedule 

appliances in an energy-efficient manner.  

𝒑(𝑿𝒊 = 𝒙𝒋) = 𝑻−𝟏 ∗ 𝒄𝒐𝒖𝒏𝒕(𝒙(𝒕) = 𝒙𝒋) for all 𝒕 = 𝟏 … 𝑻 (6) 

1. The expected available energy at each timeslot, power[], 

is determined by the predicted green energy availability, 

predicted_renewable_schedule[]. 

2. The energy consumption of all non-reschedulable 

appliances, inflex_app[], is deducted from the potential 

energy available to determine how much energy is 

actually free for use. 

3. Based on the results in step 2, we can now schedule all 

reschedulable appliances, represented by the array 

flexible_intervals[]. It is important to sort them by the 

highest maximum energy consumption first, to match the 

largest consumers to the highest green energy slots.  

4. Iteratively, the algorithm schedules each successive 

appliance and recalculates free energy for each timeslot. 

5. The ultimate result is the scheduled slots for each 

reschedulable appliance in the variable 

flexible_intervals[]. This is then provided to the scheduler 

for execution. 

The algorithm determines the energy available at each 

interval based on predicted solar energy. Depending on the 

prediction horizon, different predictors can be used. This 

energy is reduced by the predicted schedule of appliances 

which do not have flexible deadlines, resulting in the expected 

unused solar energy at each interval. The scheduler then 

allocates each flexible-deadline appliance based on the highest 

green energy available in the 24-hour period. The scheduler 

iterates this process until all flexible appliances are allocated, 

and provides this schedule to the simulator. 

III. CASE STUDIES 

Our goal with HomeSim is to create a versatile, 

configurable residential energy simulation platform capable of 

quantifying the impact of current and future technology 

improvements. In the following case studies, we test our 

simulator in these scenarios: We test the efficacy of the new 

lithium-iron phosphate batteries and compare against their 

theoretical benefits (i.e. 5x battery life). We implement and 

execute experiments that were proposed without validation in 

related work: rescheduling appliances for better energy 

efficiency [3] and replacing centralized batteries with 

distributed. With the functionality of HomeSim, we are not 

only able to determine the improvement over a base case, but 



compare the benefit of one approach to another. We also 

investigate the scenario of grid outage management and its 

impact on appliance usage in the home. 

A. Input Data 

All of our case studies use measured data from MIT’s 

REDD project [12] for residential energy consumption. The 

dataset contains low-frequency (1Hz) readings of power 

consumption from the major appliances in 6 houses over two 

weeks. We use several datasets, representative of a typical 

home, with data for major appliances: stove, microwave, 

washer/dryer, refrigerator, dishwasher, and HVAC; and other, 

more minor energy loads: kitchen outlets, lighting, electronics, 

etc. These readings are composed into a schedule for each 

load, and are also used for appliance prediction. 

TABLE V.  EXPERIMENTAL BATTERY SPECIFICATIONS 

Specification LFP spec LA spec 

Capacity (kWh) 18.6 18.6 

Nominal voltage (V) 12 12 

Charge/Discharge cutoff (V) 14/10 14/10 

Depth-of-Discharge limit 0.6 0.6 

Lower/Upper current limits (A) 300/400 150/250 

Peukert ratio 1.05 1.15 

Our renewable energy data is obtained from the UCSD 

Microgrid photovoltaics at 15-minute intervals, and 

normalized to match 35% of the residence’s average 

consumption for a more appropriate solar capacity [17]. We 

incorporate lead-acid (LA) and lithium-iron phosphate (LFP) 

batteries into our analysis. Battery characteristics are 

described in Table 5.TABLE V.  The use of solar data from 

the southwest United States, with energy consumption data 

from the homes in northeast may seem contradictory, but both 

characteristics are similar to areas such as Denver, Colorado, 

whose annual sunlight is similar to San Diego [18], while the 

weather is comparable to that of Boston in the winter [19]. 

