
UNIVERSITY OF CALIFORNIA, SAN DIEGO

A Context-Aware Approach for Automation of End-User Elements in
the Smart Grid

A dissertation submitted in partial satisfaction of the

requirements for the degree

Doctor of Philosophy

in

Computer Science

by

Jagannathan Venkatesh

Committee in charge:

Professor Tajana Šimunić Rosing, Chair
Professor Scott Baden
Professor Carlos Coimbra
Professor Rajesh Gupta
Professor Dean Tullsen

2016

Copyright

Jagannathan Venkatesh, 2016

All rights reserved.

The dissertation of Jagannathan Venkatesh is approved,

and it is acceptable in quality and form for publication

on microfilm and electronically:

Chair

University of California, San Diego

2016

iii

DEDICATION

To Sarah for her patience, to Callie for her support, and to Mohan

for the motivation to finish.

To Patti.

iv

EPIGRAPH

Whatever it is you seek, you have to put in the time, the

practice, the effort. You must give up a lot to get it. It has to be

very important to you. And once you have attained it, it is your

power. It can’t be given away: it resides in you. It is literally

the result of your discipline.

Raptors are smart. Very smart.

—Michael Crichton, Jurassic Park

v

TABLE OF CONTENTS

Signature Page . iii

Dedication . iv

Epigraph . v

Table of Contents . vi

List of Figures . ix

List of Tables . xii

Acknowledgments . xiv

Vita . xvii

Abstract of the Dissertation . xix

Chapter 1 Introduction . 1
1.1 Renewable Energy and Context in Data Centers 4
1.2 Modeling Residential Energy Management in the Smart

Grid . 5
1.3 Improving Residential Energy Modeling with User Context 6
1.4 Thesis Contributions 7

Chapter 2 Renewable Energy and Context in Data Centers 11
2.1 Related Work . 13
2.2 Short-term Solar Energy Prediction 15

2.2.1 Exponential Weighted Moving Average (EWMA) 16
2.2.2 Extended EWMA (eEWMA) 16
2.2.3 Weather-Conditioned Moving Average (WCMA) 16
2.2.4 Results . 17

2.3 Short-term Wind Energy Prediction 18
2.3.1 Persistence Prediction 19
2.3.2 Data Mining Prediction 20
2.3.3 Autoregressive Moving Average (ARMA) Predic-

tion . 21
2.3.4 Proposed Nearest-Neighbor Prediction 22
2.3.5 Results . 23

2.4 Case Study: Predictive Allocation of Batch Workloads in
Data Centers . 25
2.4.1 Data Center Workloads 26

vi

2.4.2 Data Center Simulator 27
2.4.3 Green Energy and Prediction 28
2.4.4 Results . 30

2.5 Conclusion . 34

Chapter 3 Modeling Residential Energy Management in the Smart Grid 35
3.1 Related Work . 36

3.1.1 Residential Energy Simulation 36
3.1.2 Residential Energy Load Monitoring and Modeling 38
3.1.3 Takeaways . 39

3.2 HomeSim Design . 40
3.2.1 Nodes . 42
3.2.2 Scheduling Algorithms 48

3.3 Case Studies . 52
3.3.1 Input Data . 53
3.3.2 Smart Appliances 54
3.3.3 Renewable Energy Prediction 55
3.3.4 Simulation Engine Validation 55
3.3.5 Case 1: Battery Technologies 56
3.3.6 Case 2: Reschedulable Appliances 57
3.3.7 Case 3: Distributed Batteries 58
3.3.8 Case 4: Cost Savings 60
3.3.9 Case 5: Cost-aware Scheduling 61

3.4 Extended Case Study: Optimized Residential Battery
Usage . 62
3.4.1 Batteries in Residences 62
3.4.2 Problem Formulation 64
3.4.3 Optimization Problem 66
3.4.4 Experimental Setup 68
3.4.5 Results . 71

3.5 Conclusion . 75

Chapter 4 Improving Residential Energy Modeling with User Context . 77
4.1 Related Work . 80

4.1.1 Takeaways . 82
4.2 Context Engine Design 83

4.2.1 Context Engine Architecture 85
4.2.2 Generalized Data Transformation 86
4.2.3 Integration with Ontologies 87

4.3 Analysis . 89
4.3.1 Complexity . 89
4.3.2 Accuracy . 91
4.3.3 Scalability . 92

vii

4.4 Case Study I: User Activity 95
4.4.1 Input Data . 95
4.4.2 Applications . 95
4.4.3 Data Translation and Outputs 96
4.4.4 Context Engine Setup 97
4.4.5 Results . 98

4.5 Case Study II: Context-Aware Residential Energy Man-
agement . 103
4.5.1 Context Engine Setup 105
4.5.2 Input/Intermediate Data 106
4.5.3 Accuracy/Complexity 107
4.5.4 Scalability . 109
4.5.5 Grid Energy Savings 110

4.6 Conclusion . 113

Chapter 5 Summary and Future Work 115
5.1 Thesis Summary . 115

5.1.1 Renewable Energy and Context in Data Centers 116
5.1.2 Modeling Residential Energy Management in the

Smart Grid . 116
5.1.3 Improving Residential Energy Modeling with User

Context . 117
5.2 Future Work . 118

Bibliography . 121

viii

LIST OF FIGURES

Figure 1.1: Growing complexity of smart grid elements (sources, loads, and
hybrid nodes), infrastructure, and scenarios. [2]. 2

Figure 2.1: Variability of solar and wind energy sources from the UCSD
grid and a Lake Benton, MN wind farm, respectively, over the
course of a week. [91]. 12

Figure 2.2: Manufacturer-provided wind turbine power curve, showing cut-
in point, dynamic range, and maximum rated output power and
cut-out [22]. 21

Figure 2.3: ESNet network topology. [26]. 28
Figure 2.4: Green energy efficiency metric for instantaneous and short-term

prediction. Prediction shows over 90% energy efficiency across
the board, in the best case (wind-only), over 3x improvement
over instantaneous use. 31

Figure 2.5: Normalized Batch Job Completion Time for no green energy, in-
stantaneous green energy, and short-term prediction. , showing
12.5% reduction with prediction. 32

Figure 2.6: Green energy job % for instantaneous and short-term predic-
tion. Prediction shows an average of 15% more jobs completed
with green energy. 33

Figure 3.1: Fig. 1. 2009 Retail Electricity Sales in the United States, Total
by End-Use Sector. [8]. 36

Figure 3.2: Residential energy consumption breakdown in 1993 and 2009.
[12]. 37

Figure 3.3: HomeSim System Design Model. 41
Figure 3.4: Appliance load profiles from REMODECE [42]. 43
Figure 3.5: The cycle life of lead-acid batteries mapped against the depth

of discharge [14]. 46
Figure 3.6: Change in cycle life and degradation in capacity for different

discharge voltages [7]. 47
Figure 3.7: Default execute phase block diagram. 49
Figure 3.8: Scheduler to prioritize local distributed batteries. 50
Figure 3.9: Continuous and discrete Bayesian networks for appliance pre-

diction. 50
Figure 3.10: Wholesale time-of-use energy costs from CalISO scaled to resi-

dential retail levels. 54
Figure 3.11: Low GEE intervals (left) vs. high GEE intervals (right). . . . 58
Figure 3.12: Centralized (left) vs. distributed (right) battery power use. . . 59
Figure 3.13: Cumulative density distribution of annual regional electricity

price ($/kWh) for Houston, Boston, and San Diego. 66

ix

Figure 3.14: Balqon LFP Battery for Grid-Connected Residential Applica-
tions [10]. 70

Figure 3.15: Annual battery-based savings for different ROI targets for San
Diego (recouped in 6 years), Houston (never recouped), and
Boston (recouped in 5 years). 73

Figure 3.16: Annual cost of the battery under Houston TOU pricing when
battery costs are reduced. 75

Figure 4.1: The residential smart grid is driven by user activities and pref-
erences. 78

Figure 4.2: (a) The current state-of-the-art: monolithic end-to-end appli-
cation implementation. (b) Our implementation: Applications
publish intermediate context for reuse. Functional units (con-
text engines) are multi-in-single-output, and each context en-
gine performs a general statistical learning. For the above fig-
ures: red represents developer effort; green represents general-
ized data transformation provided by the context engine system. 84

Figure 4.3: Ontology specification for GPS data, with coordinates, source,
and range. 88

Figure 4.4: Breakdown of a single-step into lower-complexity equivalent re-
ductions, with the minimum complexity occurring with maxi-
mum division (two-input engines on the right). 90

Figure 4.5: Functional comparison of sequential (left) and single-stage (right). 91
Figure 4.6: Comparison of scalability between the single-stage approach and

the context engine, comparing growth in functional complexity
with additional inputs (left) and communication overhead over
the number of inputs (right). 94

Figure 4.7: Sequential context engine applications (left) and equivalent con-
solidated applications (right) for user activity and location po-
tential detection. 96

Figure 4.8: MAE of GPS context engine over function order and sample size 98
Figure 4.9: Mean absolute error (MAE) for each activity context engine

across different function orders. 99
Figure 4.10: Accuracy comparison between the context engine and the single-

stage activity applications (bar graph) with the delta in accu-
racy (line graph). 101

Figure 4.11: A context engine approach to residential energy management,
with individual homes providing higher-level context in place of
raw data, aggregated and passed . The outputs per house can
vary depending on the types of sensors and actuators available
to each unit. 103

Figure 4.12: The aggregated instances of washing machine usage on Mondays
in House B, illustrating 3 clusters of varying flexibility. 107

x

Figure 4.13: Wholesale electricity prices scaled up to retail residential pricing
for different locations. 108

Figure 4.14: Scalability of the single-stage and sequential applications against
the number of available compute nodes and the number of inputs. 109

Figure 4.15: Communication overhead for training the single-stage and se-
quential applications as the number of number of inputs grows. 110

Figure 4.16: Appliance flexibility ranges for each of the test cases: static,
oracle, and predicted. 111

Figure 5.1: Correlation of energy prediction with time-of-day, appliance
traces, and supplemental user context. 118

xi

LIST OF TABLES

Table 2.1: Solar Energy Prediction Algorithm Comparison 18
Table 2.2: Data Mining Wind Speed Prediction Algorithm Comparison . 20
Table 2.3: Wind Power Prediction Algorithm Comparison 25
Table 2.4: Data Center Simulator Validation 27
Table 2.5: Data center network config. and available on-site renewable energy 29

Table 3.1: Load parameters . 43
Table 3.2: Source parameters . 44
Table 3.3: Hybrid node parameters . 45
Table 3.4: Battery parameters . 45
Table 3.5: Smart appliance scheduling algorithm 51
Table 3.6: Experimental battery specifications 53
Table 3.7: Flexible appliance scheduling 54
Table 3.8: Model Validation Error . 55
Table 3.9: Battery technology results . 57
Table 3.10: Prediction model validation . 57
Table 3.11: Reschedulable appliance results 58
Table 3.12: Centralized (fixed) vs. distributed battery results 59
Table 3.13: Operational Costs of Centralized, Distributed, and Rescheduled

Appliance cases . 60
Table 3.14: Recoupment Time (in years) for Centralized, Distributed, Resched-

uled Appliance, and Mixed cases 61
Table 3.15: Reschedulable Appliance Scheduling vs. Cost-Aware Scheduling 62
Table 3.16: Balqon Lithium-Iron Phosphate Battery Properties 69
Table 3.17: Scaled retail pricing characteristics for different locations . . . 71
Table 3.18: Mean absolute error for the decaying battery problem formula-

tion compared against simulation 72
Table 3.19: A subset of the annual savings over different ROI results for San

Diego, comparing the linear vs. the decaying battery model . . 73

Table 4.1: Functional orders used for each activity context engine. 99
Table 4.2: Execution overhead based on iteration count for the context en-

gines associated with the In-Vehicle activity 100
Table 4.3: Latency of the sequential applications grouped by the function

order . 101
Table 4.4: Output accuracy comparison for Location Potential between the

sequential context engine and the single-stage application . . . 102
Table 4.5: The four different house types retrieved for the case study, with

their constituent components. 106
Table 4.6: Appliance flexibility parameters 107

xii

Table 4.7: Average mean absolute error (MAE) for each context engine in
single-stage and sequential approaches 108

Table 4.8: Residential cost savings of static flexibility vs. oracle knowledge
of individual house flexibility vs. predicted flexibility 112

xiii

ACKNOWLEDGMENTS

I would like to take this opportunity to thank everyone who supported me

during my PhD process.

First, thanks to my advisor Prof. Tajana Šimunić Rosing for her guidance

over the past six years. She gave me the opportunity to pursue my goals, made

me a better student, teacher, and researcher, and guided my career. I also want

to thank the rest of my doctoral committee: Prof. Scott Baden, Prof. Carlos

Coimbra, Prof. Rajesh Gupta, and Prof. Dean Tullsen for their feedback and

support.

My research was made possible by funding from National Science Founda-

tion (NSF) Project GreenLight Grant 1036931, NSF ERC CIAN Grant 812072,

the Multiscale Systems Center (MuSyC), NSF CitiSense Grant 0932403, the Ter-

raswarm Research Center, UCSD Center for Networked Systems (CNS), and NSF

MetaSense Grant 1446912, and corporate support from Oracle, Panasonic, Qual-

comm, and Google. I thank them for their generous support.

None of my research was done in isolation, and my colleagues and co-authors

are also my friends. They have provided guidance, discussion, reinforcement, and

feedback throughput my PhD, and made me a better writer, presenter, and re-

searcher. I owe special thanks to Bariş Akşanli, Alper Sinan Akyürek, and Chris-

tine Chan.

My parents, Venkatesh and Viji Chari and Paula and Joseph Peeden, and

my brothers and sisters Joe, Preston, Alex, and Vaishnavi, have been a source of

unconditional love and support. I cannot express enough how much I am indebted

to them.

Finally, I want to thank Sarah. She helped make me the person I am today,

and she is my motivation to be the best person I can be.

Chapters 1 and 2 contain material from ”Using datacenter simulation to

evaluate green energy integration”, by Bariş Akşanli, Jagannathan Venkatesh and

Tajana Šimunić Rosing, which appears in IEEE Computer 45, September 2012

[25]. The dissertation author was one of the primary investigators and the second

xiv

author of this paper.

Chapters 1 and 2 contain material from ”Renewable Energy Prediction for

Improved Utilization and Efficiency in Datacenters and Backbone Networks”, by

Bariş Akşanli, Jagannathan Venkatesh, Tajana Šimunić Rosing, and Inder Monga,

which appears in Computational Sustainability, Springer, 2015 [26]. The disserta-

tion author was author was one of the primary investigators and second author of

this paper.

Chapters 1 and 3 contain material from Jagannathan Venkatesh, Bariş

Akşanli, and Tajana Šimunić Rosing, ”Residential Energy Simulation and Schedul-

ing: A Case Study Approach”, which appeared in Proceedings of the International

Symposium on Computers and Communications (ISCC), 2013 [93]. The disserta-

tion author was the primary investigator and author of this paper.

Chapters 1 and 3 contain material from Jagannathan Venkatesh, Bariş

Akşanli, Jean-Claude Junqua, Philippe Morin, and Tajana Šimunić Rosing, ”Home-

Sim: Comprehensive, Smart, Residential Electrical Energy Simulation and Schedul-

ing”, which appeared in Proceedings of the International Green Computing Con-

ference (IGCC), 2013 [92]. The dissertation author was the primary investigator

and author of this paper.

Chapters 1 and 3 contain material from Jagannathan Venkatesh, Shengbo

Chen, Peerapol Tinnakornsrisuphap, and Tajana Šimunić Rosing, ”Lifetime-dependent

Battery Usage Optimization for Grid-Connected Residential Systems”, which ap-

peared in Proceedings of 2015 Workshop on Modeling and Simulation of Cyber-

Physical Energy Systems (MSCPES) 2015 [95]. The dissertation author was the

primary investigator and author of this paper.

Chapters 1 and 4 contain material from Jagannathan Venkatesh, Christine

Chan, Alper Sinan Akyürek, and Tajana Šimunić Rosing, ”A Modular Approach

to Context-Aware IoT Applications”, which appeared in Proceedings of the 1st

Conference on Internet of Things Data and Implementation (IoTDI), 2016 [94].

The dissertation author was the primary investigator and author of this paper.

Chapters 4 and 5 contain material from Jagannathan Venkatesh, Bariş

Akşanli, Christine Chan, Alper Sinan Akyürek, and Tajana Šimunić Rosing, ”Scal-

xv

able IoT Application Design for Automated Learning”, which was submitted for

consideration in IEEE Software, Special Issue on Software Engineering for the In-

ternet of Things, 2016. The dissertation author was the primary investigator and

author of this paper.

xvi

VITA

2008 B. S. in Electrical Engineering, Computer Science, University
of Virginia

2008-2010 Software Development Engineer, Microsoft Corporation.

2010-2016 Graduate Research Assistant, University of California, San
Diego

2010-2015 Software Engineering Intern, Google, Inc.

2013 Teaching Assistant, University of California, San Diego

2013 M. S. in Computer Science, University of California, San
Diego

2014 Research Intern, Qualcomm Technologies, Inc.

2016 Ph. D. in Computer Science, University of California, San
Diego

PUBLICATIONS

Jagannathan Venkatesh, Christine Chan, Alper Sinan Akyürek and Tajana Šimunić
Rosing. ”A Modular Approach to Context-Aware IoT Applications”, In Pro-
ceedings of the 1st Conference on Internet of Things Data and Implementation
(IoTDI). April 2016.

