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Abstract— Residential energy contributes to 38% of the total 

energy consumption of the United States [1]. Current research 

aims to reduce consumption through time-of-use (TOU) 

pricing or by providing energy information to consumers. 

Industrial innovations are focused on energy efficiency and 

automated control of appliances. However, to date, quantifying 

the benefits of current and future technology improvements in 

residential energy management is difficult. This work presents 

HomeSim, a simulation platform aimed at residential energy 

modeling that can compare and quantify these results. The 

subsequent case studies leverage HomeSim to explore current 

and future technologies, including distributed batteries, 

renewable sources, smart appliances, cost-aware scheduling, 

and peak power reduction. 
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I.  INTRODUCTION 

Building energy consumption has been well-researched, 
but the focus has been on commercial and industrial 
domains, which constitute a majority of global energy 
consumption [1]. However, the residential domain 
contributes over a third of the total energy consumption in 
the United States. Moreover, the residential domain is 
important because of the significantly higher number of end 
users impacted–in the United States alone, residential energy 
consumption impacts hundreds of millions of homes and 
other residences. As such, recent research has turned to 
improving residential energy use. Some works focus on 
reducing a single aspect of consumption [1] [2], while others 
seek to provide more granular energy information to end-
users in order to facilitate user-driven improvements [1]. 
While these works are indeed beneficial, they require 
considerable overhead in data collection and testing, and 
results cannot be quantitatively compared. 

Home energy simulators have been developed as part of 
other research endeavors [3] [1] [2], but they are either 
specific to the residence or scenario being investigated, or 
particular to one aspect of energy consumption. For example, 
the Department of Energy’s NZERTF project [4] has 
established a user-model centric energy simulation, but the 
results are determined by actually emulating the user models 
on a real house, prohibiting widespread use. To counter the 
lack of testing and comparison of energy improvements, we 
have developed HomeSim, a simulation platform capable of 
modeling the energy consumption of the typical loads and 
sources of a home. The platform is designed in an extendable 
way, to be able to simulate cutting-edge and future 
technologies. Leveraging the capabilities of HomeSim, we 
investigate case studies presented in research an industry. 

Residential energy research has been  motivated in part 
by the number of people it affects and the ubiquitous nature 
of home energy consumption [5]. A majority of work has 
focused on characterizing green energy consumption within 
the home, with appliances accounting for 74% of total 
energy, as shown in Figure 1. Consequently, much of the 
related work has been aimed at providing more granular 
appliance data or improving appliance energy usage. 

 
Figure 1. 2011 US Residential Energy Consumption Breakdown [6] 

The work in [1] focuses on non-intrusive load 
monitoring, with the ultimate goal of presenting very 
granular power consumption for each appliance to enable 
users to make smarter decisions. The significant contribution 
is the ability to isolate appliance power data non-intrusively 
using a learning model, with 82% accuracy. However, the 
work does not strive to automate the process, choosing 
instead to leave power management decisions in the hands of 
users. [3] presents automated energy efficiency improvement 
in homes that are partially powered by green energy with 
storage. The work proposes an energy management system 
that provides early warnings, and suggests task rescheduling 
for maximizing energy. However, again, decisions are left to 
the user, with automation addressed as a feasibility study. In 
the wake of smart appliance and home automation research, 
we choose to investigate the impact of automation in 
reducing grid consumption. 

A more related work [7] automates battery charging and 
discharging in a green home based on predicted solar energy 
and battery state-of-charge. The work reduces grid energy by 
an impressive 3.9x. However, the paper only improves one 
aspect of energy consumption–battery charge–while making 
several assumptions that limit the widespread benefit, 
including a reliance of time-of-use (TOU) pricing; depleting 



batteries completely instead of a specific depth-of-discharge; 
and dependence on a variety of forecast data.  