B. Smart Appliances 

The smart appliance scheduling algorithm (Section 

II.B.3)) requires reschedulable appliances and predicted green 

energy. We use the washer, dryer and dishwasher as smart 

appliances with flexible schedules ([3]) with the parameters in 

Table 6. We set a threshold for the confidence level at which 

appliance prediction is considered valid, so that the predicted 

appliance can be scheduled. We derive this value empirically, 

varying the threshold over our training data in intervals of 0.1, 

and selected the minimum error (0.7, with mean error of 0.31). 

TABLE VI.  FLEXIBLE APPLIANCE SCHEDULING 

Appliance Flexible Schedule 

Washer Up to 12 h before predicted deadline 

Dryer Up to 12 h before, within 2h of washer  

Dishwasher Within 6 h after predicted deadline 

C. Renewable Prediction 

Smart appliance scheduling can also leverage predicted 

green energy, which, for our experimental setup, is solar. 

Referencing a quantitative comparison of several time-series 

prediction algorithms [17], we take advantage of the 

reasonable accuracy (<10% error) and low overhead of the 

extended Exponential Weighted Moving Average (eEWMA) 

prediction algorithm, which predicts 24 hours in advance: 

𝑿(𝒊 + 𝟏) = 𝜶𝒙(𝒊) ∗ (𝟏 + 𝜺𝟏) + (𝟏 − 𝜶) ∗ 𝒙(𝒊 − 𝟏) ∗ (𝟏 + 𝜺𝟐)          (7) 

where 𝑋(𝑖 + 1) is the prediction for the next day based on 

a linear combination of the measured data from the current & 

previous days 𝑥(𝑖) & 𝑥(𝑖 − 1), weighted by 𝛼 and the error of 

the previous predictions 𝜀1  & 𝜀2 . We empirically determine 

the value 𝛼 with lowest prediction error at 𝛼 = 0.45 for the 

UCSD’s PV dataset.  This predictor is used to estimate solar 

energy availability for the 18h window we used for appliances 

listed in Table 6. 

D. Simulation Engine Validation 

Our validation is based on the mean absolute error (MAE) 

of each individual model, as well as the MAE of the overall 

simulation. We calculated MAE as the average of the absolute 

error for each result obtained as compared to the actual 

measured values. The results provided in Table 7 show that 

our simulator very accurately estimates the appliance power 

consumption at the appropriate granularity, though the error 

increases to 10% when simulated with input models that are 

discretized to 1min. This is not unexpected, as at such 

granularity simulation of very short-duration appliances loses 

accuracy. The higher error in HomeSim compared to the total 

energy provided by the grid is caused by the non-ideality of 

transmission and conversion. While HomeSim models these 

losses (see Conversion Factor in Table 2-3), their nonlinearity 

inevitably introduces some noise in total simulation accuracy. 

TABLE VII.  MODEL VALIDATION ERROR 

Model Mean Absolute Error 

State of Health (SoH) 8%  

Avg appliance power per interval 0.2% 

HomeSim (Total Energy Consumption) 7% 

E. Case 1: Battery Technologies: 

Related research discusses the use of batteries and the 

advantages they provide, whether to improve the efficiency of 

renewable sources [3] or to reduce the energy costs via TOU 

pricing. These works assume lead-acid (LA) batteries, the 

most popular option. However, recent work motivates the use 

of lithium-iron-phosphate (LFP) batteries over LA for 

residences, citing 2.7x increase in energy density and 5x 

improvement in cycle life [18]. Neither work can compare or 

quantify the difference between the two scenarios. The 

simulator in [3] does not take into account a sophisticated 

battery model, opting to use a linear model instead, while 

work presented in [2] requires physical measurements to test 

the results, severely limiting its applicability  In contrast, 



HomeSim can easily model and test both types of batteries and 

quantify the differences. 

We compared a lead-acid (LA) battery with an equal-

volume lithium iron-phosphate (LFP) battery. We show the 

differences in the various power characteristics in Table 8, 

where Green Energy Efficiency (GEE) refers to the fraction of 

green energy used for useful work (running loads or charging 

batteries) compared to the total available renewable energy in 

the system. By taking into account the state of health, we can 

estimate the lifetime of each battery in the given scenario. 