Bariş Akşanli, Jagannathan Venkatesh, Tajana Šimunić Rosing, and Inder Monga.
”Renewable Energy Prediction for Improved Utilization and Efficiency in Data-
centers and Backbone Networks.” Book Chapter, Computational Sustainability,
Springer. 2015.

Jagannathan Venkatesh, Christine Chan, Alper Sinan Akyürek, and Tajana Šimunić
Rosing, ”A Context-Driven IoT Middleware Architecture”, SRC TechCon. Septem-
ber 2015

Jagannathan Venkatesh, Shengbo Chen, Peerapol Tinnakornsrisuphap, Tajana
Šimunić Rosing, ”Lifetime-dependent Battery Usage Optimization for Grid-Connected
Residential Systems”, In Proceedings of 2015 Workshop on Modeling and Simula-
tion of Cyber-Physical Energy Systems (MSCPES), pp. 1-6. April 2015

xvii

Bariş Akşanli, Alper Sinan Akyürek, Madhur Behl, Meghan Clark, Alexandre
Donze, Prabal Dutta, Patrick Lazik, Mehdi Maasoumy, Rahul Mangharam, Truong
X. Nghiem, Vasumathi Raman, Anthony Rowe, Alberto Sangiovanni-Vincentelli,
Sanjit Seshia, Tajana Šimunić Rosing, and Jagannathan Venkatesh. ”Distributed
control of a swarm of buildings connected to a smart grid: demo abstract.” In
Proceedings of the 1st ACM Conference on Embedded Systems for Energy-Efficient
Buildings (BuildSys 14). pp. 172-173. November 2014.

Bariş Akşanli, Jagannathan Venkatesh, Tajana Šimunić Rosing, and Inder Monga,
”A comprehensive approach to reduce the energy cost of network of datacenters.”
In Proceedings of the 2013 IEEE Symposium on Computers and Communications
(ISCC), pp.275-280, July 2013.

Jagannathan Venkatesh, Bariş Akşanli, and Tajana Šimunić Rosing, ”Residential
Energy Simulation and Scheduling: A Case Study Approach”, In Proceedings of
the 2013 International Symposium on Computers and Communications (ISCC),
pp. 161-166. July 2013

Jagannathan Venkatesh, Bariş Akşanli, Jean-Claude Junqua, Philippe Morin, and
Tajana Šimunić Rosing, ”HomeSim: Comprehensive, Smart, Residential Electrical
Energy Simulation and Scheduling”, In Proceedings of the International Green
Computing Conference (IGCC), pp. 1-8. June 2013

Mohammad Moghimi, Jagannathan Venkatesh, Piero Zappi and Tajana Šimunić
Rosing, ”Context-Aware Mobile Power Management Using Fuzzy Inference as a
Service”, In Proceedings of the 4th International Conference on Mobile Computing,
Applications, and Services (MobiCASE), pp. 314-327. October 2012

Bariş Akşanli, Jagannathan Venkatesh, and Tajana Šimunić Rosing, ”Using Data-
center Simulation to Evaluate Green Energy Integration.” IEEE Computer, vol.45,
no.9, pp.56-64. September 2012.

Bariş Akşanli, Jagannathan Venkatesh, Liuyi Zhang, and Tajana Šimunić Rosing.
”Utilizing green energy prediction to schedule mixed batch and service jobs in data
centers.” ACM SIGOPS Operating Systems Review 45, no.3 pp. 53-57. January
2012.

xviii

ABSTRACT OF THE DISSERTATION

A Context-Aware Approach for Automation of End-User Elements in
the Smart Grid

by

Jagannathan Venkatesh

Doctor of Philosophy in Computer Science

University of California, San Diego, 2016

Professor Tajana Šimunić Rosing, Chair

The smart grid is driven by distributed, heterogeneous energy sources and

controllable loads matched to sources to optimize energy usage. The introduction

of distributed, heterogeneous sources provides a level of instability compared to

the previously monolithic, centralized energy producers. This drives the need for

accurate modeling of the energy grid, and distributed control of available loads

to gracefully react to changes and maintain overall stability. Currently, this is

accomplished by ubiquitous data collection of energy generation and consumption

is used for prediction of sources and loads, which in turn is used for net metering,

and controlling retail energy prices and loads. This thesis proposes using context

— additional high-level information — about various elements of the smart grid

xix

(sources, loads, and storage) to improve the efficiency of its operation.

We first investigate the integration of local renewables in data centers, some

of the largest consumers in the grid. We mitigate the variability of renewables with

short-term prediction of solar and wind energy using additional environmental

data. This allows us to use renewable energy for computing loads, the largest

segment of energy consumption while maintaining quality of service requirements of

the data center. We extend this work to a networked set of data centers, allocating

and migrating jobs to improve the efficiency of use of available green energy to over

90%.

While individual large consumers are of particular importance to the grid,

there is relatively little focus on automated regulation of smaller consumers like

individual houses, despite the residential sector consuming over 1/3 of national en-

ergy consumption. We propose a residential electrical energy simulation platform

that enables investigating the impact of technologies such as renewable energy,

different battery types, centralized vs. distributed in-home energy storage, and

smart appliances. We further develop a formulation for battery usage based on

more realistic battery models, demonstrating an improvement in modeling accu-

racy by over 2x. We can solve our new battery model to optimize the benefit of

discharging the battery and minimizing the time of return on investment. We sim-

ulate the new optimization’s results using HomeSim, demonstrating a recoupment

of battery costs in as few as 5 years.

Finally, residential energy is directly driven by the activities and behavior

of the users. The growing advent of sensing in the IoT presents a unique op-

portunity: using general-purpose modular data processing to generate grid-related

context: energy prediction and flexibility. This contextual information can be used

to drive individualized automated actuation that scales to the size of the grid. We

demonstrate that user context can provide up to 86% accuracy in energy flexibility

prediction, a 14% improvement over the current state of the art of not having user

data.

xx

Chapter 1

Introduction

The smart grid consists of distributed energy resources; a hierarchical, scal-

able infrastructure; and instrumented and controllable end-use elements (loads,

sources, and hybrid elements like batteries). Analysis of the available data provide

prediction of energy generation and consumption and enable use of the hetero-

geneous elements in more complex ways while maintaining energy efficiency and

avoiding critical and expensive scenarios. Figure 1.1 below illustrates the grow-

ing complexity of smart grid elements and infrastructure. New source-side ele-

ments include distributed renewable energy sources, which alleviate concerns over

the growing costs, increasing emissions output, and the limited nature of non-

renewable energy sources [62]. Consequently, renewables such as solar-electric and

wind have demonstrated over 25% growth in capacity annually [99] [39]. On the

infrastructure and load side, new technology includes backfeeding energy gener-

ated by end users, distributed energy storage resources like batteries, and complex

controllable loads such as smart appliances. Grid efficiency is achieved through

new control scenarios exploiting characteristics of the new elements to maintain

the stability and efficiency of the smart grid: much tighter source-load matching

through metering and grid automation, efficiency of distributed renewable energy

sources, more appropriate real-time pricing based on usage, etc.

Renewable sources, in particular solar and wind, are unlike traditional

sources in that they are directly at the mercy of the elements: e.g. solar irra-

diance, wind speed, wind direction, and various other environmental factors. This

1

2

Figure 1.1: Growing complexity of smart grid elements (sources, loads, and hybrid
nodes), infrastructure, and scenarios. [2].

precludes their use as primary means of energy generation without taking addi-

tional precautions: overprovisioning them to overcome low-output periods [20],

supplementing or switching to non-renewable sources [72], adding energy storage

to the system[73], or shifting loads to meet availability [61]. Large loads such as

data centers can have significant impact on grid stability, but may incorporate

on-site renewables and storage to mitigate expensive peak-power conditions. Util-

ities and retail energy providers also contract automated net metering with these

consumers: control over some non-essential loads that can be limited or shut off

in order to reduce expensive peak-power conditions [48].

Granular load control and net metering is not integrated to the same extent

in residential nodes despite them composing 38% of national energy consumption

[9]. This is in part due to individual houses posing an insignificant contribution

towards grid stability, and the relative complexity of individual residential energy

usage and preferences among users and households. Additionally, the lack of inte-

gration of energy storage and automated loads at the residential level has precluded

more complex interactions like those found in data centers and other large con-

sumers. In the current state of the art, energy prediction is done primarily at the

3

macro scale: of neighborhoods and residential districts using smart meter data to

determine when to turn on and off grid-level energy sources and control wholesale

and retail pricing. However, the advent of the Internet of Things has resulted in

more useful residential elements: from smart, connected appliances to home en-

ergy storage [93], the residential sector is gaining the level of automation previously

only seen in large consumers such as data centers. However, unlike data centers,

residential energy use is more strongly driven by individual users’ behavior.

In this thesis, we propose the use of different types of context — high-level,

abstracted information as opposed to raw data — to handle issues with two com-

mon types of smart grid end users: data centers and residential nodes. We first

identify issues in both sectors that are not addressed by the current state of the

art, and select supplementary context to help mitigate these issues. For data cen-

ters with on-site renewables, source output variability creates difficulty in driving

their primary energy loads: compute workloads with tight timing constraints. We

identify additional data to better predict renewable, or ”green” energy availabil-

ity and exploit characteristics of the workloads to improve the efficiency of green

energy use. For residences, we explore the new scenarios enabled by the growth

in technology in the residential sector: smart appliances with flexible schedules,

distributed energy resources, and cost-aware rescheduling. We design a modular

residential energy simulation platform — HomeSim — that is capable of modeling

these scenarios. We then identify the additional context required to realize them

and create event-driven schedulers to use with HomeSim that demonstrate resi-

dential behavior improvements from each. Finally, we explore how the residential

smart grid is representative of a context-aware Internet of Things (IoT) platform:

a combination of environmental and user context used to drive output actuation.

We identify that data-specific implementations of grid actuation do not scale to the

level of the smart grid, and instead propose a modular approach to context-aware

IoT applications, facilitating general-purpose machine learning and demonstrating

latency and scalability improvements with limited impact on output prediction

accuracy. Our final case study connects our approach to the grid, predicting resi-

dential energy usage, individual and aggregate energy flexibility in the residential

4

sector. We demonstrate that user context has over 21% correlation to energy and

flexibility prediction, and can improve prediction accuracy by over 14%.

1.1 Renewable Energy and Context in Data Cen-

ters

Data centers are one of the largest individual energy consumers in the smart

grid, using over 3% of U.S. electricity consumption [7]. The expense and unsus-

tainability of non-renewable sources has pushed data centers owners, including

Facebook, Google, Amazon, and Apple to actively integrate green energy sources

into their data center installations [55]. While data centers have the spatial and

infrastructure requirements to support on-site renewables such as solar and wind,

these sources do not have the consistent output of non-renewables due to their

dependence on environmental conditions. This compromises the ability for data

centers to complete their latency-constrained service workloads. These workloads

cannot be halted for lack of energy availability of green sources without affecting

a data center’s quality of service (QoS) guarantees.

Existing data centers have used different approaches to circumvent avail-

ability: overprovisioning renewable sources [20], supplementing green energy with

non-renewable sources [55], and using renewables for secondary or less crucial loads

such as lighting or airflow [71]. Other research has provided complementary oper-

ational solutions: server power capping [48], minimizing the cost of supplemental

non-renewables through price-aware scheduling [37], or forcing loads to follow en-

ergy availability [61]. These techniques come with associated costs: either physical

and financial costs for additional infrastructure and purchased energy, or at the

cost of not meeting the data center’s service-level agreement (SLA) for the short-

running service workloads of data centers. Furthermore, they are difficult to use for

the longer-running but non-SLA batch workloads precisely because energy avail-

ability is variable. One approach that has been largely overlooked by data centers

is green energy prediction, which is used in other domains for developing hybrid

energy systems (embedded platforms) and energy pricing (utility grid) [27]. Short-

5

term prediction of energy availability can provide better matching of batch work-

loads to the available energy. Appropriately distributing batch workloads through

a data center while accounting for their impact on running service workloads can

ensure that green energy use is improved while the SLA is not impacted.

1.2 Modeling Residential Energy Management

in the Smart Grid

Building energy consumption has been well-researched, but the focus has

been on commercial and industrial domains, which constitute a larger fraction of

global energy consumption. However, the residential domain contributes over a

third of the total energy consumption in the United States [9]. Moreover, the

residential sector is important because of the significantly higher number of end

users impacted: in the United States alone, residential energy consumption impacts

hundreds of millions of homes and other residences. As such, recent research has

turned to improving residential energy use.

Related research focuses on reducing a single aspect of consumption [98],

supplementing a residence with energy storage [73], or providing more granular

energy information to end-users in order to facilitate user-driven improvements [60].

These use cases in these works signify the growing number of complex scenarios that

are now possible in residential energy consumption, and highlight the importance

of being able to test their benefits, including combining different cases to determine

compounded energy usage improvements. These scenarios have been tested using

independent data collection and modeling, and the results cannot be quantitatively

compared.

Home energy simulators and testbeds have been developed as part of other

research endeavors, but they are either specific to a single residence or scenario [23]

[9], or particular to one aspect of energy consumption (e.g. heating, ventilation and

cooling systems). There is a lack of a general-purpose residential modeling plat-

form that can represent different types of houses. The different types of elements

in a residence would need to be accurately represented and extensible to handle

6

new technology, such as local energy storage, rooftop solar, and direct-current (DC)

circuits. Furthermore, technological advances open up the possibility of more com-

plex usage patterns, including adjusting to grid-provided time-of-use pricing, peak

power and energy restrictions, and user flexibility. A comprehensive residential

energy simulator should be able to simulate these scenarios both individually and

in combinations.

One of the scenarios we explore using complex end-use elements in resi-

dences is distributed energy storage. Batteries are an important element for resi-

dences in grid-connected systems that have on-site renewable energy generation, as

they can help overcome the variability of renewables [73]. However, batteries have

nonlinear charging, discharging, and degradation properties that make it difficult

to optimize their usage [58]. While the nonlinear models of chemical batteries have

been extensively studied, related work on optimizing residential battery use opt

for less accurate linear models [73], which leads to overestimating the benefits of

batteries and inaccurate quantification of their benefits.

1.3 Improving Residential Energy Modeling with

User Context

Unlike the industrial sector, residential energy consumption is directly driven

by individual user behavior [26]. Furthermore, the complex scenarios enabled by

technology improvements and the smart grid depend on user context such as activ-

ity, location, usage preferences, and interaction with appliances. The residential

smart grid embodies the Internet of Things (IoT): an infrastructure of sensing

and actuation devices connected to a distributed backend storage and processing

infrastructure [76]. Furthermore, the advent of the IoT provides a readily avail-

able source of user data from wearables and other web-connected user devices. In

addition to user tracking, the IoT has also stimulated the growth of connected

appliances and home monitoring products such as standalone devices [16] or inte-

grated solutions [18].

The combination of user tracking and smart residential elements provides

7

the foundation for a prototypical context-aware IoT application: integrating high-

level information about a space and the users within it to provide high-level context

as output. In our case, we use activity and other user-derived context with en-

ergy traces to more accurately predict residential energy and flexibility, which in

turn is used to improve residential energy management. However, the current

state of the art of IoT applications is complete end-to-end applications that are

dependent on the sensors and actuators for which they were designed [76]. As the

number and heterogeneity of sensing devices for each application changes, these

tightly-coupled applications do not promote adaptation to the changing amount

and sources of data or available compute nodes. For the residential grid, this means

that every house with a different combination of grid elements and user context

requires a custom application. Approaching context-aware IoT applications as a

set of smaller, simpler functional units that provide intermediate steps towards the

overall application can alleviate compute redundancy and scalability issues. While

this approach may not match the efficiency of a customized black-box application,

it provides an advantage in the dynamic IoT space for general implementations

of context applications. Instead of placing the burden of processing on black-box

applications [69], general-purpose machine learning can drive automation while

customizing actuation to user behavior. Furthermore, the same overall implemen-

tation can be used with different sets of house, energy, and user context sources

to improve the accuracy of complex residential energy scenarios such as local re-

newables, time-of-use pricing, and user-customized flexibility of smart appliances

[92].

1.4 Thesis Contributions

This thesis focuses on using supplemental high-level data — context — to

improve the efficiency of various end users of the smart utility grid. We investigate

consumers that provide significant impact on the stability of the smart grid, from

large industrial consumers with on-site renewables (data centers) and the user-

behavior-driven residential sector, with negligible individual loads but significant

8

aggregate consumption. The following breakdown highlights the contributions in

the rest of the thesis:

• We develop novel, low-overhead, flexible predictors for solar and wind energy

prediction, specifically targeted for effective integration of green energy into

data centers. We leverage readily available context for each predictor, includ-

ing historical energy output and local wind speed and direction. We outline

an experiment using the predictors in conjunction with output data from real

solar and wind sources for our own data center simulator, demonstrating up

to 3x green energy efficiency improvement. We extend this work by using

green energy prediction in geographically distributed sites and varying brown

energy prices to investigate job migration algorithm among data centers to

reduce the overall cost of energy, obtaining 27% better batch job completion

time compared to no migration with only a 6-12% increase in total energy

cost. This study is presented in Chapter 2.

• We propose HomeSim, a residential electrical energy simulation platform

that enables investigating the impact of technologies such as renewable en-

ergy and different battery types. HomeSim allows us to simulate different

scenarios including centralized vs. distributed in-home energy storage, in-

telligent appliance rescheduling, and outage management. Using measured

residential data, HomeSim quantifies different benefits for different technolo-

gies and scenarios, including up to 50% reduction in grid energy through a

combination of distributed batteries and reschedulable appliances. We then

identify an issue with current residential battery-based optimization: the

simplified, linear approach is inaccurate compared to the true, nonlinear be-

havior of the battery. We verify this inaccuracy using HomeSim and develop

a formulation for battery usage based on more realistic battery models, op-

timizing the benefit of discharging the battery. We design the scheme based

on this updated model, optimizing the trading of battery capacity on the

energy market to minimize the expected return on investment (RoI). Home-

Sim, the case studies, and residential battery management is presented as

part of Chapter 3.