The ability to correctly model energy consumption in a 

home is important for scheduling and determining load use, 

and is helpful for implementing the complex scheduling 

behavior explored in our case studies. The work in [5] 

provides a comprehensive review of residential energy, 

detailing both top-down and bottom-up simulation, which 

involves the modeling individual buildings, similar to our 

goals, and leveraging the models into classifications (single-

family residences, apartments, etc), as appropriate to a 

region, and simulating the result. A second work [8] 

compares the use of different learning techniques such as 

Bayesian Networks and Artifical Neural Networks (ANNs) 

to predict residential water use, and develops an integrated 

ANN to predict demand with average relative error of 30%. 

Similarly, [9] uses Bayesian Networks to predict user 

behavior, which in turn is used to determine appliance 

usage, and ultimately, energy needs for 24 hours ahead. 

Using time, energy, and duration as the input random 

variables, the paper predicts appliance usage based on a real 

dataset. Finally, MIT’s REDD project [1] utilizes the 

Factorial Hidden Markov Model to disaggregate overall 

energy data from residences, and predict which appliances 

are active over a given timeframe in a non-intrusive manner. 

They train their predictor using supervised approaches, 

providing as granular circuit-level information as possible, 

and are able to determine the appliance with 82% accuracy. 

The rest of this work is organized as follows: Section 2 

introduces the major components of HomeSim and the 

means of extending the system. Section 3 describes a set of 

case studies and results that are enabled by HomeSim, and 

Section 4 concludes the paper. 

II. HOMESIM SYSTEM DESIGN 

HomeSim cam be broken down into two key 

components: the end-use elements (loads, sources, etc.), and 

the scheduler. Collectively, the end-use elements are 

described by the generic node data structure. The event-

driven scheduler is an open interface for extensibility for 

different test cases. The following subsections describe 

these components in detail. 

 

A. Nodes 

A node is an abstract data type that represents end-use 
elements of a home, including loads, sources, and hybrid 
elements. An identifier differentiates each of the classes. 
Two such examples are the Node: Washer in Figure 3, which 
is a load (only consumes energy), and Node: Washer Battery, 
which represents a hybrid (both consumes and produces 
energy). Each node contains a list of dependent nodes, which 
identifies other nodes that are directly interact with it. These 
interactions are identified and captured by the scheduler, 
described in Section III.B. Figure 3 also illustrates the 
concept of a dependent node, as Node: Washer Battery is a 
dependent node of Node: Washer. Each node contains a set 
of conversion factors, which defines the transmission and 
conversion losses for AC and DC power. The appropriate 
factors are used by the scheduling algorithm depending on 
the source of energy at each intervals. The key to versatility 
of the sources is the use of a function, the power profile 
funtion, to model any real device accurately. 

Loads are the consumers within a simulation, consuming 
power when active. By examining the loads within a home 
from traces [1] [10], we can break down a load into either 
continuous or periodic. We can further define loads as 
AC/DC, the interval of occurrence for periodic applications, 
the daily offset of the event, and the duration of each event. 

Sources represent the pure producers for the home. 
These are predominantly the utility grid, but can also 
extend to solar-electric, wind, or even fuel cells. The 
appropriate source is simulated by appropriately 
adjusting the power profile function. For example, the 
utility grid can be represented by a constant high AC 
voltage at 120VA. 

Hybrids: are sources that can both produce and consume, 

such as batteries, flywheels, and plug-in electric vehicles 

[7]. In addition to having a fixed capacity, these sources can 

also have different charge/discharge rates and additional 

parameters: the Peukert exponent; depth of discharge 

(DoD), a metric for batteries to denote the minimum level of 

charge that should remain in the battery for correct 

operation; state of health (SoH), and state of charge (SoC), 

which represents the current level of discharge. Battery 

lifetime is dependent on the State of Health (SoH), which 

decreases with the number of charge/discharge cycles. 

HomeSim uses the Coulomb Counting method to estimate 

these parameters [11] whose main benefit is simplicity, as it 

only needs measurements of voltage and current. 

B. Scheduling 

HomeSim’s execution is based on event-driven 
scheduling of a time-ordered list of nodes. Other building 
simulators demonstrate the effectiveness of this approach 
[1] [2]. The computation at each step, called the execute 
step, distinguishes HomeSim. The execute step calculates 
the effect of the interaction between active nodes, 
allocating energy to each as necessary and determining 
the net consumption or generation. However, this step is 
also open to modification/extension, to handle different 

Figure 2. HomeSim System Model 



configurations of nodes and scheduling goals. 
Additionally, the execute step can uniquely handle the 
interaction between dependent nodes, to provide an open 
scheduling platform. 