The results do not match the theoretical 5x improvement 

due to the complex interaction between  batteries, the solar 

source, and the different loads. While we see both a reduction 

in total grid energy and improvement in green energy 

efficiency, the latter is due to additional energy spent charging 

the larger LFP battery. Due to the larger capacity and slower 

overall recharge time, the LFP battery spends a majority of 

time in low SoC, accrues a higher number of total 

charge/discharge cycles, and reduces the LFP lifetime from a 

theoretical 5x to under 3x. So, while there is an improvement 

with the LFP battery, HomeSim demonstrates that it is 

tempered by the particular configuration of the system. 

TABLE VIII.  BATTERY TECHNOLOGY RESULTS 

Characteristics LA battery LFP Battery 

Total Grid Energy (kWh) 78.5 63.8 

Green Energy Eff. (%) 20.4 23.1 

Average SoC 0.47 0.49 

Estimated Lifetime (yrs) 2.3 6.08 

F. Case 2: Reschedulable Appliances: 

With HomeSim, we can explore the possibility of 

rescheduling appliances with flexible deadlines using the 

parameters outlined in [3] and the algorithm in Section II.B.3): 

TABLE IX.  PREDICTION MODEL VALIDATION 

Prediction Mean Absolute Error 

Solar Energy Prediction 9% 

Appliance Prediction 31% 

Appliance Prediction (+/- 2 timeslots) 14% 

 

Table 9 summarizes the accuracy of the predictors used 

for this case. The error for appliance prediction is due to the 

discretization of a more continuous sample. These errors are 

aggregated when energy consumption is calculated. The 

appliance prediction incurs 31% mean error. However, as the 

last row demonstrates, appliance prediction is significantly 

improved when verifying appliance prediction within +/- 2 

timeslots. In the reduced granularity of the predictor, 

appliances that execute across a timeslot boundary may be 

predicted to execute in either slot. Qualitatively, however, 

predicting an interval early or late does not make a significant 

impact on the efficacy of rescheduling, as solar energy values 

are comparable for adjacent intervals. 

TABLE X.  RESCHEDULING APPLIANCE RESULTS 

 Fixed Reschedulable 

Total Grid Energy (kWh) 83.0 61.6 

Green Energy Efficiency (%) 41.5 47.7 

Green Energy Sold to Grid (kWh) 53.7 48.0 

The results in Table 10 demonstrate that rescheduling 

appliances has a positive impact on the total grid energy and 

on green energy efficiency (GEE), with a reduction of total 

grid energy by nearly 25%. GEE was improved, as seen in 

Fig. 4 (right), where a rescheduled dishwasher at 9:00 AM 

consumes all available green energy. However, this 

improvement is limited by the fact that battery usage was 

slightly reduced, resulting in more intervals of surplus green 

energy and fully charged batteries. This case is displayed in 

Fig. 4 (left), where only a constant 600W is needed to run an 

appliance, with the rest of the green energy unused. In a grid-

connected residence, the unused energy can be sold back to 

the grid, shown independently from net energy in Table 10. 

 
Fig. 4. Low GEE (left) and (right) high GEE  

G. Case 3: Distributed Batteries: 

The distributed battery example stems from recent 

research into associating batteries with appliances [10]. In the 

case of a centralized battery, the battery experiences a 

sustained drain on its energy from the combination of loads, 

forcing a more frequent fallback to grid energy. Load-

proportioned distributed batteries are more appropriately 

drained. In testing distributed batteries, we apportioned 

distributed batteries to the large appliances based on a ratio of 

their power consumption, normalized against the total capacity 

(18.6kWh) of the single centralized battery. 