9

• We investigate the design of context-aware Internet of Things applications,

identifying user-driven residential energy consumption as a characteristic ex-

ample. We propose a modular approach to these context-aware applications,

breaking down monolithic applications into an equivalent set of functional

units, or context engines. By exploiting the characteristics of context-aware

applications, context engines can reduce compute redundancy, computational

complexity and scalability with a nominal impact on accuracy. We provide

an example large-scale application residential smart grid control as a case

study, improving energy prediction accuracy by 14%, and system scaling

speedup by 30%. The design and implementation of the context engine and

the user activity and grid flexibility case studies in Chapter 5.

Chapter 1 contains material from ”Using datacenter simulation to evaluate

green energy integration”, by Bariş Akşanli, Jagannathan Venkatesh and Tajana

Šimunić Rosing, which appears in IEEE Computer 45, September 2012 [25]. The

dissertation author was one of the primary investigators and the second author of

this paper.

Chapter 1 contains material from ”Renewable Energy Prediction for Im-

proved Utilization and Efficiency in Datacenters and Backbone Networks”, by

Bariş Akşanli, Jagannathan Venkatesh, Tajana Šimunić Rosing, and Inder Monga,

which appears in Computational Sustainability, Springer, 2015 [26]. The disserta-

tion author was author was one of the primary investigators and second author of

this paper.

Chapter 1 contains material from Jagannathan Venkatesh, Bariş Akşanli,

and Tajana Šimunić Rosing, ”Residential Energy Simulation and Scheduling: A

Case Study Approach”, which appeared in Proceedings of the International Sym-

posium on Computers and Communications (ISCC), 2013 [93]. The dissertation

author was the primary investigator and author of this paper.

Chapter 1 contains material from Jagannathan Venkatesh, Bariş Akşanli,

Jean-Claude Junqua, Philippe Morin, and Tajana Šimunić Rosing, ”HomeSim:

Comprehensive, Smart, Residential Electrical Energy Simulation and Scheduling”,

which appeared in Proceedings of the International Green Computing Conference

10

(IGCC), 2013 [92]. The dissertation author was the primary investigator and

author of this paper.

Chapter 1 contains material from Jagannathan Venkatesh, Shengbo Chen,

Peerapol Tinnakornsrisuphap, and Tajana Šimunić Rosing, ”Lifetime-dependent

Battery Usage Optimization for Grid-Connected Residential Systems”, which ap-

peared in Proceedings of 2015 Workshop on Modeling and Simulation of Cyber-

Physical Energy Systems (MSCPES) 2015 [95]. The dissertation author was the

primary investigator and author of this paper.

Chapter 1 contains material from Jagannathan Venkatesh, Christine Chan,

Alper Sinan Akyürek, and Tajana Šimunić Rosing, ”A Modular Approach to

Context-Aware IoT Applications”, which appeared in Proceedings of the 1st Con-

ference on Internet of Things Data and Implementation (IoTDI), 2016 [94]. The

dissertation author was the primary investigator and author of this paper.

Chapter 2

Renewable Energy and Context

in Data Centers

Data centers utilize context to schedule workloads and manage efficiency:

job arrival rates, type, and overhead analysis help determine job allocation, distri-

bution, etc. Similarly, context can help improve the efficiency of renewabale energy

efficiency within data centers. With concerns over growing costs, increasing emis-

sions output, and the limited nature of non-renewable energy sources, there has

been a movement towards utilizing green energy for power generation. In particu-

lar, data centers, which are among the largest individual consumers in the electrical

grid and facing an annual electricity growth rate of 15% [68], have a strong motiva-

tion to incorporate renewables. Several corporations, including Google, Emerson

Network Power, AISO.net, and i/o Datacenters, have built solar-powered or solar-

assisted data centers [70], while others (e.g. OWI [20], Facebook [45], Green House

Data [21] are utilizing on-site or local wind power.

The main obstacle to widespread utilization of renewable energy sources is

their output variability (Figure 2.1). Unlike traditional means of power generation,

which produce consistent output, renewable energy output is very much dependent

on environmental factors such as solar irradiance or wind speed. For data centers,

this variability is compounded by the tight timing constraints of the primary jobs

executed in data centers: service workloads. Currently, the integration of green

energy sources is accompanied by large integration costs to offset the impact of

11

12

variability. Other works explore the use of renewable sources in conjunction with

various attempts at mitigating its variability, such as by using battery storage [48].

A possible solution is the use of green energy prediction, which has been previously

used to compensate for source variability in developing hybrid energy systems, the

smart grid [79], and wireless sensor networks [43].

Figure 2.1: Variability of solar and wind energy sources from the UCSD grid and
a Lake Benton, MN wind farm, respectively, over the course of a week. [91].

In this chapter, we outline an approach to integrating local renewables with

data centers, improving the efficiency of green energy. We identify and develop

short-term predictors for solar and wind energy, using readily-available context to

improve prediction accuracy. With a baseline of utility-provided nominal energy,

we ensure that service jobs complete within their service level agreement (SLA).

We aim to maximize the utilization of available green energy by using them to run

the other major workload in data centers: batch jobs. As batch jobs are longer-

running, our renewable energy predictors allow us to appropriately allocate batch

workloads for the energy available. Using prediction, we demonstrate over 90%

green energy efficiency, up to 3x more than without prediction, and extend this

work to a networked set of data centers, improving the average completion time of

batch jobs by 27%.

13

2.1 Related Work

In addition to industrial implementations of green data centers described

above, academic research in renewable energy integration focuses on investigating

data center workload and power management in order to improve energy efficiency

and mitigate green energy variability.

Gmach et al. [48] aim to reduce the peak power of a data center, a sig-

nificant impact on data center runtime costs, by incorporating renewable energy

from local solar and wind sources in conjunction with power-management algo-

rithms. They investigate power capping, both of individual servers using dynamic

frequency scaling, and of server pools by reducing the number of machines utilized

in each pool. They then incorporate both energy storage and renewable energy

sources to their management system, observing their impact on the power capping

schemes. They note significant quality-of-service violations when limiting peak

power, with over two orders of magnitude increase in violations per hour. Addi-

tionally, although using a local solar source helped improve green energy efficiency

by reducing the need for grid power, the periodic unavailability of solar energy at

night limited the reduction of peak power by 20kW compared with non-renewable

sources alone. The use of a local wind installation showed negligible reduction of

peak power because of the higher variability of wind sources. Only by utilizing

battery storage could the variability effects be mitigated.

Le et al. [65] investigates the impact of capping non-renewable, or brown,

energy needs in data centers. Cities such as Kyoto impose strict restrictions on

brown energy use to limit the carbon impact of large energy consumers. The au-

thors leverage the fact that internet services are distributed across multiple data

centers, enabling them to schedule workloads based on local electricity prices or

green energy availability. They define the workload distribution to each data center

as a local optimization problem. By utilizing traces of brown energy consumption

and electricity prices and predicting both for the upcoming 1-hour optimization in-

terval using an autoregressive moving average (ARMA) model, the authors demon-

strated 35% lower brown energy consumption with a nominal (10%) hit on service

level agreement (SLA) violations.

14

Similarly, Buchbinder et al. [37] develop a solution for energy management

in a cluster of data centers by optimizing for energy prices. Instead of just reducing

brown consumption, they aim to reduce overall energy costs by distributing work-

loads to data centers with the lowest energy prices. An additional insight is that

renewable energy sources have different cost traces than utility sources, as they are

driven by environmental factors rather than peak load. Consequently, renewable

sources such as solar energy are actually cheapest during the day, when workloads

are at the highest, as opposed to utility sources, which are most expensive at those

times. By assuming that energy costs remain fixed over short time intervals and

associating a job capacity for each data center, the job migration problem can be

reduced to an optimization problem. The algorithm identifies a local minimum en-

ergy cost among the available data centers that still meets bandwidth and latency

characteristics for migrating and executing the job, and maintains the integrity of

the power capacity of the selected data center. Although the proposed algorithm

assumes knowledge of future energy prices, a slightly unreasonable expectation,

the assumption can be justified by the use of prediction. The paper concludes

by showing demonstrating on real data center cluster traces that their algorithm

performs within 5.7% of the optimum distribution, as opposed to 10.4% and 68.5%

of the optimum for established greedy algorithms.

Krioukov et al. [61] analyze the opportunities and difficulty of using supply-

following loads to match renewable energy availability. They focus on utilizing

recent green energy data to provision an appropriate amount of work within a

data center. They describe two options for stopping data center workloads when

instantaneous availability is insufficient: either by terminating or suspending the

current workloads, then restarting or resuming them, respectively, when availabil-

ity returns. However, due to the high variability of wind at any given time, and the

constantly changing solar irradiance before and after peak availability, simulations

of instantaneous usage in a supply-following capacity show very low green energy

efficiency. In addition, supply-following workloads do not provide service-level

guarantees that most data centers are required to provide.

The above data center examples demonstrate the high cost and necessary

15

precautions that must be taken in order to successfully use green energy, all of

which reduce efficient utilization due to the high variability of renewable sources.

While there are no published reports on efficiency of green energy in the imple-

mented solar and wind installations above, our data center simulator demonstrates

that the instantaneous use of renewable sources provides, on average, only 58%

green energy efficiency. While the above examples implement different ways to

help reduce the variability of green sources, an important means of reducing such

variability has been unexplored in data centers: utilizing prediction. By forecast-

ing the availability of renewables in the intervals ahead, data centers can better

allocate their workloads to the available energy. Since data center workloads are

relatively short-lived, we focus on predicting short-term availability of solar and

wind sources. In particular, we focus on predicting up to 30 minutes ahead, as

this is a typical time it takes for the data center’s longer-running batch jobs such

as MapReduce to complete [27].

2.2 Short-term Solar Energy Prediction

This section investigates the solar energy prediction algorithms among the

related work, identified as applicable to the data center domain. Data centers use

localized arrays of photovoltaic cells to obtain solar energy. This precludes the use

of spatial and Numerical Weather Prediction (NWP) models, whose strengths are

in expansive, low-granularity prediction. Time series models, however, use sequen-

tial output power readings to provide predictions that are as granular as the input

data. Furthermore, solar energy has a periodic output due to its dependence on so-

lar irradiance, which is subject to daily cycling. As such, the following subsections

examine and quantitatively compare the state of the art in solar prediction using

time-series models. In particular, we aim to predict for a time horizon appropriate

to data center batch workloads, and as such, target short-term prediction.

16

2.2.1 Exponential Weighted Moving Average (EWMA)

The Exponential Weighted Moving Average (EWMA) algorithm has long

been used for solar and weather forecasting [53], and represents the base case for

our testing. The basic EWMA algorithm is described below:

X(i+ 1) = α ∗X(i) + (1− α) ∗ x(i) (2.1)

where X(i) defines the prediction value for slot i, x(i) denotes the measured value

for slot i, and α represents the fixed weighting factor.

2.2.2 Extended EWMA (eEWMA)

The extended EWMA algorithm [43] goes one step further, incorporating

data from slot x(i − 1) as well as compensating for the error of the previous and

current slot:

X(i+ 1) = αx(i) ∗ (1− ε1) + (1− α) ∗ x(i− 1) ∗ (1− ε2) (2.2)

with the error coefficients defined as follows:

ε1 =
x(i)−X(i)

x(i)
, ε2 =

x(i− 1)−X(i− 1)

x(i− 1)
(2.3)

The algorithm can be similarly extended to encompass values from multiple pre-

vious days.

2.2.3 Weather-Conditioned Moving Average (WCMA)

Finally, the WCMA algorithm developed in [78] takes into account D num-

ber of days with N number of slots per day, allowing quicker calculation of both a

baseline and adaptation to seasonal changes. The algorithm is defined as follows:

E(d, n+ 1) = α ∗ E(d, n) +GAPk ∗ (1− α) ∗MD(d, n+ 1) (2.4)

Here again, α is the weighting factor. However, unlike the previous algorithms,

which predict the value of an interval in a future day, the WCMA algorithm predicts

a future interval (n+ 1) of the current day (d). However, the algorithm introduces

17

several new factors to more accurately calculate E(d, n+ 1), utilizing the mean of

the previous D days’ values for the slot to be predicted:

MD(d, n) =

∑d−D
i=d−1E(i, n)

D
(2.5)

as well as weighting the mean values by the distance to the point to be predicted

(the GAP factor):

vk = E(d,n−K+k−1)
MD(d,n−K+k−1) , V = [v1, v2, ..., vK]

pk = k
K
, P = [p1, p2, ..., pK]

GAPk = V∗P∑
P

(2.6)

It is important to note the distinction between the WCMA algorithm and the pre-

vious EWMA implementations. Solar irradiance, in addition to a daily pattern,

experiences seasonal variations, which are handled by the adaptive nature of all

the EWMA algorithms. However, an individual day’s weather conditions can sig-

nificantly impact the daily irradiance. Piorno et al. address this issue with the

GAP factor, which biases predictions by scaling the current day’s observed energy

over the previous D days. Thus, daily irradiance fluctuations are accounted for,

and predictions are scaled appropriately.

2.2.4 Results

In order to select an effective green energy prediction algorithm, the above

algorithms are tested under three conditions: consistent levels of solar irradiance,

where the variation in output energy between days is below 25%; moderately incon-

sistent conditions, where the variation is between 25-50%; and severely inconsistent

conditions, where the variation between days is greater than 50%. The input power

traces for each of the above conditions are obtained from solar arrays at the UCSD

microgrid, and the results of each algorithm are compared against the actual data

for mean error.

18

Table 2.1: Solar Energy Prediction Algorithm Comparison

Algorithm Mean Absolute Error (%)
Consistent Inconsistent Severely Inconsistent

EWMA 12.7 32.5 46.8
eEWMA 4.9 23.4 58.7
WCMA 3.99 9.6 18.3

Table 2.1 shows the results for all three cases. The α values are selected

empirically, testing against values at a granularity of 0.05 until a value that min-

imizes error is found. For the EWMA and WCMA cases, the α value of 0.25 is

found to minimize error, while for eEWMA, the α value of 0.3 is selected. The

proximity of α to 0 demonstrates that recently observed values are the dominant

factor in the final prediction.

The results demonstrate the marked improvement of the WCMA prediction

over the other algorithms, even in severely inconsistent conditions. The primary

reason is the sensitive nature of the algorithm to daily variations of solar irradiance.

The WCMA algorithm is uniquely suited to solar energy prediction, as the GAP

factor inherently adjusts for the change in irradiance in the current day compared

day compared to previous days.

2.3 Short-term Wind Energy Prediction

We now explore wind energy prediction algorithms, identifying several that

are applicable to the energy sources and timing constraint restrictions in the data

center domain. Wind energy prediction is typically divided into two approaches:

physical modeling and statistical modeling. Physical modeling utilizes meteoro-

logical forecasts represented in space to develop relationships to wind energy. At

each location represented by wind turbines, corresponding power models, such

as manufacturer-provided power curves, convert physical characteristics to power

output [47]. Statistical modeling, on the other hand, uses collected meteorological

data, either through direct measurement or numerical weather prediction data,

in conjunction with measured wind turbine power. A variety of algorithms are

then used to create a relationship between the meteorological variables and output

19

power, which can be used to predict future wind power [63].

Physical modeling is typically used when predicting wind energy for large

farms, which can take advantage of the location-specific results provided by such

algorithms. They depend heavily on Numerical Weather Prediction (NWP) mod-

els, which involve high-overhead local data gathering for meteorological variables

and complex processing to obtain prediction of the variables over different points

in space. Though highly useful for large wind farms, where the meteorological

data may be different at each turbine’s location, they trade local accuracy for a

larger coverage area. However, the data centers represent a much smaller spatial

system than the comparatively large wind farms, and benefit from the specificity

of statistical models. Statistical models also have a reduced dependence on NWP

forecasts, which can vary in accuracy and number of variables based on location.

In contrast, statistical models are more widely applicable, and can leverage

a varied number of inputs. Additionally, statistical models better predict the

behaviors for individual turbines or small clusters, which suffer less distortion

from other meteorological variables. Therefore, in this section, we investigate the

state of the art in wind power prediction algorithms, investigating the statistical

approaches that lend themselves to the wind installations more commonly found

in data centers.

2.3.1 Persistence Prediction

Wind predictors are typically measured against a persistence model [47],

which simply predicts the output of a future interval to be identical to the output

of the current interval. This is the first of the algorithms we use. Although

persistence predictors typically perform better for shorter-term prediction, the

relatively sudden changes in output power evident in Figure 2.1 demonstrate very

high error rates.

20

2.3.2 Data Mining Prediction

The case study in [64] uses an input based on 120 meteorological vari-

ables, retrieved from data acquisition units (DAUs) situated at each turbine and

collecting at high frequency. It then uses several data-mining models to develop

relationships between the input variables: the support-vector machine regression

model (SVMReg), Multilayer Perceptron network (MLP), Radial Basis Function

network (RBF), the Classification and Regression tree (C&R), and the random

forest algorithm. Each algorithm uniquely interrelates the variables to predict fu-

ture wind speed. The results, shown below in Table 2.2, demonstrate the range of

prediction errors and the advantage in accuracy the SVMReg algorithm provides

over the others.