The base scheduling implementation is representative of 

the state of the art in renewable-enabled homes today. At 

each step, each node uses the green energy greedily, and 

then reverts to battery energy when there is not enough 

green energy remaining. Finally, if the battery capacity is 

also exhausted, the node uses grid energy. 

III. CASE STUDIES 

To demonstrate the effectiveness of HomeSim, we 

present a series of case studies exemplifying its usefulness 

in modeling and quantifying the impact of several proposed 

residential energy management technologies: We simulate 

the new lithium-iron phosphate batteries and compare them 

against their theoretical benefits. We implement and execute 

experiments that were proposed without validation in related 

work: rescheduling appliances for better energy efficiency 

[3] and replacing centralized batteries with distributed, 

appliance-specific batteries. By integrating cost models to 

the scheduler, we are also able to demonstrate the cost-

benefit of local green energy generation and storage. 

Finally, we investigate reconfiguring the system in the 

presence of utility service degradation or outage conditions. 

A. Input Parameters 

Residential appliance data is obtained from the MIT 

REDD database [1], which instruments houses and provides 

granular energy consumption for loads. The dataset contains 

low-frequency (1Hz) readings of power consumption from 

the home appliances over two weeks. We use several 

constituent datasets, which contain information for different 

house configurations. These readings are composed into a 

load schedule and are also used for appliance prediction. 

Table 1. Experimental battery specifications 

Specification LFP spec LA spec 

Capacity (kWh) 18.6 18.6 

Nominal voltage (V) 12 12 

Charge/Discharge cutoff (V) 14/10 14/10 

Depth-of-Discharge limit 0.6 0.6 

Lower/Upper current limits (A) 300/400 150/250 

Peukert ratio 1.05 1.15 

Renewable energy data is obtained from the UCSD 

Microgrid’s photovoltaics at 15-minute intervals, 

normalized to match 35% of the residence’s average 

consumption: a more appropriate solar capacity for the loads 

[12]. Green energy cost information is obtained from [13]. 

We incorporate lead-acid (LA) and lithium-iron phosphate 

(LFP) batteries into our analysis, with the characteristics 

shown in Table 1. Battery pricing is obtained from [14]. For 

cost models, utility pricing is obtained from previous work: 

wholesale energy prices from the California ISO, 

normalized to match retail SDGE pricing [15]. 

B. Case Study 1: Smart Appliance Scheduling 

Smart appliances have the ability to learn or automate 

behavior in appliances. An example is NEST thermostat 

[16], which learns temperature patterns in the home and 

automatically sets appropriate temperatures. We envision 

similarly adaptable appliances, a concept presented in [3]. 

Periodic appliances such as dishwashers or washing 

machines are typically open to rescheduling, as their timing 

is flexible by nature. In this implementation, rather than 

modifying the execute phase, we extend the functionality of 

the event queue. The general approach is to predict 

appliance usage, and use instantaneous or predicted green 

energy to determine the best flexible appliance schedule. 

 

Figure 3. Cont. & Discrete BNs for Appliance Prediction 

Based on precedent from previous work [5] [1] [9], in 

this example we choose to perform appliance prediction 

using a learning model. With only a few input variables, 

techniques like Support Vector Machines (SVM) or 

Artificial Neural Networks (ANN) are error-prone. Bayesian 

networks and their derivative Hidden Markov Models are 

more appropriate. We use Bayesian networks, as in [9], 

where random variables can easily be adapted to match the 

training set. Based on our input data from [1], we develop 

the Bayesian networks shown in Figure 3 for each home 

appliance. The probabilities of the random variables can be 

obtained by counting from training data. The scheduler 

utilizes the data provided by the predictor to schedule 

appliances in an energy-efficient manner.  