 
Fig. 5. Centralized (left) vs. Distributed (right) batteries 

The results in Table 11show that the total grid energy 

consumption drops by a factor of 1.5x, while battery 

consumption and green energy efficiency increase. By 

comparing the traces, as in Fig. 55, we can see that large 

appliances that have a built-in battery are less susceptible to 

requiring grid energy, especially at times when the net load is 

high. The batteries store sufficient amount of energy for the 

connected appliances, delivering enough to prevent reliance 



on the grid, even when there is not enough instantaneous 

renewable energy available. The improvement in green energy 

efficiency comes from the fact that distributed batteries can be 

charged in an ad-hoc manner, providing a level of parallelism 

to charging that was not previously possible. 

TABLE XI.  CENTRALIZED (FIXED) VS. DISTRIBUTED BATTERY RESULTS 

 Centralized Distributed 

Total Grid Energy (kWh) 130.6 83.0 

Total Battery Energy (kWh) 25.3 35.6 

Green Energy Efficiency (%) 23.1 41.5 

H. Case 4: Power Outage Management 

Another scenario prevalent in modern smart grids is 

intelligent power outage management, which has been studied 

in related work on the domain of distribution to end-use loads 

[19]. However, outage management of individual houses has 

been largely neglected, with focus instead on the grid 

behavior. This case study focuses on the tradeoffs that must be 

made in the home during power outages. It explores how 

residences typically respond to outages or intermittent power 

availability, and applies these principles to a residence with 

local renewable energy and storage. While the presence of 

renewables and battery storage provides compensation for 

lack of utility power, appropriate management and 

prioritization of appliances must be integrated. 

Outage management represents an extension of 

reschedulable appliances: a scenario when appliance usage 

should be flexible, but limited whenever possible (e.g. only a 

subset of lighting is used) and the hard deadline of 

reschedulable appliances needs to be relaxed, since it may not 

be possible to use the appliances at all. With these scenarios in 

mind, appliance use has been modified to a tiered approach, 

with each tier having different characteristics: 

TABLE XII.  RESCHEDULABLE APPLIANCE PRIORITIZATION 

Tier Appliance Modification 

Tier 1 

Kitchen Outlets (main) 

Stove 

Bathroom 

Refrigerator 

Unknown Outlets (main) 

Electric Heat 

Lighting 

Air conditioning (main) 

 

 

 

 

 

(reduce by 0.5) 

(reduce by 0.25) 

(reduce by 0.5) 

Tier 2 

Kitchen Outlets (secondary) 

Electronics 

Washer 

Dryer 

 

Tier 3 

Unknown Outlets (secondary) 

Dishwasher 

Air conditioning (secondary) 

Air conditioning (tertiary) 

 

Tier 1: Prioritized Appliances. Tier 1 appliances are 

prioritized, as they serve necessary functions. These 

appliances have the highest priority. 

Tier 2: Deferrable Appliances. Tier 2 appliances are deferred, 

in that they can be rescheduled until there is enough energy to 

execute them. However, unlike the reschedulable appliances 

in Case Study 2, they no longer have hard deadlines. 

Tier 3: Forced-off Appliances. Tier 3 appliances will be forced 

off whenever there is not enough energy to run an instance. 

Table 12 summarizes the appliance tiers, along with the 

modifications made to the output of the appliance. The 

appliances are sourced from REDD’s database 6 of an 

instrumented house. While different residences may schedule 

slightly differently, we devised a schedule based on prioritized 

necessities: food and climate control, lighting, facilities, and 

kitchen elements, similar to what would be done. Of the 

repeated appliances (unknown outlets, air conditioning, 

kitchen outlets), the primary instances are prioritized, while 

the backup or supplementary instances are deferred. 

The implementation of the algorithm required a 

reprioritization of the reschedulable appliance scheduler in 

Section II.B.3). Instead of reverting to the grid, green energy 

consumption is organized as follows: any scheduled Tier 1 

appliances greedily consume available energy, followed by the 

central battery, which provides storage for all appliances. The 

prioritization then falls to distributed batteries, which provide 

storage for the deferred appliances, and finally the deferred 

appliances themselves. All Tier 1 and Tier 2 appliances that 

cannot be scheduled are added to a list of deferred appliances, 

ordered first by tier, and second by the scheduled time. 