Table 2.2: Data Mining Wind Speed Prediction Algorithm Comparison

Algorithm Mean Absolute Error (%) Std Dev (%)
SVMReg 16.89 17.92
MLP 10.94 9.99
RBF 20.32 19.68
C&R 25.43 22.57
Random Forest 22.19 19.89

After determining the effectiveness of the support-vector machine regression

algorithm to predict wind speed, the authors retained the characterizing functions.

They proceed to predict wind farm power output by applying the same derived

functions used wind speed prediction, with the justification is that wind speed has

a very close relationship to wind power. The mean error for wind farm power, how-

ever, is compounded by the error for wind speeds shown above in Table 3. While

10-minute-ahead prediction results in 19.8% mean error, longer intervals demon-

strate a consistently growing error, up to 73.3% mean error for 60-minute-ahead

prediction. While other data-mining algorithms demonstrate better accuracy (<

20% mean error) [47], they depend heavily on data gathered and processed through

local Numerical Weather Prediction (NWP), and ultimately provide inconsistent

results for different locations.

21

2.3.3 Autoregressive Moving Average (ARMA) Prediction

Figure 2.2: Manufacturer-provided wind turbine power curve, showing cut-in
point, dynamic range, and maximum rated output power and cut-out [22].

Another approach to wind prediction explores the errors inherent in manu-

facturer power curves. The work presented in [84] analyzes the theoretical power

curves against real data, demonstrating marked inaccuracy. They then provide the

solution of generating power curves. Power curves provided by manufacturers rep-

resent wind power measured against wind speed, as shown in Figure 2.2. However,

in plotting actual wind speed/wind power data, [84] demonstrates that the highly

nonlinear relationship between wind speed and power, combined with the impact

of other meteorological factors such as air density and wind direction, cause man-

ufacturer power models to be inaccurate as a universal measure. The alternative

proposed is a combination of several statistical predictors, most prominently the

Auto-Regressive Moving Average (ARMA) model. The ARMA model is expanded

with wind speed and direction as follows:

pt+1 = a0,t + Pt(k, c) +Wt+1|t(q) +Dt+1|t(q) + et+1|t (2.7)

where Pt represents the weighted moving average of the past k values and Wt+1|t

and Dt+1|t are the parameterized models for wind speed and direction, respectively,

and et+1|t represents the error from the previous interval. The results show 50%

22

reduction in the average error present in power prediction. The combination of

dynamic power models shows maintenance of the reduced error levels between

prediction horizons of 2 hours to 45 hours.

2.3.4 Proposed Nearest-Neighbor Prediction

The diversity and requirements of the wind energy prediction algorithms

pose a difficulty for testing. While the time-series solar prediction algorithms

require only past output data, the algorithms described above require various types

of input, from access to NWP forecasts to DAUs recording real-time data at each

turbine. Additionally, the targeted horizons for each predictor are different, causing

applicability in other prediction intervals to be different. In contrast, we develop

a novel wind energy predictor with the goal of wide applicability and low input

overhead. Instead of data that needs to be specially collected or provided, we

utilize readily available data that has been shown to strongly correlate with wind

energy prediction [84]: wind speed and wind direction.

Utilizing the effectiveness of dynamic power curves, our algorithm creates

weighted nearest-neighbor (NN) tables to generate wind power curves using avail-

able wind speed and direction data at each 30-minute interval. Weighted tables

allow the algorithm to adapt to seasonal changes by weighting recent results highly,

while the power curves offer flexibility, allowing the algorithm to be used with dif-

ferent wind farms. The appropriate power curve table is updated using the current

interval’s observed wind velocity, direction, and output power as follows:

Pnew(v, d) = α ∗ Pobs(v, d, t) + (1− α) ∗ Pold(v, d) (2.8)

where Pnew(v, d) is the new power curve table entry for a given wind velocity v

and direction d, Pold(v, d) is the existing value for the same velocity and direction,

and Pobs(v, d, t) is the observed value at time t. While α can vary from 0 to 1, we

found most accurate results with α = 0.75, which weights the model more heavily

towards currently observed data. Future interval prediction uses a table lookup

based on the predicted wind velocity and direction:

Ppred(v, d, t+ k) = P (v(t+ k), d(t+ k)) (2.9)

23

The table is initially populated with a training set. When a prediction value for a

particular v(t), d(t) is not available, a prediction is obtained by the average of the

N nearest neighbors to the needed data point:

Ppred(v, d, t) =

∑N
i=0 neighbori(v(t), d(t))

N
(2.10)

2.3.5 Results

The necessary power data for our testing was provided by a wind farm

in Lake Benton, MN, in one-minute intervals, and the meteorological data was

provided by published reports from the National Renewable Energy Laboratory

(NREL). The prediction interval is determined by the least-granular of our input

data, wind direction, which is available every 30 minutes. The availability of input

data, and consequently, the widespread applicability of prediction, is the primary

goal of our algorithm. So, to provide an appropriate comparison, we subject all the

prediction algorithms to this limitation of the input variables. Persistence predic-

tion, our baseline for prediction, depends only on the output data from previous

intervals, and requires no adjustment for comparison. The other algorithms tested

are:

• Data mining : we limit the data acquisition to the two variables of wind

speed and wind direction and use the Multilayer Perceptron network (MLP)

algorithm, as it performed the best in the corresponding work (Table 2.2).

The only input variables required are the forecasted wind speed and the

history of wind power.

• Dynamic Power Modeling : we develop parameterized models for each of

the input variables and create extended ARMA models. The αi, βi, and γi

values from Equation 2.7 are derived by analyzing previous interval data and

developing a trend for the lowest error for 3 past intervals[84]. While the

ARMA model is usable on its own, the dynamic switching among algorithms

requires additional input variables. As such, we are limited to Equation

2.7, which uses only wind speed and wind direction, our established input

variables.

24

• Wind speed Nearest-Neighbor Predictor : we use forecasted data for wind

speed and 100 values for a training set [64]. We tested the algorithm against

values for k between 1 and 10 finding the minimum error to occur when k=7.

• Custom Nearest Neighbor Predictor : our predictor uses both the inputs spec-

ified: wind speed and wind direction. Random sequential sampling of avail-

able data showed that the table was, on average, over 80% populated when

the training set reached over 1000 samples. Iterative testing demonstrates

that prediction error becomes negligible as the number of nearest neighbors

increases past 4.

The results, shown in Table 2.3, reflect both the applicability and the versa-

tility of each algorithm. Persistence, as expected, has a very high error at 137.4%,

compounded by the relatively high variability of the wind farm power output. The

data-mining algorithm also produces a relatively high error, at 83.91%, despite us-

ing the two most-correlated variables. We attribute this to the relative inaccuracy

of the model when only provided with two variables. The ARMA model performs

better, at 63.24% error, and has the best standard deviation, but the accuracy is

hampered by the limited input data available, and the consequent lack of additional

models. The lack of additional models further precludes the ability to dynamically

switch among predictors. Finally, the wind-speed-based nearest-neighbor predic-

tor, the kNN algorithm, performed the best of the comparison predictors, with

48.21% error. While this error is the best of the comparison predictors, it still

performs with over 20% more average error than the previously published results.

However, the accuracy of the NREL input data is unknown, and the published

wind farm data exhibited less variability than the Lake Benton wind farm used in

our experiment. Finally, the custom nearest-neighbor predictor, which uses both

wind speed and wind direction to generate a dynamic power curve for wind farm

output, performs the most accurately. The model, which is more adaptive to re-

cent conditions and performs well under short-term prediction, performs over 25%

better than the next-best algorithm.

The advantage of the custom NN predictor centers on the fact that it is

developed for both the target prediction horizon and the available input data.

25

Table 2.3: Wind Power Prediction Algorithm Comparison

Algorithm Mean Absolute Error (%) Std Dev. (%)
Persistence 137.4 340.2
Data Mining 83.91 101.0
Dynamic Power
Modeling (ARMA)

63.24 11.67

Wind Speed NN
Predictor

48.21 32.11

Custom NN Predictor 21.23 17.40

However, it also incorporates the advantages of the other predictors. Specifically, it

addresses the inaccuracy of static power curves by deriving adaptive power curves.

It accounts for the impact of wind direction on turbine output by adapting direction

into wind power predictions. Using a weighted moving average to update the table

reflects the seasonal patterns handled by all the comparison algorithms. Finally,

the use of widely-available meteorological variables leverages the accuracy of NWP

forecasts without incurring the complexity and measurement needs of weather

data. In short, the inclusion of several important characteristics of wind energy

prediction, and the design of the algorithm around the input data and prediction

horizon, result in a widely-applicable, accurate predictor.

2.4 Case Study: Predictive Allocation of Batch

Workloads in Data Centers

In this case study, we focus on both intra- and inter-data center renewable

energy integration. We first envision a data center whose nominal operational

power requirements are met with non-renewable energy. The data center’s power

supply is supplemented by local wind and solar energy sources, which can be used

to run additional workloads. The data center scheduler leverages renewable en-

ergy prediction algorithms to schedule additional workloads as appropriate within

the prediction horizon. In order to evaluate the benefits of short-term prediction,

we compare the experiment to scheduling workloads with only instantaneous re-

newable energy information. We then expand this model to a networked set of

26

data centers. Leveraging the differences in green energy prediction and brown

energy pricing at geographically distributed locations, we formulate an optimiza-

tion problem where online job migration among data centers is used to improve the

performance of batch workloads. Furthermore, we incorporate network constraints

such as availability, link capacity and transfer delay.

2.4.1 Data Center Workloads

In order to ensure accuracy of the simulations, we leverage traces from real

data center workloads and benchmarks. Data centers typically run two different

types of workloads: latency-sensitive service workloads that are measured by com-

pletion time, and compute-intensive batch workloads, which are longer-running

and measured by throughput.

Data centers set strict completion deadlines for service workloads in order

to maintain quality of service. As such, service jobs do not lend themselves to

being run under green energy, as lack of energy availability would prevent jobs

from executing and compromise the quality of service. Batch jobs, however, are

longer-running and throughput-dependent. As such, they are more applicable to

green energy, as they do not have tight timing constraints and are more tolerant

of green energy variability.

The service workloads are derived from traces of the Rubis benchmark,

which models bidding systems such as eBay [17]. The batch jobs are based on

Hadoop’s MapReduce implementation, which are throughput-oriented workloads

divided into subtasks and distributed throughout the system, then recombined af-

ter all the subtasks complete. In addition to being an actual data center batch

workload, MapReduce is uniquely suited to our experiment: at our specified pa-

rameters, the workloads show 90% completion rate in 30 minutes, which is an

ideal threshold for our short-term prediction algorithms. Additionally, the innate

distributed approach provides the ability for a job to be resumed, as individual

subtasks can be canceled without the entire job needing to be restarted.

27

2.4.2 Data Center Simulator

The experiment is run on our datacenter simulator [27], which models the

execution of mixed workloads in a datacenter, simulates the corresponding power

consumption, and incorporates the available green energy. While implementation

specifics are detailed in [27] [25], we illustrate the relevant characteristics. The sim-

ulator is event-driven, progressing with each workload event, such as a job entering

or exiting the system, and with each system event, such as power consumption or

throughput monitors. A global scheduler handles the allocation of each new job

to an individual server, and a local scheduler handles the execution of a job within

the server. The execution of jobs is controlled by trigger events including the

monitoring of overall power consumption, green energy availability, and service

time requirements. As service jobs determine the quality of service provided by

the data center, they are given priority over batch jobs. After all service jobs

are scheduled, batch jobs are scheduled to fill the immediately remaining power

capacity. In addition, when green energy prediction data is available, batch jobs

are scheduled to fill the projected capacity for the prediction horizon. We validate

the data center simulator’s power consumption against actual measurements run

on the representative jobs on Nehalem servers. The quality of service ratio (QoS)

for service jobs is measured by the 90th percentile response time over the expected

response time, with values below 1 representing acceptable service. As this metric

dictates whether or not the data center is meeting its requirements, it is important

to ensure that our data center simulator accurately reflects it. Table 2.4 shows less

than 3% mean error in average power consumption, and 6% mean error for QoS,

comparable to existing datacenter simulators [25].

Table 2.4: Data Center Simulator Validation

System Measured Simulated Mean Absolute Error
Avg. power 246 W 251 W 3%
Avg. service job
QoS ratio

0.08 0.085 6%

Avg. batch job
completion time

21.2 min 22.8 min 8%

28

Figure 2.3: ESNet network topology. [26].

In addition to modeling a single data center, we also simulated a networked

set of data centers connected by a wide area network. This allows us to investi-

gate scenarios such as local pricing, job migration, and regional renewable energy

availability. We simulate a network that is a subset of the ESNet topology (Figure

2.3). It includes 5 distributed data centers and 12 routers distributed across the

USA, where each connection link has a fixed maximum capacity from 10Gbps to

100Gbps. 10% of this capacity is allocated for background traffic in our experi-

ments. We compute the total network energy need with the router power and a

fixed offset for the link power consumption. We estimate the router power con-

sumption with a linear model based on bandwidth utilization. The model details

are specified in [26]. Table 2.5 outlines the configuration of the network at each

of the different locations, including the available hardware and on-site renewable

energy, if applicable.

2.4.3 Green Energy and Prediction

The experiment aims to utilize local sources of both solar and wind energy,

using power traces from a solar array from the UCSD Microgrid and a wind farm

from Lake Benton, MN. We scale the input to provide on average 35% of the

energy input to the data center, based on the analysis of real data centers and

29

Table 2.5: Data center network config. and available on-site renewable energy

Location Node Hardware Onsite Renewables
Chicago Data Center + Router Wind
Atlanta Data Center + Router Solar
Kansas Router —
Nashville Router Wind
San Francisco Data Center + Router Wind + Solar
Denver Router —
New York Data Center + Router Wind
San Diego Data Center + Router Solar
El Paso Router Solar
Cleveland Router Wind
Houston Router Solar
Washington, DC Router —

their capacities [27]. We leverage prediction numbers for batch workloads, whose

expected durations are 30 minutes. The prediction algorithms need to correspond

to the same horizon in order to provide useful data for scheduling.

Of the solar predictors analyzed in the prior section, the WCMA predictor

performed with the highest accuracy and consistency, and predicted the above

traces with an error of 9.6%. As the WCMA algorithm is intended for short-term

prediction, and the granularity of the input data corresponds to the prediction

horizon, it was selected.

The wind predictors analyzed above explored several with good short-term

prediction capabilities, but when identifying a good predictor for our purposes,

the applicability of the algorithm to the available input data limits the options.

Numerical Weather Prediction models are simply unusable for the Lake Benton

wind facility, as none are available for the relatively remote locale. The data-

mining predictor [63] requires 250 variables provided by data-acquisition units

(DAU), which again are unavailable. Instead, we opted to use our custom nearest-

neighbor predictor. The NREL publishes wind speed and direction information for

most of the United States, with sufficient granularity for the custom NN predictor.

This, along with the power output information provided by the Lake Benton wind

farm, fulfilled the necessary requirements. Although the mean error was relatively

high at 21.2%, it was nevertheless favorable to an attempted adaptation of the

30

data mining approach utilizing the same NREL data in lieu of collected data,

which resulted in a mean error of 48.2%.

The impact of prediction errors are realized in two ways. The first case

is overprediction, which causes the scheduler to allocate more jobs than can be

handled in an interval. The excess workload will be terminated as soon as the

quota of actual energy for an interval is exceeded, resulting in wasted work. The

second case is under-prediction, when the scheduler will only allocate as much work

as dictated by the prediction, leaving the difference in the actual energy unused.

Our metrics, defined in the following section, reflect the penalty in green energy

efficiency caused by both sides of misprediction.

2.4.4 Results

As we need to demonstrate the impact of short-term prediction over instan-

taneous use of green energy, we must select appropriate metrics. The first of these,

the Green Energy Efficiency (GEE) metric, is defined as follows:

GEE =
GE used for job completion

Total GE available
(2.11)

This metric penalizes any wasted green energy. For the instantaneous case, a

decrease in green energy variability can cause batch jobs to be canceled. In the

short-term prediction case, both over- and under-prediction are penalized: the

former because the excess green energy is wasted, and the latter because scheduled

jobs that exceed the available green energy will be canceled. A second useful metric

is the average Batch Job Completion Time. As the throughput of batch jobs reflects

the effectiveness of the data center, the average completion time over the simulation

interval quantifies the improvement attributed to green energy. The final metric

quantifies the percentage of the total work that is performed with green energy:

GE Job% =
Jobs completed with GE

Jobs completed
(2.12)

This provides an overview of the pervasiveness of green energy use within the data

center.

31

Intra-Data Center

The control for the simulations is instantaneous green energy use, which

reflects how renewables are currently integrated into data centers. The compari-

son is the experiment we devise, leveraging short-term prediction of green energy

output to schedule additional batch workloads in a power-proportional manner.

The experiment is also performed on three separate renewable-energy cases: solar

energy, wind energy, and a combination of both, scaled to achieve the 35% energy

contribution.

The Green Energy Efficiency Metric reflects the percentage of available

green energy used to perform useful work. The results in Figure 2.4 show, on

average, 1.75X improvement of short-term prediction over instantaneous green

energy use, and in the best case, 3X for wind energy alone.

An analysis of the simulator data reflects the initial observations: the fluctu-

ations in green energy input, particularly in the more highly-variable wind energy

case, prevent the batch workloads scheduled based on instantaneous energy data,

from completing. However, the improved knowledge of energy availability from

prediction reduces these errors and enables a more efficient use of green energy.

The Batch Job Completion Time also shows improvement when using green energy

Figure 2.4: Green energy efficiency metric for instantaneous and short-term pre-
diction. Prediction shows over 90% energy efficiency across the board, in the best
case (wind-only), over 3x improvement over instantaneous use.