The algorithm determines energy availability at each 

interval based on the predicted solar energy using the low-

overhead Extended Exponential Weighted Moving Average 

(eEWMA) prediction algorithm, with a prediction horizon 

of 24 hours [17]. The expected energy availability is 

reduced by the predicted schedule of fixed-deadline 

appliances. The result of this operation is the unused solar 

energy at each interval. The scheduler then allocates each 

flexible-deadline appliance based on the highest green 

energy available in the prediction horizon. The scheduler 

iterates this process until all flexible appliances are 

allocated, and provides this schedule to the simulator. 

In this case study, we use the washer, dryer and 

dishwasher as our smart appliances, from precedent set in 

[3]. The scheduling parameters are provided in Table 2. We 

set a threshold for the confidence level at which appliance 

prediction is considered valid. We derive this value 



empirically, varying the threshold over our training data and 

selected the minimum error (0.7, with mean error of 0.31). 

Table 2. Flexible Appliance Scheduling 

Appliance Flexible Schedule 

Washer Up to 12 h before predicted deadline 

Dryer Up to 12 h before, within 2h of washer  

Dishwasher Within 6 h after predicted deadline 

Table 3. Prediction Model Validation 

Prediction Mean Absolute Error 

Solar Energy Prediction 9% 

Appliance Prediction 31% 

Appliance Prediction (+/- 2 timeslots) 14% 

Table 3 summarizes the accuracy of appliance prediction. 

The error for appliance prediction is due to the discretization 

of a continuous sample, which is compounded when energy 

consumption is calculated. Although exact prediction incurs 

31% error, as the last row indicates, the prediction is mostly 

off by only one or two timeslots. As appliances are 

discretized to execution intervals, those that execute at the 

boundary of two intervals may be predicted to execute in 

either slot. When a larger prediction window is provided, 

appliance prediction is significantly improved, with only 

14% error. Qualitatively, an interval early or late does not 

make a significant impact on the efficacy of rescheduling, as 

solar availability is comparable in adjacent intervals. 

Table 4. Rescheduling Appliance Results 

 Fixed Reschedulable 

Total Grid Energy (kWh) 83.0 61.6 

Green Energy Efficiency (%) 41.5 47.7 

Green Energy Sold to Grid (kWh) 53.7 48.0 

Grid Energy Cost ($) 21.1 15.65 

Table 4 summarizes the results of rescheduling 

appliances with the total energy consumed and green energy 

efficiency (GEE), the percentage of available green energy 

that is consumed for useful work. Rescheduling reduces the 

total grid energy by nearly 25% and improves GEE by over 

6%. However, this efficiency improvement is limited by the 

reduction in battery usage, resulting in more intervals where 

there was surplus green energy and all batteries were fully 

charged. This unused energy is a net surplus, and in a grid-

connected residence, can be sold back to the grid, identified 

separatetly from total gird energy. The cost of grid 

consumption also presented, with 26% in cost savings. 

C. Case Study 2: Distributed Batteries 

Distributed batteries have been proposed in industrial 

research and development as a viable alternative to a single, 

centralized battery, in which smaller batteries are 

associating with high-energy appliances [18]. In this case, 

an appliance first uses its own battery before reverting to 

other sources. The rationale is that a centralized battery 

experiences a sustained drain from a combination of loads, 

forcing a more frequent fallback to grid energy, but load-

proportioned distributed batteries provide better usage. We 

allocated capacities to large appliances based on a ratio of 

their power consumption, normalized against the total 

capacity (18.6kWh) of the single centralized battery. 

 
Figure 4. Schedule to prioritize distributed batteries 

We also require a more complex scheduling algorithm, 

which takes advantage of dependent node interactions in 

HomeSim. Figure 4 illustrates how a distributed battery 

model can be run by the scheduler’s execute step.  In this 

case the dependent node lists for each appliance establish a 

storage element as a distributed, appliance-specific battery 

(see “Node:Washer”, “Node:Washer_Battery” in Figure 1). 

When the appliance is active, it will consume its own 

battery before using other sources. Conversely, other 

appliances will not have access to node-specific batteries. 