The outage management algorithm is tested against the 

default case (no outage) to provide nominal consumption. The 

experimental scenarios are outage management + centralized 

battery and outage management + distributed battery, which 

test the algorithm with equal-sized centralized and distributed 

batteries, as described in Table 5. Finally, as an upper bound, 

the algorithms are compared to the ideal case, where all 

appliance consumption data is known ahead of time rather 

than predicted. The results are summarized in Table 13. 

TABLE XIII.  OUTAGE MANAGEMENT COMPARISON 

 Normal Outage + 

Centralize

d 

Outage + 

Distribute

d 

Ideal 

Avg. Daily Ener. (kWh) 28.2 12.3 13.4 15.8 

Tier 2 Appl. Instances 28 5 9 14 

Green Energy Effy. (%) 56% 87% 86% 87% 

As shown in Table 13, the outage management algorithm 

enables a schedule that allows Tier 1 appliances to execute 

while limiting Tier 2 and Tier 3 appliances. We also establish 

a comparison against a theoretical ideal by maximizing the 

energy consumption. However, Green Energy Efficiency 

(GEE) improved to 87%, which is nearly ideal when taking 

into account conversion and transmission losses. The 

distributed algorithm maintains this GEE, while improving the 

number of Tier 2 appliance instances by 44%. The majority of 



Tier 2 appliances rely on distributed batteries, which are 

slowly charged until they contain enough capacity to run their 

associated appliances. In the centralized case, other appliances 

ebb the battery’s charge, preventing the Tier 2 appliances from 

executing. Both cases demonstrate near-ideal GEE because 

batteries are almost always in a partial state of discharge, 

providing a consistent sink for renewable energy. The most 

significant results are the comparisons to the ideal case: the 

green energy efficiency is identical and only 5 more 

appliances can be scheduled in the ideal case. 

The experiments in this section cover both the cutting 

edge of technology and scenarios faced in the residential 

domain. While other building energy simulators focus on node 

consumption [8] [4], specific scenarios [2] [5], or the grid 

distribution network [9], HomeSim enables comparing 

different scenarios for residential end-users. We quantify 

actual vs. theoretical benefits of different battery technologies, 

demonstrating only 60% of the theoretical battery capabilities 

in real scenarios. We also investigate the impact of home 

automation enabled by renewable appliances, which can be a 

means to more efficiently use the energy available [3]. 

HomeSim evaluates such claims, demonstrating a 25% 

reduction in grid energy by taking advantage of automation. 

We demonstrate the impact of using distributed, node-specific 

batteries for large energy consumers, proposed in [10], to 

guarantee energy delivery for specific appliances.  This 

theory, proposed but not validated, is confirmed in our tests, 

as we can reduce grid energy use by 50%. Finally, we 

investigate the impact of utility outage in a residence with 

local renewables, allowing a subset of prioritized appliances to 

continue functioning at the cost of low-priority appliances. We 

allow all prioritized appliances to execute, taking advantage of 

both rescheduling to accommodate for available green energy 

and judicious use of batteries. This allows actual homes to test 

and compare different technologies and scenarios to identify 

suitable ones for energy savings. While the focus of this paper 

has been on energy, we will consider the tradeoffs involved 

with both capital and operational costs in separate work. 

IV. CONCLUSION 

In this work, we present HomeSim, a versatile simulator for 

the growing field of home energy management. HomeSim 

provides a configurable environment to quantify and compare 

present and future improvements in residential energy 

consumption. We further test HomeSim by validating battery 

technologies; by incorporating distributed batteries and 

renewable sources; by predicting appliance use and green 

energy availability; and by investigating algorithms that 

intelligently account for outage management. We plan to 

release HomeSim as an open-source tool that can facilitate 

energy research, provide insights into residential energy 

usage, and even help provide cost/benefits and evaluations for 

end users who are considering investing in energy 

improvements for real homes. Further extensions include 

modeling the thermal properties of homes, cost-modeling, 

grid-tied vs. merged and off-grid houses, and occupancy levels 

in order to better estimate and control HVAC. 
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