.

32

prediction. Reflected in Figure 2.5, job completion time is reduced by 12.5% using

prediction. These results show the benefit of better power proportioning per in-

terval, as batch workloads are more appropriately scheduled, and fewer jobs must

be terminated prematurely. In the instantaneous case, the inherent fluctuation of

wind energy plays a major role in forcing early termination of batch jobs, as does

the steady decline of available solar energy in the latter half of each 24-hour day.

The GE job % reflects the overall impact of green energy within the data center.

Figure 2.5: Normalized Batch Job Completion Time for no green energy, instan-
taneous green energy, and short-term prediction. , showing 12.5% reduction with
prediction.

.

Utilizing prediction over instantaneous use results in, on average, 15% more jobs

completed with green energy, as demonstrated in Figure 2.6.

Multiple Data Centers with Job Migration

Finally, we investigate the case of a networked set of data centers using

the heuristic scheduling algorithm described in [26]. We modify this iterative part

of the algorithm to maximize the performance of the workloads. Batch jobs that

33

Figure 2.6: Green energy job % for instantaneous and short-term prediction.
Prediction shows an average of 15% more jobs completed with green energy.

.

are actively waiting in execution queues are migrated to data centers with excess

green energy availability, where the green energy is predicted as above and the

availability and configuration of each data center is described in Table 2.5. The

key to this policy is that waiting tasks are migrated, resulting in more jobs executed

overall. The scheduler produces a matrix representing workload transfers among

data centers. This transfer matrix is then provided to the networking algorithm,

found in [29], which calculates the paths to be used and the amount of bandwidth

that needed by each selected path.

Our simulation results show that the average completion time of MapRe-

duce jobs is 16.8 min, 27% faster than the baseline, with no performance hit for

service requests. Furthermore, since we are leveraging all predicted available green

energy for extra workloads, the Green Energy Efficiency (GEE) is 85%, signifi-

cantly higher than the baseline of no migration, which has a GEE of 59%.

34

2.5 Conclusion

In this chapter we provide a comprehensive background of green energy use

in data centers today. We introduce the inherent difficulties in green energy use,

namely: unpredictability of the output, and demonstrate how current datacenter

implementations attempt to compensate to overcome this cost. We then explore

methods of short-term renewable energy prediction, analyzing difficulties, and pro-

vide solutions: the WCMA prediction algorithm for solar energy, and a predictor

of our own design that aims for wide applicability for wind energy. Finally, we

define and evaluate a case study of single and interconnected data centers lever-

aging instantaneously available local green energy, and compare it to using green

energy prediction and job migration. The results show that prediction leads to 3x

higher green energy efficiency and reduces the number of terminated batch tasks

due to insufficient green energy availability during task execution by up to 7.7x

as compared to instantaneous green energy usage. For networked data centers, we

demonstrate a 27% reduction in the completion time of batch workloads through

job migration based on energy prediction at connected sites.

Chapter 2 contains material from ”Using data center simulation to evaluate

green energy integration”, by Baris Aksanli, Jagannathan Venkatesh and Tajana

Simunic Rosing, which appears in IEEE Computer 45, September 2012 [25]. The

dissertation author was one of the primary investigator and the second author of

this paper.

Chapter 2 contains material from ”Renewable Energy Prediction for Im-

proved Utilization and Efficiency in Datacenters and Backbone Networks”, by

Baris Aksanli, Jagannathan Venkatesh, Tajana Rosing, and Inder Monga, which

appears in Computational Sustainability, Springer, 2015 [26]. The dissertation

author was a primary investigator and second author of this paper.

Chapter 3

Modeling Residential Energy

Management in the Smart Grid

Building energy consumption has been well-researched, but the focus has

been on commercial and industrial domains, which constitute a majority of global

energy consumption. However, the residential domain contributes 38% of the total

energy costs in the United States (Figure 3.1). Moreover, the residential domain is

important because of the significantly higher number of end users impacted: in the

United States alone, residential energy consumption impacts hundreds of millions

of homes and other residences. In addition to the significant impact, the breakdown

of energy use is shifting towards appliances and electronics (Figure 3.2) — elements

that are becoming smarter and remotely actionable by entities such as the smart

grid[23]. Some related research focuses on reducing a single aspect of consumption

[98], while others seek to provide more granular energy information to end-users

in order to facilitate user-driven improvements [60]. While these approaches are

indeed beneficial, they require considerable overhead in data collection and testing,

and results cannot be quantitatively compared.

Although a few building simulators have been proposed, there are no res-

idential energy simulators capable of modeling more complex scenarios and ex-

ploring the tradeoffs in home energy management. In this chapter, we outline a

residential energy simulation platform (HomeSim) that makes it possible to inves-

tigate the impact of technologies such as renewable energy, smart appliances, and

35

36

Figure 3.1: Fig. 1. 2009 Retail Electricity Sales in the United States, Total by
End-Use Sector. [8].

different battery types. Additionally, HomeSim allows us to simulate a number

of different scenarios, including centralized vs. distributed in-home energy stor-

age, intelligent appliance rescheduling, and outage management. Using measured

residential data, HomeSim quantifies the benefits of different technologies and sce-

narios, including up to 50% reduction in grid energy through a combination of

distributed batteries and reschedulable appliances.

3.1 Related Work

3.1.1 Residential Energy Simulation

Building simulation involves modeling loads and sources, with a schedule

to aggregate each element’s provision or consumption [41]. It can provide accurate

results orders of magnitude faster than real-time implementation. However, few

home energy simulation platforms have been developed, and those that have require

very stringent assumptions. This prevents them from being applicable for general

studies such as the ones presented in our work.

The work in [87] provides a comprehensive review of residential energy,

detailing both top-down and bottom-up simulation, which involves the modeling

37

Figure 3.2: Residential energy consumption breakdown in 1993 and 2009. [12].

individual buildings, similar to our goals, and leveraging the models into classifi-

cations (single-family residences, apartments, etc), as appropriate to a region, and

simulating the result.

The simulators in [33] & [98] study the tradeoffs between renewable genera-

tion and grid pricing, but only for the homes and neighborhoods where their study

was deployed. This precludes the possibility of verifying their results with different

usage and residence configurations. The Department of Energy’s NZERTF home

simulator [23] provides an open interface for user models, allowing comparison of

energy consumption based on user behavior patterns. However, usage patterns are

tested on a single, instrumented house, with no ability to specify a different home

configuration, thus limiting its scope.

Commercial and open-source energy simulators provide the complex inter-

actions found between elements in the energy grid. However, the granularity of the

interactions is not extended to the residential domain. GridLAB-D, a comprehen-

sive grid simulation platform, provides nominal residence and appliance modeling

[38]. However, the simple probabilistic load model is not able to convey local re-

newable generation, distributed storage within a home, and the various scenarios

introduced by smart grid automation. While some attempts have been made to-

38

wards extending GridLAB-D in this direction [31], a majority of the work focuses

on simply modeling elements within the house rather than the different means of

interaction. Additionally, the ability to handle distributed batteries is not covered

under these extensions. Similarly, OpenDSS [19] provides the ability to model

complex distribution networks at different levels of the grid. However, this does

not extend to the level of individual end-use elements, which can be specified as

generic loads or sources, but without the fine granularity needed to model complex

end-use scenarios.

3.1.2 Residential Energy Load Monitoring and Modeling

Residential energy research has been motivated in part by the number of

people it affects [87]. A majority of work has focused on characterizing the previ-

ously dominant HVAC consumption in the home, but as Figure 3.2 demonstrates,

appliance energy use is growing compared to other residential loads. The ability

to correctly model and control appliances in a home is important for scheduling

and determining load use, and is helpful for implementing the complex scheduling

behavior explored in our case studies.

The work in [60] focuses on non-intrusive load monitoring, with the ultimate

goal of presenting very granular power consumption for each appliance to enable

users to make smarter decisions. The significant contribution is the ability to

isolate appliance power data non-intrusively using a learning model, with 82%

accuracy. However, the work does not strive to automate the process, choosing

instead to leave power management decisions in the hands of users. [33] presents

automated energy efficiency improvement in homes that are partially powered by

green energy with storage. The work proposes an energy management system that

provides early warnings, and suggests task rescheduling for maximizing energy.

However, again, decisions are left to the user, with automation addressed as a

feasibility study. In the wake of smart appliance and home automation research,

we choose to investigate the impact of automation in reducing grid consumption.

Another approach [73] automates battery charging and discharging in a

green home based on predicted solar energy and battery state-of-charge. The work

39

reduces grid energy by an impressive 3.9x. However, the paper only improves one

aspect of energy consumption—battery charge—while making several assumptions

that limit the widespread benefit, including a reliance of time-of-use (TOU) pric-

ing; depleting batteries completely instead of a specific depth-of-discharge; and

dependence on a variety of forecast data.

A second work [31] compares the use of different learning techniques such

as Bayesian Networks and Artifical Neural Networks (ANNs) to predict residential

water use, and develops an integrated ANN to predict demand with average relative

error of 30%. Similarly, [52] uses Bayesian Networks to predict user behavior, which

in turn is used to determine appliance usage, and ultimately, energy needs for 24

hours ahead. Using time, energy, and duration as the input random variables,

the paper predicts appliance usage based on a real dataset. Finally, MIT’s REDD

project [60] utilizes the Factorial Hidden Markov Model to disaggregate overall

energy data from residences, and predict which appliances are active over a given

timeframe in a non-intrusive manner. They train their predictor using supervised

approaches, providing as granular circuit-level information as possible, and are

able to determine the appliance with 82% accuracy.

3.1.3 Takeaways

The technology of residential energy management has been evolving. The

emergence of distributed energy storage, smart appliances, and automated control

[73][98] has blurred the distinction between loads and sources. Storage elements

such as batteries can consume grid or renewable power for charging or be used

as energy sources. Consequently, scheduling evolves from a mapping of consumers

and producers to a distributed system of interactions among elements. The related

work demonstrates that existing residential energy simulators do not provide a

flexible platform for comparing residential energy configurations. They lack the

sophistication to handle emerging technologies and the ability to quantitatively

compare the impact of different home energy management policies. The research

in energy management performs one-off comparisons for specific energy scenarios,

but cannot compare different technologies or implementations side-by-side.

40

To address these issues, we develop HomeSim, a simulator for evaluating

residential electrical energy usage, storage, and generation. It is capable of mod-

eling energy consumption of typical sources and loads, including utility power,

generators, and household appliances, as well as energy storage, renewables, fuel

cells, and ”smart” appliances. HomeSim’s model enables many configurations of

end-use elements. Similarly, while the majority of existing simulators use a mono-

lithic event-driven scheduler, HomeSim provides a highly extensible scheduling

algorithm that can simulate more complex interactions among nodes and subsets

of nodes, uniquely providing the ability to test new scenarios.

With the added capabilities of HomeSim, we are able to explore the impact

of home energy scenarios that were previously impossible without actual imple-

mentation and instrumentation. We consider lithium-iron phosphate batteries, an

emerging technology considered to be an alternative to traditional lead-acid batter-

ies due to better performance characteristics. Through HomeSim, we can quantify

their benefit within different house configurations and compare to their theoretical

benefit. We also implement two energy-saving improvements suggested in the re-

lated work: distributed, appliance-specific batteries [75] and dynamic rescheduling

of appliances [33]. By modifying the scheduling algorithm and the configuration of

energy elements in the home, we can test both scenarios in HomeSim, demonstrat-

ing 36% reduction in grid energy using distributed batteries, and 25% reduction

using distributed batteries. In addition, we investigate the impact of outage man-

agement, taking into account the appliance limitations/restrictions that must be

imposed and the scheduling policies that would improve battery consumption,

demonstrating high green energy efficiency. The ability to quantitatively validate

residential energy management policies exemplifies the benefit of our simulator vs.

the previous work.

3.2 HomeSim Design

A residential energy simulation platform can be broken down into two key

components: the end-use elements (i.e. loads, sources) and the scheduler. Figure

41

3.3 depicts the general model of HomeSim, including the event-driven scheduler

and the constituent nodes which represent energy sources, loads, storage, and hy-

brid components of a home energy management system. The scheduler determines

which nodes are active at a particular iteration, and executes the consumption

computation for them. While the core of the scheduler is straightforward and

representative of a bottom-up home energy model [87], the actual computation

at each step is configurable. This is particularly useful when modeling complex

interactions between loads and sources. One example is the growing popularity of

”smart” appliances, which can modify their own power profiles or schedules as a

function of the control input. HomeSim’s modular computation step facilitates the

adaptive behavior of such emerging technologies in a way that previous simulation

platforms simply cannot. The nodes provide an easy way to define all the relevant

Figure 3.3: HomeSim System Design Model.

parameters for energy sources, loads, storage, and hybrid elements of a residential

system. They also contain power profile functions, which provide a time-indexed

mapping of the node’s power data. This provides the flexibility to model com-

plex devices using a single data structure, such as different battery technologies

42

and renewable energy sources, by changing the behavior of power profile function.

Additionally, each node can be associated with a list of dependent nodes. This

list creates a direct connection between nodes that affect each other. The result

is a tree of dependent nodes under the scheduler that inherently captures inter-

actions among elements that is lacking in other simulators. The dependency lists

can model circuits within a home or hierarchical loads. They provide the possibili-

ties of load, source, and storage interaction previously unavailable in home energy

simulation. The next subsections explore these components and the scenarios they

enable in greater detail.

3.2.1 Nodes

A node is the abstract data structure that encompasses the end-use elements

of a home. This data structure has an identifier, which classifies the device as a

source, load, or hybrid. Complex elements such as batteries fall into the latter

category, as they are both producers (when discharging) and consumers (when

charging). Each node has a list of dependent nodes, which informs the scheduler

of node to node interactions. In Figure 3.3, the ”Node: Washer” illustrates this

idea, with ”Washer Battery” as a linked node. Here, the washer and the battery

behave differently, with the washer leveraging the additional energy stored in its

battery. This approach allows modeling more complex scenarios, like a backup

generator, or virtually partitioning the hierarchy of nodes by the physical circuits

in the home. Section 3.2.2 describes interactions between nodes and scheduler.

Nodes act as loads, sources or a combination of both.

Loads

Loads represent the sinks in our energy model, consuming power whenever

active. Based on the data provided by energy traces [60] [42], we can further

classify loads with the binary variable Always On = periodic, continuous, where

periodic loads (i.e. dishwashers, dryers) have fixed intervals and frequencies, and

continuous appliances (e.g. HVAC) have functional usage patterns over time. Ex-

amples of periodic (lighting) and continuous (refrigerator) loads are found in the

43

sample dataset in Figure 3.4. The actual model for each load is defined by a

Figure 3.4: Appliance load profiles from REMODECE [42].

dynamic power profile, mapped against a fixed interval (for periodic appliances)

or a time-dependent function (for continuous appliances). An appliance can also

be characterized as operating on AC or DC power. Depending on the state of

the incoming energy, appropriate conversion efficiency losses are used. Table 3.1

summarizes the parameters used for loads.

Table 3.1: Load parameters

Parameter Description
AC/DC AC or DC power
Interval The time until the next event instance
Offset The daily time offset to begin the first event
Power Profile Power consumption profile function
AC/DC Duration The length of an event interval (for periodic loads)
Continuous Continuous or periodic load
Conversion factor Factors to calculate transmission/conversion loss

Sources

Sources refer to nodes that are purely generators. The typical residential

energy source is the utility power. Others may include solar-electric, wind, and

44

fuel cells. Consequently, HomeSim maintains a completely open model, with a

binary AC/DC specification, a power profile function over time, and appropri-

ate power conversion factors. This allows for very fine-grained modification of a

source’s energy data. For example, utility power can be modeled as constant power

function with very high magnitude, since utility production far exceeds residential

consumption. The parameters for each source are provided in Table 3.2. We also

provide a cost function, which returns the energy cost for a particular power value.

Like the power profile, this can be extended to handle different scenarios. For

example, time-of-use (TOU) can be expressed as a function of power and time.

Table 3.2: Source parameters

Parameter Description
AC/DC AC or DC power
Power Profile Power generation profile function
Cost Function Operational expense of a source (cost/watt-hr)
Conversion factor Factors to calculate transmission/conversion loss

Hybrid Elements

Hybrid elements such as batteries, flywheels, and plug-in electric vehicles

(PEVs), are becoming more prominent in the residential domain [73]. Their ability

to both supply and consume energy requires a separate interface. In addition to

having a fixed capacity, these sources can also have different charge and discharge

rates. Their characteristics are outlined in Table 3.3. They can either be associated

directly with the HomeSim scheduler, for centralized behavior, or with a specific

node, for distributed behavior.

Batteries

Batteries are a special case of hybrid nodes, and require a more sophisti-

cated model to capture additional parameters. Accurate battery modelling has

been extensively studied. The overview in [58] outlines the different approaches:

electrochemical models simulate the changes in the chemical compositions of bat-

teries over time; electrical-circuit models create an equivalent capacitive circuit;

45

Table 3.3: Hybrid node parameters

Parameter Description
AC/DC AC or DC power
Max Capacity The maximum stored capacity in Ah
Current capacity The current capacity of the node, in Ah
Nominal Voltage The device line voltage
Upper charge/
discharge voltage

The maximum charge/discharge voltage

Lower current limit The minimum operational current of the device
Upper charge/
discharge current

The maximum charge/discharge current limits

Conversion factor Factors to calculate transmission/conversion loss

Table 3.4: Battery parameters

Parameter Description
Peukert Exponent The storage efficiency of a battery
Depth of Discharge (DoD) The maximum fractional depth of discharge
State of Health (SoH) The fractional available battery capacity
State of Charge (SoH) The current fractional battery capacity

and analytical and stochastic models create a mathematical representation of the

change in various battery characteristics over time.