Table 5. Centralized (Fixed) vs. Distributed Battery Results 

 Centralized Distributed 

Total Grid Energy (kWh) 130.6 83.0 

Total Battery Energy (kWh) 25.3 35.6 

Green Energy Efficiency (%) 23.1 41.5 

Grid Energy Cost ($) 33.2 21.1 

Table 5 demonstrates the HomeSim results comparing 

centralized and distributed battery models. The total grid 

energy consumption is reduced a factor of 1.5x, while 

battery consumption and GEE increase. By investigating the 

output traces, we observe that large appliances that have a 

built-in battery are less susceptible to requiring grid energy, 

especially at times when the net load is high. The 

improvement in green energy efficiency is a result of 

distributed batteries that are charged in an ad-hoc manner, 

providing a level of parallelism to charging that was not 

previously possible. Finally, by calculating the operational 

costs of each method, we demonstrate 36% improvement 

when leveraging distributed batteries over centralized. 

D. Case Study 3: Cost Savings 

By integrating cost calculations to the scheduler, 

HomeSim can evaluate the cost-benefit of centralized 

batteries, distributed batteries, and rescheduling appliances, 

as well as provide a comparison among the three for the 

same test case. Using the operational costs outlined in 

Section III.A, we execute HomeSim for the same residence 

configuration, alternately using the three cases above for 

comparison. For rescheduled appliances, we extended the 



distributed battery case to determine additional benefit over 

the most financially viable case. 

Table 6. Operational Costs of  Centralized, Distributed, and Rescheduled 
Appliance cases 

 Default Central 

Battery 

Distrib. 

Batteries 

Resched. 

Appliances 

Avg. Monthly Cost ($) 89.2 73.14 69.81 62.96 

Table 6 demonstrates the operational costs of each of the 

cases compared against the base case of no energy 

management. Incorporating any energy storage provides a 

cost reduction of 18%, which is further improved with 

distributed batteries. In this configuration, it is important to 

note that the savings with distributed batteries is only 5%, 

much less than the 36% improvement in Table 5, 

demonstrating that the technologies have variable impacts in 

different homes. Rescheduling further improves energy 

savings, with a net monthly energy reduction by 30%. 

Similarly, we can incorporate capital costs into 

HomeSim, and extend the scheduler to calculate the 

recoupment of the cost of batteries and local solar 

generation. Using the capital cost numbers from Section 

III.A, HomeSim calculates the net energy savings weighed 

against the capital costs. Because our input data only lasts 2 

weeks, we cycle the data until the savings exceed the costs. 

We compare the central and distributed battery cases as well 

as the case of distributed+rescheduled appliances. Finally, 

we also investigate the mixed case, including an additional 

18.6 kWh central battery to the appliance-specific 

distributed batteries and rescheduling. This final case 

provides insight into how savings scale with battery size. 

Table 7. Recoupment Time (in years) for  Centralized, Distributed, 

Rescheduled Appliance, and Mixed cases 

 Central 

Battery 

Distributed 

Batteries 

Rescheduled 

Appliances 

Mixed 

Recoupment time 

(yrs) 

22.6 20.2 16.6 11.9 

Table 7 compares these results, demonstrating very large 

recoupment time, over 22 years, in the centralized battery 

case. This scenario is the current state of the art, but is 

shown to have an unreasonably low cost-benefit. The 

distributed batteries case, while an improvement, has a 

similar duration. Rescheduled appliances, however, reduce 

the net-even time by 20%, and the introduction of an 

additional reduces the recoupment time to almost 50%. 

Since solar costs represent a large majority of the capital, 

increasing total battery capacity demonstrates good scaling 

in the time to net-zero. It is important to note that these 

experiments do not consider selling energy back to the grid, 

which is a further increase in savings, and also that after the 

recoupment time, all energy savings result in a net profit. 

E. Case 4: Cost-aware Scheduling 

Time-of-use (TOU) pricing is prevalent in European 

energy provision, and the concept is growing in relevance in 

the United States [7]. Integrating pricing information into 

the scheduler requires extending the algorithm in Figure 4 to 

further sort intervals by the lowest energy cost when grid 

energy is needed. Our comparison is between the 

reschedulable appliances scheduling algorithm in Section 

III.B to the algorithm with the inclusion of cost awareness. 