Chemical batteries have non-linear charge/discharge characteristics, both

during each cycle and over the lifetime of the battery. These properties increase the

complexity of accurate battery models, which in turn make simple optimizations

more difficult. Additionally, the behavior of batteries over each cycle throughout

their lifetime is not consistent [35] [80].

Depth of Discharge (DoD)

The depth of discharge (DoD) of the battery identifies how low batteries

are drained [77]. Changing the maximum DoD reduces the cycle life of the battery

in a nonlinear fashion, and as seen in Figure 3.5, higher depths of discharge result

in dramatically reduced cycle life.

46

Figure 3.5: The cycle life of lead-acid batteries mapped against the depth of
discharge [14].

Effective Capacity

Another significant impact on battery characteristics is the degradation

of the capacity of the battery over time. Every discharge-charge cycle incurs a

degradation of the remaining maximum, or effective, capacity of the battery. In

addition, different discharge rates (i.e. discharge current and voltage) result in

both different degradation rates and different cycle life. For example, Figure 3.6

illustrates the impact of changing discharge voltage for a Li-ion battery.

State of Health (SoH)

The state of health (SoH) of the battery is the ultimate metric for the

lifetime of the battery. SoH is the percentage of the effectiveness of the battery

in comparison to the rated condition of the battery. Different metrics are used to

determine battery SoH, and of these, we use the remaining effective capacity as

our metric. The terminating condition of the battery is when the effective capacity

reaches a manufacturer-specified lower bound (e.g. 80% [28]).

47

Figure 3.6: Change in cycle life and degradation in capacity for different discharge
voltages [7].

Modeling Batteries

To account for battery nonlinearity, four additional parameters are used to

store battery information: the Peukert exponent, depth of discharge (DoD), state of

health (SoH), and state of charge (SoC). The parameters are outlined in Table 3.4.

The state of charge (SoC) tracks the current level of discharge. Depth of discharge

(DoD) is a function of battery technology, and specifies the minimum level of

charge that should remain in the battery for correct operation. Battery lifetime is

dependent on the SoH, which decreases with the number of charge/discharge cycles.

HomeSim uses the Coulomb Counting method to estimate these parameters [85],

whose main benefit is simplicity, as it only needs measurements of voltage and

current. The battery’s discharge current, Idischarge, is:

Creleased = ∆t ∗ Idischarge (3.1)

The current depth of discharge can be calculated using:

DODcurr =
Creleased
Cmaximum

∗ 100% (3.2)

48

where Cmaximum refers to the maximum capacity of the battery. We can then

express the effective capacity of the battery:

Ceff = Cmaximum ∗
(

Creleased
Idischarge∗H

)k−1
∗ SoHold

100
(3.3)

where H is the rated discharge time, k is the Peukert’s exponent, and SoHold is the

previous SoH (initialized at 100). Using this value and a manufacturer-provided

Depth of Discharge (DoD), we can calculate the current SoC and SoH:

SoC = DoD −DoDcurr (3.4)

SoHnew = SoHold − (100− SoHdead) ∗
Cmaximum

CyclesDoDfinal ∗ Ceff
(3.5)

where DODfinal is the final discharge depth after the current cycle, using Equa-

tion 3.2, extended through the last SoH update; SoHdead is the point at which

the battery is effectively dead (technology-dependent); and CyclesDoDfinal is the

number of cycles over the lifetime of the system where the final discharge point is

DoDfinal.

3.2.2 Scheduling Algorithms

The standard scheduler for HomeSim is an event-driven scheduler over a

time-ordered list of nodes, similar to other simulation platforms. It is the com-

putation at each step, called the execute step, that distinguishes HomeSim from

the previous home simulations. The execute step operates on the list of active

nodes, allocating energy to each as necessary and determining the net consump-

tion or generation. The implementation of this step can vary to handle different

configurations of nodes and scheduling goals. In essence, the execute step provides

an open scheduling platform. The following subsections investigate the different

scheduling algorithms implemented within the execute step.

Default Scheduler

The simplest implementation is representative of the state of the art in

renewable-enabled homes today, shown in Figure 3.7. At each step, each node uses

49

the green energy greedily, and then reverts to battery energy when there is not

enough green energy remaining. Finally, if the battery capacity is also exhausted,

the node uses grid energy. This is a relatively simple scenario, so in the next two

subsections we illustrate two more sophisticated cases of scheduling that are made

possible by the flexibility of HomeSim infrastructure.

Figure 3.7: Default execute phase block diagram.

Distributed Battery Scheduler

The incorporation of green energy has made energy storage a necessity. The

state of the art is a large, centralized battery, although the concept of appliance-

specific batteries has been mentioned in [75]. Such distributed batteries offer the

flexibility to allocate energy for the largest consumers, mitigating the stress on

a centralized battery and preventing interference from other appliances. Figure

3.8 illustrates how a distributed battery model can be run by the scheduler’s ex-

ecute step. In this case the dependent node lists for each appliance establish a

storage element as a distributed, appliance-specific battery (see ”Node:Washer”

and ”Node:Washer Battery” in Figure 3.3). When the appliance is active, it will

greedily seek out its own battery before attempting to use the central battery.

Conversely, other appliances will not be able to access the node-specific battery.

Smart Appliance Scheduling with Green Energy Prediction

Smart appliances refer to the ability develop learned or automated behav-

ior in appliances. A popular example is NEST thermostat [16], which learns tem-

perature patterns in the home and automatically sets appropriate temperatures.

50

Figure 3.8: Scheduler to prioritize local distributed batteries.

Similarly, we envision adaptable appliances, a concept presented in [33], which set

flexible deadlines for loads such as dishwashers, as their execution is typically open

to rescheduling. While the execute phase in this case remains the same as in the

previous section, the ability to reschedule appliances requires modifications of the

event queue. The general approach is to predict the appliance usage and either use

instantaneous or predicted green energy data to determine the best schedule for

flexible appliances. Based on precedent from previous work [87] [60] [52], in this

Figure 3.9: Continuous and discrete Bayesian networks for appliance prediction.

example we choose to perform appliance prediction using a learning model. With

51

a few input variables, techniques such as Support Vector Machines (SVM) or Arti-

ficial Neural Networks (ANN) are error-prone, while Bayesian networks and their

derivative Hidden Markov Models are more appropriate. We use the more versatile

Bayesian network, as in [52], where the random variables can easily be adapted to

match the training set. Based on input data from the MIT REDD database [60],

we develop the Bayesian networks shown in Figure 3.9 for each home appliance.

Bayesian network probability variables can be obtained by counting. Equation 3.6

represents all the instances that a random variable matched the expected outcome

over all training samples. The scheduler utilizes the data provided by the predic-

tor to schedule appliances in an energy-efficient manner. The procedure of the

algorithm is provided in Table 3.5.

p(Xi = xj) = T−1 ∗ count(x(t) = xj) for all t = 1...T (3.6)

Table 3.5: Smart appliance scheduling algorithm

power[] = predicted renewable schedule[]

for each inflex appl[] ia s.t. (ia.prediction >threshold):
for each timeslot t:

power[t] -= ia.power[t]

Sort flexible intervals[] by max power consumed

for each flexible slot fs s.t. (fi.prediction >threshold):
flexible interval.scheduledInterval =,argmax(power[])

Recalculate power[]

Return flexible intervals[]

The following summarizes the operation of the algorithm:

1. The expected available energy at each timeslot, power[], is determined by the

predicted green energy availability, predicted renewable schedule[].

2. At this point, the energy consumption of all non-reschedulable appliances,

inflex app[], is deducted from the potential energy available, in order to de-

termine how much energy is actually free for use.

52

3. Based on the results in step 2, we can now schedule all reschedulable ap-

pliances, represented by the array flexible intervals[]. It is important to sort

them by the highest maximum energy consumption first, to match the largest

consumers to the highest green energy slots.

4. Iteratively, the algorithm schedules each successive appliance and recalculates

the new free energy for each timeslot.

5. The ultimate result is the scheduled slots for each reschedulable appliance

in the variable flexible intervals[]. This is then provided to the scheduler for

execution.

In general, the algorithm determines the energy available at each interval

based on the predicted solar energy. Depending on the prediction horizon, dif-

ferent predictors can be used. The predicted energy is reduced by the predicted

schedule of appliances which do not have flexible deadlines, resulting in the ex-

pected unused solar energy at each interval. The scheduler then allocates each

flexible-deadline appliance based on the highest green energy available in the 24-

hour period. The scheduler iterates this process until all flexible appliances are

allocated, and provides this schedule to the simulator.

3.3 Case Studies

HomeSim provides a versatile, configurable residential energy simulation

platform capable of quantifying the impact of current and future technology im-

provements. In the following section, we validate its simulation accuracy against

real traces, then we test our simulator using prevalent and proposed residential

energy management scenarios and technologies:

1. Test and quantify the theoretical benefits of lithium-iron phosphate batteries

(e.g. 5x cycle life) compared to the more traditional lead-acid batteries

2. Smart appliances rescheduled for better energy efficiency [33]

3. Replacing centralized batteries with distributed, appliance-specific batteries

53

4. Cost savings using each of the above technologies

5. Price-aware scheduling using time-of-use retail prices.

.

3.3.1 Input Data

All of our case studies use measured data from MIT’s REDD project [60]

for residential energy consumption. The dataset contains low-frequency (1Hz)

readings of power consumption from the major appliances in 6 houses over two

weeks. We use several datasets, representative of a typical home, with data for

major appliances: stove, microwave, washer/dryer, refrigerator, dishwasher, and

HVAC; and other, more minor energy loads: kitchen outlets, lighting, electronics,

etc. These readings are composed into a schedule for each load, and are also used

for appliance prediction.

Table 3.6: Experimental battery specifications

Specification LFP battery LA battery
Capacity (kWh) 18.6 18.6
Nominal voltage (V) 12 12
Charge/discharge cutoff (V) 14/10 14/10
Depth of Discharge limit 0.6 0.6
Lower/upper current limits (A) 300/400 150/250
Peukert ratio 1.05 1.15

Our renewable energy data is obtained from the UCSD Microgrid photo-

voltaics at 15-minute intervals, and normalized to match 35% of the residence’s

average consumption for a more appropriate rooftop solar capacity [4]. We incorpo-

rate lead-acid (LA) and lithium-iron phosphate (LFP) batteries into our analysis.

Battery characteristics are described in Table 3.6. Battery pricing is obtained from

[1] [15]. For cost models, utility pricing is obtained similarly to our data center

approach in the previous chapter: wholesale energy prices from the California ISO,

normalized to match retail SDGE pricing [93]. The pricing averages used in our

experiments are shown in Table 3.10.

54

Figure 3.10: Wholesale time-of-use energy costs from CalISO scaled to residential
retail levels.

3.3.2 Smart Appliances

The smart appliance scheduling algorithm requires a set of appliances that

can be rescheduled and predicted green energy in order to correctly estimate when

appliances should run. We use the washer, dryer and dishwasher as smart ap-

pliances with flexible schedules, with the flexibility parameters in Table 3.7. The

flexibility range is defined statically for each of the flexible appliances using thresh-

old categories specified in [56]. Appliance execution is determined by the Bayesian

predictor specified in Figure 3.9. We set a threshold for the confidence level at

which appliance prediction is considered valid, so that the predicted appliance can

be scheduled. We derive this value empirically, varying the threshold over our

training data in intervals of 0.1, and selected the minimum error (0.7, with mean

error of 0.31).

Table 3.7: Flexible appliance scheduling

Appliance Flexible Schedule [56]
Washer Up to 12 hr before predicted deadline
Dryer Up to 12 hr before deadline, within 2 hr of washer
Dishwasher Within 6 hr after predicted deadline

55

3.3.3 Renewable Energy Prediction

Smart appliance scheduling can also leverage predicted green energy, which,

for our experimental setup, is solar. Referencing a quantitative comparison of sev-

eral time-series prediction algorithms from the previous chapter, we take advantage

of the reasonable accuracy (<10% error) and low overhead of the Weather Condi-

tioned Moving Average (WCMA) prediction algorithm, which predicts 24 hours in

advance. We empirically determine the weighting factor α with lowest prediction

error at α = 0.45 for the UCSD photovoltaic dataset. This predictor is used to

estimate solar energy availability for the 18h window we used for appliances listed

in Table 3.7.

3.3.4 Simulation Engine Validation

We validate HomeSim’s simulated energy output against the actual mea-

sured REDD energy values and appliance instances. We also validate the battery

model above against real battery traces [24]. Our metric is the mean absolute

error (MAE) of each individual model, as well as the MAE of the overall simula-

tion. The results provided in Table 3.3 show that our simulator very accurately

estimates the appliance power consumption at the appropriate granularity, though

the error increases to 10% when simulated with input models that are discretized

to 1 min. This is not unexpected, as at such granularity simulation of very short-

duration appliances loses accuracy. The higher error in HomeSim compared to

the total energy provided by the grid is caused by the non-ideality of transmission

and conversion. While HomeSim models these losses (see Conversion Factor in

Table 3.1), their nonlinearity inevitably introduces some noise in total simulation

accuracy.

Table 3.8: Model Validation Error

Model Mean Absolute Error (%)
Battery State of Health (SoH) 8
Avg. appliance power per interval 0.2
HomeSim total energy consumption 7

56

3.3.5 Case 1: Battery Technologies

Related research discusses the use of batteries and the advantages they

provide, whether to improve the efficiency of renewable sources [33] or to reduce

the energy costs via TOU pricing. These works assume lead-acid (LA) batteries,

the most popular option. However, recent work motivates the use of lithium-iron-

phosphate (LFP) batteries over LA for residences, citing 2.7x increase in energy

density and 5x improvement in cycle life [15]. Neither work can compare or quantify

the difference between the two scenarios. The simulator in [33] does not take into

account a sophisticated battery model, opting to use a linear model instead, while

work presented in [73] requires physical measurements to test the results, severely

limiting its applicability. In contrast, HomeSim can easily model and test both

types of batteries and quantify the differences.

We simulated and compared a lead-acid (LA) battery with an equal-volume

lithium iron-phosphate (LFP) battery. We show the differences in the various

power characteristics in Table 3.9, where Green Energy Efficiency (GEE) refers

to the fraction of green energy used for useful work (running loads or charging

batteries) compared to the total available renewable energy in the system. By

taking into account the state of health, we can estimate the lifetime of each battery

in the given scenario.

The results do not match the theoretical 5x improvement in battery life due

to the complexity of interaction between the batteries, the solar source, and the

different loads. While we see both a reduction in total grid energy and improvement

in green energy efficiency, the latter is due to additional energy spent charging the

larger LFP battery. Due to the larger capacity and slower overall recharge time,

the LFP battery spends a majority of time in low SoC, accrues a higher number of

total charge/discharge cycles, and reduces the LFP lifetime from a theoretical 5x

to under 3x. So, while there is an improvement with the LFP battery, HomeSim

demonstrates that it is tempered by the particular configuration of the system.

57

Table 3.9: Battery technology results

Model LA Battery LFP Battery
Total Grid Energy (kWh) 78.5 63.8
Green Energy Efficiency (%) 20.4 23.1
Average SoC 0.47 0.49
Estimated Lifetime (yrs) 2.3 6.08

3.3.6 Case 2: Reschedulable Appliances

With HomeSim, we can explore the possibility of rescheduling appliances

with flexible deadlines. We used the flexibility ranges per appliance, outlined in

[33] [56] to obtain hours-of-operation ranges for each appliance, as listed in Table

3.7.

Table 3.10: Prediction model validation

Prediction Mean Absolute Error (%)
Solar Energy Prediction 9
Appliance Prediction 31
Appliance Prediction (+/- 2 timeslots) 14

Table 3.10 summarizes the accuracy of the predictors that we use in the

Reschedulable Appliances case. The error for appliance prediction compared to

the actual appliance usage traces from REDD is due to the discretization of a

more continuous sample. These errors are aggregated when energy consumption is

calculated. The appliance prediction incurs 31% mean error. However, as the last

row demonstrates, appliance prediction is significantly improved when verifying

appliance prediction within +/- 2 timeslots. In the reduced granularity of the

predictor, appliances that execute across a timeslot boundary may be predicted to

execute in either slot. Qualitatively, however, predicting an interval early or late

does not make a significant impact on the efficacy of rescheduling, as solar energy

values are comparable for adjacent intervals.

The results in Table 3.11 demonstrate that rescheduling appliances has a

positive impact on the total energy drawn from the grid and green energy effi-

ciency (GEE), with a reduction in total grid energy by nearly 25%. Green energy

efficiency was improved, as seen in Figure 3.11 on the right, where a rescheduled

58

Table 3.11: Reschedulable appliance results

Model LA Battery LFP Battery
Total Grid Energy (kWh) 83.0 61.6
Green Energy Efficiency (%) 41.5 47.7
Green Energy Sold to Grid (kWh) 53.7 48.0
Grid Energy Cost ($) 21.1 15.65

Figure 3.11: Low GEE intervals (left) vs. high GEE intervals (right).

dishwasher at 9:00 AM consumes all available green energy. However, this effi-

ciency improvement is limited by the fact that battery usage was slightly reduced,

resulting in more intervals where there was surplus green energy and all batteries

were fully charged. This case is displayed in Figure 3.11 on the left, where only

a constant 600W is needed to run an appliance, with the rest of the green energy

unused. In a residence that can backfeed energy, the unused solar output can be

sold back to the grid, as shown in Table 3.11. The cost of grid consumption is also

presented, with 26% in cost savings when using LFP batteries.

3.3.7 Case 3: Distributed Batteries

The distributed battery example stems from recent industrial research and

development into associating batteries with appliances [75]. An appliance first

uses its own battery before reverting to other sources. In the case of a centralized

battery, the battery experiences a sustained drain on its energy from the combina-

tion of loads, forcing a more frequent fallback to grid energy. Load-proportioned

distributed batteries, however, are sized to meet the capacity of the associated

59

appliance, and can better sustain the appliance without reverting to grid energy.

In testing distributed batteries, we apportioned distributed batteries to the large

appliances based on a ratio of their power consumption, normalized against the

total capacity (18.6kWh) of the single centralized battery.

Figure 3.12: Centralized (left) vs. distributed (right) battery power use.

The results in Table 3.12. show that the total grid energy consumption

drops by a factor of 1.5x, while battery consumption and green energy efficiency

increase. By comparing the traces, as in Figure 3.12, we can see that large ap-

pliances that have a built-in battery are less susceptible to requiring grid energy,

especially at times when the net load is high. The batteries store sufficient amount

of energy for the connected appliances, delivering enough to prevent reliance on

the grid, even when there is not enough instantaneous renewable energy available.

The improvement in green energy efficiency comes from the fact that distributed

batteries can be charged in an ad-hoc manner, providing a level of parallelism to

charging that was not previously possible. Finally, by calculating the operational

costs of each method, we show 36% improvement when leveraging distributed bat-

teries over centralized.

Table 3.12: Centralized (fixed) vs. distributed battery results

Model Central Battery Distrib. Batteries
Total Grid Energy (kWh) 130.6 83.0
Green Energy Efficiency (%) 23.1 41.5
Total Battery Energy (kWh) 25.3 35.6
Grid Energy Cost ($) 33.2 21.1

60

3.3.8 Case 4: Cost Savings

By integrating cost calculations to the scheduler, HomeSim can evaluate

the cost-benefit of centralized batteries, distributed batteries, and rescheduling

appliances, as well as provide a comparison among the three for the same test case.

Using the operational costs outlined in [93], we execute HomeSim for the same

residence configuration, alternately using the three cases above for comparison.

For rescheduled appliances, we extended the distributed battery case to determine

additional benefit over the most financially viable case.

Table 3.13: Operational Costs of Centralized, Distributed, and Rescheduled Ap-
pliance cases

Base
Case

Central
Battery

Distributed
Batteries

Rescheduled
Appliances

Avg. Monthly
Cost ($)

89.2 73.14 69.81 62.96

Table 3.13 highlights the operational costs of each of the cases compared

against the base case of no energy management. Incorporating any energy stor-

age provides a cost reduction of 18%, which is further improved with distributed

batteries. In this configuration, it is important to note that the savings with

distributed batteries is only 5%, much less than the 36% improvement in Table

3.12, demonstrating that the technologies have variable impacts in different homes.

Rescheduling further improves energy savings, with a net monthly energy reduction

by 30%.

Similarly, we can incorporate capital costs into HomeSim, and extend the

scheduler to calculate the recoupment of the cost of batteries and local solar gen-

eration. Using the capital cost numbers from battery manufacturers [15]and retail

energy sources [93], HomeSim calculates the net energy savings weighed against

the capital costs. Because our input data only lasts 2 weeks, we cycle the data

until the savings exceed the costs. We compare the central and distributed battery

cases as well as the case of distributed+rescheduled appliances. Finally, we also

investigate the mixed case, including an additional 18.6 kWh central battery to the

appliance-specific distributed batteries and rescheduling. This final case provides

61

insight into how savings scale with battery size.

Table 3.14: Recoupment Time (in years) for Centralized, Distributed, Resched-
uled Appliance, and Mixed cases

Central
Battery

Distributed
Batteries

Rescheduled
Appliances

Mixed

Recoupment
Time (yrs)

22.6 20.2 16.6 11.9

Table 3.14 compares these results, demonstrating very large recoupment

time, over 22 years, in the centralized battery case. This scenario is the current

state of the art, but is shown to have an unreasonably low cost-benefit. The dis-

tributed batteries case, while an improvement, has a similar duration. Rescheduled

appliances, however, reduce the net-even time by 20%, and the introduction of an

additional reduces the recoupment time to almost 50%. Since solar costs represent

a large majority of the capital, increasing total battery capacity demonstrates good

scaling in the time to net-zero. It is important to note that these experiments do

not consider selling energy back to the grid, which is a further increase in savings,

and also that after the recoupment time, all energy savings result in a net profit.

3.3.9 Case 5: Cost-aware Scheduling

Time-of-use (TOU) pricing is prevalent in European energy provision, and

the concept is growing in relevance in the United States [73]. Integrating pricing

information into the scheduler requires extending the algorithm in Figure 3.8 to

further sort intervals by the lowest energy cost when grid energy is needed. Our

comparison is between the reschedulable appliances scheduling algorithm in the

previous case study, which had the best performance, to the algorithm with the

inclusion of cost awareness. We compare the cost savings of two cases by main-

taining the same building and battery configurations.

Table 3.15 compares reschedulable appliance scheduling to the inclusion

of cost-aware scheduling. The results indicate that cost-aware scheduling has an

almost negligible impact on grid energy savings, and no impact on green energy

efficiency. Analyzing the output traces demonstrates the reason: the net benefit

62

Table 3.15: Reschedulable Appliance Scheduling vs. Cost-Aware Scheduling

Rescheduled Appliances (RA) RA + Cost
Avg. Weekly Grid
Energy (kWh)

62.96 61.02

Avg. Weekly Green
Energy Efficiency (%)

49.8 49.8

of a small amount of available green energy (which is free) is more favorable than

an interval with lower cost. Therefore, it is more feasible to greedily use green

energy than it would be to rely on a cheaper grid interval. In total, fewer than

10 jobs were rescheduled due to cost savings, resulting in a marginal reduction in

grid energy, and almost no impact on green energy efficiency.

3.4 Extended Case Study: Optimized Residen-

tial Battery Usage

HomeSim enables comparing different complex energy scenarios to identify

benefits. Electrochemical storage such as lead-acid, lithium-ion, and phosphate

batteries allow residences to store locally generated energy for appliance use, as

well as in general for load shifting [82], and peak power shaving [24].

However, batteries have nonlinear charging, discharging, and degradation

properties that increase the difficulty of optimizing their usage. Within HomeSim,

we integrated an open-form battery model. Previous works focus on the application

or usage scheme, neglecting the impact of realistic battery degradation. In this case

study, we develop a more accurate closed-form battery model for optimization and

test it in simulation using HomeSim. We identify more than 2x error in estimated

total savings that prior work claimed due to inaccurate battery modeling, but still

provide a return on the investment of the battery with our new battery model.

3.4.1 Batteries in Residences

Several works have investigated battery integration in residential systems.

The majority focus on integrating batteries as part of other objectives: peak power

63

shaving, voltage regulation, and cost and energy reduction. Ratnam et al. [82]

use a quadratic program to minimize the energy needed from the grid. They

utilize residential photovoltaics with a co-located battery. The storage afforded

by the battery allows the residence to shift the grid energy profile, avoiding peak

pricing. However, they assume an ideal battery model, not taking into account

the nonlinear properties. Similarly, van de ven et al. [90] use a Markov Decision

Process to optimize shifting stored energy to high-demand periods in houses, also

using a linear battery model. Leadbetter et al. [66] use a battery storage system

for peak power shaving, leveraging the model to determine the size of the system.

They limit the battery state of charge (SOC) to between 15%-85% to minimize

decay and extend cycle life, but do not account for the decay itself in the model.

Other works do attempt to account other nonlinear battery properties, in-

cluding decay. Tant et al. [88] perform a multi-objective optimization, investi-

gating the trade-off between voltage reduction and peak power shaving. They

account for both battery degradation and capital cost. Due to the complexity of

their ultimate model, they use a convex approximation. Aksanli et al. [28] gener-

ate a closed-form inequality for optimal battery configuration in residences using

Coulomb counting model to constrain their battery use. Due in part to the com-

plexity of Coulomb counting, however, they need to perform extensive simulation

in order to reach their conclusions rather than a single-step optimization.

While there are several battery models that provide accuracy of battery

characteristics, their complexity precludes use in optimization formulations, and

most of the related work that uses batteries choose the inaccurate, if simpler,

ideal model. Some works attempt to use the accurate models, but have to defer to

approximations or simulation to draw conclusions. We aim to exploit some battery

characteristics (depth of discharge level, charge/discharge rate) and approximate

others (effective capacity) to provide a trade-off in the battery models, providing

a closed-form optimization model that still preserves the important degradation

characteristics of the battery.

64

3.4.2 Problem Formulation

Effective battery use relies on a practical scheme that balances battery

charge and discharge cycles with the goal of leveraging savings into a return on

the capital investment (ROI). This can be accomplished by reducing local energy

consumption [88], smoothing peaks to avoid peak-power scenarios, [24], or time-

shift usage to cheaper consumption periods [82]. All of these cases rely on varying

utility energy prices, allowing storage to exploit high-priced peak power conditions

and low-priced intervals. We can also accomplish this by buying, storing, and sell-

ing energy based on knowledge of changing utility energy prices. This approach

enables us determine the true operational cost and lifetime of the battery before-

hand and determine parameters for usage. Furthermore, in contrast to the battery

usage methods shown in the related work, we aim to maintain an accurate battery

state, including the degradation in capacity over time and the expected lifetime in

our formulation.

Battery Cost and Return on Investment (ROI)

The ultimate goal of using the battery is to provide financial benefit. An-

other possibility for savings or recouping the investment is to treat varying prices

as part of an energy market, selling during the high-priced periods and buying

during the low-priced periods.

The return on investment (ROI) of the battery is the point at when the

capital cost of the battery is recouped through the savings of selling stored battery

energy. After this point, the battery has paid for itself, and any further savings

are purely profit. While several works allow the battery to be charged/discharged

at will within the constraints of an algorithm, the fact is that a battery’s life-

time is limited: the manufacturer’s cycle limit, in conjunction with the battery’s

charge/discharge cycles and degradation per cycle determines the lifetime of the

battery, and ultimately, restricts any battery optimization.

In our approach, we base the ROI on the cycle life, as a battery cannot

be used beyond this point. Additionally, as we aim for optimization over multiple

years, we limit the amount of cycles consumed per year, to allow the battery

65

to last for the duration of a target lifetime. As a result, unlike previous work, we

predetermine an ROI target time (e.g. 5 years) and optimize the use of the battery

over that lifetime. In some very short target times (e.g. 1 year), it is impossible

to buy/sell enough energy in order to recoup the investment, but iterating over

different lifetimes enables us to optimize battery use to an extent where the user

profits.

Time-of-Use Energy Market

The utility energy market is shifting from uniform pricing to more flexi-

ble strategies such as tiered pricing, which is already used by utilities to curtail

overconsumption [24]. As the grid trends towards a fully distributed generation

system, another interesting scenario is time-of-use pricing (TOU). This implemen-

tation is a retail parallel of the current wholesale pricing that is offered to utilities

by independent system operators [10]. TOU pricing is a reflection of grid sup-

ply and demand, and varies regionally and seasonally. Utility operators leverage

varying pricing in order to maintain grid stability, incentivizing consumers to in-

crease/decrease energy usage to balance voltage deviation. Figure 3.13 shows the

annual price distribution for Houston, San Diego, and Boston, demonstrating a

regional variation in prices.

Retail energy load analysis demonstrates annual usage patterns [36], which

are reflected by electricity unit price changes. These changes in usage create

low/high points in the distribution and provide charge/discharge intervals to ex-

ploit for savings.

Real Battery Simplification

Several models for batteries have been proposed: electrochemical, electrical-

circuit, analytical, and stochastic [58]; all of which allow complex use of batteries

by varying charge/discharge rates, DoD, and adjusting the cycle life, effective

capacity, and SoH. Complex, granular use of the battery allows for fine control of

all the free variables, but the prescribed usage conditions from the related work can

be accomplished by fixing the charge/discharge voltage and based on manufacturer

66

Figure 3.13: Cumulative density distribution of annual regional electricity price
($/kWh) for Houston, Boston, and San Diego.

cycle-life curves, and setting the maximum DoD, avoiding the trade-offs to battery

lifetime. This allows the cycle life, the charge and discharge rates, and change

in SoC to be fixed and predictable. This simplified battery scheme leaves only

the effective capacity of the battery as the nonlinear change over its lifetime. As

seen in Figure 3.6, the degradation in capacity under manufacturer-recommended

conditions (e.g. 4.2V, 4.25V) offers a large linear region with smaller nonlinear

outliers. As a result, we choose to approximate the change in effective capacity

with a linear simplification. In the next section, we formulate a battery usage

optimization problem using these conditions.

3.4.3 Optimization Problem

The overarching goal of the problem is to optimize the benefit of battery use

over the specified duration (in our case, one year) by discharging battery capacity

when provided with TOU pricing:

max
∑
t

P (t) ∗ d(t)− P (t) ∗ c(t) (3.7)

67

where P (t) is the electricity unit price at time t, d(t) is the energy discharged

by the battery, and c(t) is the charging energy. We defined the return on investment

(ROI) as a predefined time limit Y : the target number of years for the battery

cost to be recouped. We allow the battery’s SoH to reach the end of life (SoHdead)

at the end of Y years.

Optimizing the profitability of battery usage over this time will determine

if the initial cost can be recouped and if any profit can be gained in addition to

the ROI. We also note that electricity pricing has an annual trend. Consequently,

we divide the battery’s total lifetime capacity D into the expected ROI time Y , as

it maximizes the expectation of reaching recoupment. This limits our maximum

annual discharge energy to DY = Dmax. This restriction defines the inequality

equation for the ILP problem:

∑
t

d(t) ≤ Dmax (3.8)

The ILP’s equality equation updates the battery capacity of the next iteration

based on the charge and discharge events of the current iteration: is that the

battery capacity at the next interval is dependent on the capacity on the current

interval and the charge/discharge of the current interval:

B(t+ 1)−B(t) + d(t)− c(t) = 0 (3.9)

where B(t + 1) is the remaining battery capacity for the next interval, and B(t),

d(t), and c(t) respectively represent the battery state, discharge, and charge energy

of the current interval.

The remaining constraints limit the battery to the manufacturer-recommended

specifications in order to minimize the impact on cycle life; namely, the charge and

discharge limits (cnom and dnom, respectively), and the minimum and maximum

charge on the battery (Cmin and Cmax). The latter limits correspond to the DoD

68

limits for the battery as specified by the manufacturer:

Cmin ≤ B(t) ≤ Cmax

0 ≤ d(t) ≤ dnom

0 ≤ c(t) ≤ cnom

(3.10)

While a battery’s properties are strictly linear, the above equality equations

and constraints hold on their own: the battery is limited to its depth of discharge,

and the charge and discharge rates are limited to levels that do not adversely affect

cycle time. However, even with the above constraints, the battery’s effective capac-

ity still decays over time. Specifically, Cmax does not remain constant throughout

the lifetime of the battery. Instead, we now consider it a variable that changes

over time:Cmax(t), which corresponds to the effective capacity degradation. We

modify the first inequality in Equation 3.10, changing Cmax to Cmax(t). The addi-

tional equality equation updates the current effective capacity changes with every

discharge event:

Cmax(t+ 1) = Cmax(t)− [∆SoHrate] ∗ d(t) (3.11)

where ∆SoHrate represents the rate in percentage reduction in the state of health

per discharge energy. Because we use a linear approximation here, ∆SoHrate is de-

termined by the total change in SoH over the total number of cycles in the lifetime

of the battery. Multiplying it with d(t) allows the reduction to be proportional to

the DoD in a particular cycle.

3.4.4 Experimental Setup

The goals are to determine the accuracy of the optimization outlined in the

previous section, and to show how we can leverage our scheme to demonstrate an

upper bound for reasonable ROI under realistic conditions. The following subsec-

tions outline the data and experiment setup for the battery, utility pricing, and

verification of the accuracy of the optimization.

69

Battery

The properties of the battery are important for populating the constraints

and variables in the ILP formulation. As such, we chose a real battery intended for

grid-connected operation. The most typical chemical storage for these applications

is lead-acid (LA), but the newer lithium-iron phosphate (LFP) batteries provide

better current and voltage properties, and more important for our assumptions, a

more stable degradation profile [24]. We select a battery from Balqon Corporation

[10] that has the specs described in Figure 3.16.

Table 3.16: Balqon Lithium-Iron Phosphate Battery Properties

Property Value
Rated cycle capacity 34kWh
cycles 3000
Capital cost $12,000.00
Voltage range 42-60V
Nominal voltage 48V
Current range 0-1000A
Nominal current 500A
Maximum DoD 0.4
Minimum SoH 0.4

We can calculate the battery’s operational cost using the total usable energy

of the battery over its lifetime and the capital cost:

Operational Cost =
Capital Cost∑#cycles
t−1 Cmax(t)

(3.12)

With the specifications in 3.16, the operational cost of the Balqon battery

is $0.24/kWh. This precludes consistent usage for local loads such as appliances

because, as the distribution in 3.13 shows, at times it is cheaper to just use grid

electricity rather than stored charge. Additionally, by taking appliances out of the

equation, the focus remains on recouping the capital cost of the battery indepen-

dently of usage patterns.

The other dependent factor for the ILP formulation is the target ROI life-

time, as it is used to calculate Dmax. This in turn determines how aggressively the

battery is cycled each year, since we expect to reach the lifetime of the battery

70

Figure 3.14: Balqon LFP Battery for Grid-Connected Residential Applications
[10].

at the end of the target time. This is not a part of the formulation itself, so we

instead iteratively provide longer deadlines to the optimization problem, from 1-10

years, by which point factors outside of charge cycling (i.e. chemical breakdown)

accelerate the degradation of the battery.