We compare the cost savings of two cases by maintaining 

the same building and battery configurations. 

Table 8. Reschedulable Appliance Scheduling vs. Cost-Aware Scheduling 

 Rescheduled Appliances (RA) RA+Cost 

Avg. Weekly Grid 

Energy (kWh) 

62.96 61.02 

Avg. Weekly Green 

Energy Eff. (%) 

49.8 49.8 

Table 8 compares reschedulable appliance scheduling to 

the cost-aware scheduling. The results indicate that cost-

awareness has almost negligible impact on energy savings, 

and no impact on green efficiency. Analyzing the output 

traces demonstrates the reason: the net benefit of a small 

amount of freely available green energy is still cheaper 

overall than an interval with lower cost. Therefore, it is 

more feasible to greedily use green energy than to rely on a 

cheaper grid interval. In total, 10 jobs were rescheduled due 

to cost savings, resulting in a marginal reduction in grid 

energy, and almost no impact on green energy efficiency. 

F. Case 5: Peak Energy Shaving 

Utility energy providers such as SDGE are providing net-

metering and metered pricing options for residences with 

local renewable generation [19]. One particular case is peak-

energy pricing (2x normal energy costs) for residences that 

exceed a power threshold. We simulate this scenario by 

enforcing peak pricing when consumption exceeds 212.5 

kWh, 25% of average monthly consumption, and charging 

the referenced 2x for consumption above this limit. We 

develop a peak-power shaving algorithm to limit this cost: 

1. Allocate a peak-energy threshold for grid energy of 7.1 

kWh per day (from the total energy limit over 30 days). 

2. Reschedule appliances based on predicted green energy 

availability to achieve highest green energy efficiency. 

3. Prevent the use of non-essential appliances in the 

dataset (“Unknown Outlets”, “Air Conditioner 2”, etc.), 

and add deferrable appliances (“Kitchen Outlets B”, 

“Electronics”, “Washer-Dryer”) to the reschedulable 

queue when the daily power threshold is exceeded. 

The algorithm emulates the tradeoffs made in an actual 

home to accommodate the benefits and variability of 

renewable sources. By removing the deadline restrictions of 

deferred appliances, we ensure that they will eventually be 

executed, if at all possible 

Table 9 shows the results of the peak-energy shaving 

algorithm. Using only rescheduling, the residence is unable 

to remaing below the peak-power limit, exceeding the 

threshold by an average of almost 8 kWh. However, with 

the peak-power shaving algorithm incorporated, the 



residence remains well below the threshold, and results in 

only 3 appliance instances not being able to be scheduled 

due to peak-power restrictions. Overall, the algorithm 

demonstrates 31.9% weekly energy cost savings. 

Table 9. Peak power shaving cost analysis 

 No 

improvment 

Reschedulable 

Appliances (RA) only 

RA + Peak-

power shaving  

Avg. Wk. Grid 

Energy (kWh) 

74.5 57.4 44.3 

Avg. Weekly 

Utility Cost ($) 

24.35 16.53 11.25 

Unschedulable 

Instances 

-- -- 3 

IV. CONCLUSION 

In this paper, we note the lack of a residential building 

energy simulator capable of quantifying and comparing 

existing and future technologies in residential energy 

management. We introduce HomeSim, a simulator that 

responds to this need with an open,  highly versatile 

platform. We investigate emerging technologies in 

residential energy management by performing a series of 

case studies targeting the proposed improvements: the 

current state-of-the-art centralized battery, distributed 

batteries, reschedulable smart appliances, and cost-aware 

scheduling using real data from instrumented houses. We 

further demonstrate the cost savings of each case by 

integrating capital and operational costs and determine the 

recoupment time. We plan to release HomeSim as an open-

source platform that can facilitate energy research, provide 

insight into residential energy usage, and even provide 

cost/benefit and evaluations for end users considering 

investing in energy improvements for real homes. 
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