Energy Costs

The appropriate use of TOU pricing is critical for correct battery scheduling.

As previously mentioned, wholesale pricing shows a high-level correlation on a

yearly basis, but within a year, there is significant variation in high and low prices.

Additionally, while wholesale pricing is a true TOU system, retail pricing tends

to be flat or tiered, with only a few utilities providing a true TOU scheme. To

account for this, we scaled available wholesale pricing for different regions to local

71

retail prices, providing an emulation of retail TOU pricing.

We investigated three separate locations with different price profiles, re-

trieved from the 2013 record of local wholesale pricing independent system oper-

ators (ISOs): Boston [13], Houston [6], and San Diego [3]. Leveraging the yearly

pattern, we extrapolate over the target lifetime by repeating the scaled annual

costs each year. A summary of characteristics is shown in Table 3.17.

Table 3.17: Scaled retail pricing characteristics for different locations

Location
Avg. retail energy
price ($/kWh)

Standard Deviation
($/kWh)

Houston 0.10 0.06
Boston 0.20 0.18
San Diego 0.13 0.03

Houston has the lowest retail price, in part due to very high energy avail-

ability. High summer temperatures contribute to moderate deviation in the costs

throughout the year. In contrast, Boston has very high energy demand and more

tightly constrained energy availability, leading to both the highest average price

and deviation. San Diego strikes a middle ground, with very consistent usage and

pricing: it is the median in average price, but the low deviation in consumption

translates to the lowest deviation in price.

We optimize the battery over a full year’s worth of pricing data, replicated

for every subsequent year of the target time. While such a long-term optimization

is somewhat infeasible, as knowing such long-term pricing is unrealistic, it does

provide an upper bound for the optimization, and invites further analysis for dif-

ferent optimization schemes, such as weighting cycles based on weekly or monthly

trends and predictions.

3.4.5 Results

Optimization Accuracy

The first set of experiments establishes the accuracy of the battery opti-

mization proposed in this chapter. The goal of the formulation was to reduce the

inaccuracy of an ideal battery model (represented by using only Equations 1-6).

72

We solve the LP problem, then compare the final SoH, calculated as the ratio

of effective capacity to the rated capacity, against a simulation of the resulting

charge/discharge using HomeSim [92]. Table 3.18 outlines the comparison of the

error in SoH for all three locations with a 5-year ROI deadline.

Table 3.18: Mean absolute error for the decaying battery problem formulation
compared against simulation

Location
SoH Mean Absolute Error
(MAE) (%)

Houston 4.5
Boston 5.2
San Diego 3.8

In all three cases, the LP formulation maintains within 6% error of the

simulation, demonstrating high accuracy. By fixing both the discharge rate and

the DoD and accounting for the reduction in effective capacity, the formulation

maintains a good model of a battery.

Linear vs. Capacity-Degrading Battery Model

We next compare the degrading battery formulation to the linear battery

model used in the related work. This is the formulation represented by the näıve

optimization in Section 4.2.4 compared with the incorporation of degradation in-

troduced by Equation 3.11. The SoH is not an appropriate metric for comparison,

since the linear model does not degrade. However, the overall calculation of the

ROI between the two models represents an appropriate metric for comparison. For

example, a subset of the ROI results for San Diego are shown in Table 3.19. As

the ROI target becomes longer, the battery usage becomes less aggressive, and

there are more opportunities for net savings (positive) as opposed to remaining in

a deficit (negative).

The linear battery deviates from the decaying model from 3% up to 106%

(for ROI of 5 years in Table 3.19), demonstrating over 2x error when disregarding

the effective capacity decay.

73

Table 3.19: A subset of the annual savings over different ROI results for San
Diego, comparing the linear vs. the decaying battery model

Target ROI (yrs) 3 4 5 6 7
Linear $-1056.79 $-126.11 $393.35 $713.20 $925.32
Decaying $-1321.56 $-352.36 $190.66 $505.90 $745.67
Linear model error (%) 20.1 64.2 106.8 41.2 24.2

Regional ROIs

Figure 3.15: Annual battery-based savings for different ROI targets for San Diego
(recouped in 6 years), Houston (never recouped), and Boston (recouped in 5 years).

Figure 3.15 illustrates the annual savings achieved by different ROI targets

for the different cities in our experiments. The savings are calculated as the dif-

ference in battery-based profit and the amortized cost of the battery per year over

the lifetime of the battery. Numbers below 0 indicate that the battery costs could

not be recouped each year, and ultimately, over the battery life.

Boston demonstrates a return on investment of the amortized cost of the

battery in 5 years. From that point onward, the consumer nets a profit, of over

$1,000/year with a 10-year ROI. The high average energy cost combined with the

high deviation (see Figure 3.13) allowed many intervals where buying low and

selling high could be exploited. As a result, it provided the quickest ROI time

among the three test cases.

Houston presents an unsuccessful scenario for the optimization problem.

74

It combined the lowest energy pricing with low deviation. Even optimizing over a

year, and extending the ROI target, and consequently, the lifetime, of the battery

to 10 years could not provide enough savings to warrant the use of the battery,

with a loss of $109/year. The flat, cheap utility costs were simply too low, and the

overwhelming capital cost of the battery could not be overcome. The next section

extends the case study to extrapolate to future decreases in battery costs.

San Diego provides a middle ground between the two other cities. While

it too had low utility energy costs and the lowest deviation, the increase in the

average cost over Houston provided enough opportunities when given longer ROI

timelines. Consequently, the consumer recoups the cost of the battery in just

under 6 years. Between 6-10 years, the battery provides a profit of $89-$636/year.

Additionally, while the overall standard deviation was low, the few outlier peaks

and valleys were significantly higher/lower than Houston, which, when combined

with a longer ROI horizon, provided more lucrative selling points.

Decreasing Energy Costs

The results of the Houston case study in the previous subsection illustrate

that the capital cost of batteries may remain prohibitively high for energy trading

in some retail markets. However, battery technology improvements are driving

these prices lower. We extrapolated this trend with the Balqon battery by reducing

its operational expenses from 0.25 $/kWh over the battery’s lifetime, the current

state of the art, to 0.05 $/lifetime-kWh, in $0.05 increments. Figure 3.16 maps

the resulting change in the net cost for Houston over both different lifetimes and

the reducing cost of the battery.

Already, with the reduction in operational cost from 0.25 $/kWh to 0.20

$/kWh, we see the ROI being fulfilled in 8 years. As the price drops further, the

ROI drops to as few as 4 years for 0.10 $/kWh. Similarly, ROI times for San Diego

and Boston were reduced to as little as 1 year. This demonstrates the growing

feasibility and profitability of energy trading in the near future.

75

Figure 3.16: Annual cost of the battery under Houston TOU pricing when battery
costs are reduced.

3.5 Conclusion

In this chapter, we introduce HomeSim, a powerful and extensible simulator

for the increasingly relevant field of residential energy management. HomeSim pro-

vides a configurable simulation environment that is extremely versatile, to quantify

and compare present and future improvements in residential energy consumption.

We then investigate emerging technologies and procedures in residential energy

management by performing a series of case studies targeting proposed improve-

ments to residential energy management: the current state-of-the-art centralized

battery, as well as distributed batteries, reschedulable smart appliances, and cost-

aware scheduling using real data from instrumented houses. We further demon-

strate the cost savings of each case by integrating capital and operational costs, as

well as determine the time to recoupment for different technologies.

Finally, we illustrate an extensive end-to-end case study using HomeSim,

first identifying inaccuracies in simplified battery models and developing a more

accurate low-overhead battery model for linear battery scheduling optimization.

We use HomeSim to simulate the battery and verify that our model is accurate,

76

with <5% error of simulation. We then formulate a linear programming solution

using the new model and execute it in practical scenarios with real data, demon-

strating an upper bound for the return on investment for the battery in as few as

5 years.

Chapter 3 contains material from Jagannathan Venkatesh, Bariş Akşanli,

and Tajana Šimunić Rosing, ”Residential Energy Simulation and Scheduling: A

Case Study Approach”, which appeared in Proceedings of the International Sym-

posium on Computers and Communications (ISCC), 2013 [93]. The dissertation

author was the primary investigator and author of this paper.

Chapter 3 contains material from Jagannathan Venkatesh, Bariş Akşanli,

Jean-Claude Junqua, Philippe Morin, and Tajana Šimunić Rosing, ”HomeSim:

Comprehensive, Smart, Residential Electrical Energy Simulation and Scheduling”,

which appeared in Proceedings of the International Green Computing Conference

(IGCC), 2013 [92]. The dissertation author was the primary investigator and

author of this paper.

Chapter 3 contains material from Jagannathan Venkatesh, Shengbo Chen,

Peerapol Tinnakornsrisuphap, and Tajana Šimunić Rosing, ”Lifetime-dependent

Battery Usage Optimization for Grid-Connected Residential Systems”, which ap-

peared in Proceedings of 2015 Workshop on Modeling and Simulation of Cyber-

Physical Energy Systems (MSCPES) 2015 [95]. The dissertation author was the

primary investigator and author of this paper.

Chapter 4

Improving Residential Energy

Modeling with User Context

In the previous chapters, we investigated residential energy consumption.

We have so far dealt with static models and improvements - using the additionally

available data as ground truth. However, this additional context is 1) not always

readily available, and 2) strongly tied to the behavior and preferences of users

[52] [26]. The advent of the Internet of Things (IoT)—the collection of sensing

and actuation backed by the existing and growing Internet infrastructure [76]—

can provide the context needed for user-driven residential energy automation. We

now aim to use this additional user context to determine indiividual appliance and

house energy flexibility. Our approach to modeling, training, and generating this

context in an efficient and scalable way is highlighted below.

Pre-IoT work in ubiquitous sensing still envisioned a level of compatibility

and control over the sensors in the systems [46] and applications that used a man-

ageable amount of raw sensor data. The number of available sensing and actuation

devices has grown rapidly in the last few years [51], promising a truly pervasive

sensing and actuating environment. In addition, ubiquitous connectivity and cloud

storage have largely mitigated the primary research issues in the pervasive sensing

fields. Reliability of communication and storage allows us to focus on the appli-

cation layer: IoT applications operate in a world of changing inputs and available

compute nodes as sensors and devices enter and exit an application’s domain. The

77

78

Figure 4.1: The residential smart grid is driven by user activities and preferences.

raw data in these applications will go through several levels of abstraction, combi-

nation, or distillation to produce a high-level description of the environment (and

its users) with discrete, semantic states called context. Discrete, high-level context

facilitates intuitive reasoning at the cost of raw data precision, and can be reused

across applications.

These context-aware Internet of Things applications are ideally suited for

determining user behavior for the residential smart grid: their main goal is to lever-

age the available data to drive automated actuation, such as in smart environments,

distributed microgrids, or user-centric automation. They operate on dynamically

changing ontologically-defined data called context data whose type, range, and

sources are specified in an interface. However, current context-aware applications

are still end-to-end implementations tightly coupled to the initial infrastructure

and platforms, where each application maintains its own data and user interac-

tions. As the number and heterogeneity of sensing devices and available compute

nodes for each application changes, these implementations do not promote adap-

tation without complete redesign. Smaller, simpler functional units that provide

intermediate steps towards an overall application can alleviate scalability issues.

Additionally, the state of the art [54] [69] places the burden of processing in black-

box applications. This is particularly inefficient when multiple applications need

79

to process the same data using similar computation (e.g. both workplace automa-

tion and home security can process a user’s location and occupancy from various

data sources in the same way). Furthermore, reliance on application-specific code

squanders the potential for designing and reusing general-purpose machine learning

for multiple context-aware applications.

In this chapter, we identify a novel approach to context-aware IoT applica-

tions and design a general-purpose functional unit (context engine), which drives

data processing for a given output context variable. We identify the theoreti-

cal advantages of modular applications for scalability and reduction of compute

redundancy, and exploit the specification of data through ontologies and the single-

output design of context engine to drive general-purpose machine learning for IoT

actuation and automation.

The context engines are then composed to form equivalent applications to

their monolithic counterparts, separating the generation of each output into se-

quential context engines, each translating heterogeneous input data into high-level

usable context. By sharing intermediate context across applications instead of re-

dundantly using input data, the size of an application’s input set is limited. Simpler

and more numerous functional units means applications can be distributed among

compute nodes, and applications are more distributable and parallelizable. Lower

complexity in each functional unit promotes scalability, especially in the embed-

ded and low-complexity computational units available in the IoT. Incorporating

general-purpose machine learning simplifies application development as well: ap-

plication creation is reduced to defining the input and output context variables for

each context engine, and the infrastructure bears the responsibility for managing

and processing the data. (e.g. automatically transforming heterogeneous environ-

mental monitoring sources into location-specific air quality). The improvement in

scalability may come at the cost of accuracy, as fewer inputs are used per context

engine stage to generate intermediate output, but also provides the possibility to

train the system on the intermediate data. We automate context-aware comput-

ing by leveraging general implementations of statistical machine learning that can

easily be reused for other applications. While our approach may not match the

80

efficiency of a customized black-box application, it provides an advantage in the dy-

namic IoT space for general implementations of context applications. Specifically,

we address:

1. Computational complexity improvement

2. Adaptability through minimization of compute redundancy

3. A processing model for context-aware applications

4. Scalability

We then apply the context engine towards two context-aware case stud-

ies. We first identify user behavior from wearable sensor data, as well as an

environment-focused context application. These are characteristic context-aware

IoT applications. Assuming the availability of user context through connected de-

vices or applications such as the first case study, we envision the residential smart

grid as a distributed, scalable context-aware application. We use heterogeneous

data from different residences and user activities and scale the system up with

more individual compute nodes and grid elements, demonstrating the potential for

complexity reduction and scalability. We then demonstrate the impact of the ad-

dition of user context, with over 14% improvement in energy flexibility prediction

accuracy and 12% reduction in annual grid energy cost.

4.1 Related Work

Pervasive sensors gather raw data from a diverse combination of data sources,

including sensors and user-supplied or high-level context processed from mobile and

computing devices. Analog sensor data has to be at least digitized and prepro-

cessed before software can use it as meaningful input. In the Internet of Things,

most data goes through several levels of abstraction, combination, or distillation

to produce a description of the environment (and its users) with discrete, semantic

states. This higher level context is used for visualization (e.g. quantified self [54],

vehicular safety [67]) and actuation (smart spaces [40], ubiquitous computing [67],

81

medicine [83], e-learning [69] and user behavior tracking [11]). In exchange for raw

data precision, discretized context facilitates intuitive reasoning and reuse across

applications. These current context-aware applications are individual deployments

that rarely share infrastructure, code, or data natively. Practically, this end-to-end

development approach results in a disorganized data space, necessitating the use

of ontologies to maintain a unified, regulated data representation.

Ontologies are formal data representations that provide a structure for de-

scribing the vast amount of unregulated, diverse IoT data [86]. The Web Ontology

Language (OWL) is an early Internet ontology: now a standard that provides

description of web relationships with sub-domains of objects (e.g. household ap-

pliances) encapsulated by the domains they live within (houses). Several systems

have been designed using OWL: smart corporate spaces [40], homes [49] and se-

mantic services (OWL-S) [86] [96]. The Context Modeling Language (CML) [74]

identifies objects with their applications via the Object-Role Model, attributing all

context data to a physical or virtual entity (the object) and provides a particular

form of information associated with it (role). Crucially, CML allows for dynami-

cally changing input data by partitioning the input space into context dimensions:

subsets that can be used for application reasoning.

Finally, pervasive sensing and computing in the IoT is facilitated by learn-

ing and reasoning within applications to appropriately transform input data into

output context and actuation. For example, when streaming data from human sub-

jects, sliding windows of the continuous data must be smoothed and preprocessed

before inputting into an analytic or modeling framework. K-means clustering is

a prevalent way to automatically relate low-level data into high-level context [54].

Reinforcement learning (RL) invites users who are already involved in sensing and

actuation to reinforce and guide the system towards better accuracy and intuitive

actuation. Madhu et al. [69] use constraint reasoning to describe a daily plan and

RL to find optimal customized reminders for a cognitively or orthotically impaired

user. Rashidi et al. [81] perform unsupervised learning over low-level sensor event

sequences to extract patterns that represent high-level activities. They focus on

a specific implementation for the smart home over a known set of activities, but

82

we propose a framework and algorithms that can perform a similar level of data

translation and actuation in a domain-independent manner.

4.1.1 Takeaways

From the related work, the goal of the IoT application layer is that it pro-

vides an interface between sensing and actuation in the IoT. A key takeaway is that

applications operate in a dynamic space: mobile sensing devices (e.g. wearables)

and compute units (e.g. mobile phones) enter and leave the domain of a particular

application [32]. Some leverage ontologies to provide platform independent organi-

zation of applications: black boxes that transform input data into output data for a

specific application [49]. Perera et al. [76] reinforce this view, providing a compre-

hensive overview of context-aware applications covering fifty publications over the

last decade. They view applications as multi-input, multi-output (MIMO) com-

putation units composing similar data transformations to obtain output context

information.

We identify three major interrelated challenges with the current view:

1. There is significant processing redundancy: different applications using the

same input may repeat the same computation. For example, user occupancy

data serves both home security and grid automation applications, and may

be independently computed by both. We choose to instead expose the output

of this computation for reuse.

2. The complexity of IoT applications grows rapidly with input and output

spaces. This in turn increases the computational cost of machine learn-

ing (ML) algorithms, whose complexity is dominated by the number of in-

puts. This in turn forces application-specific implementations that cannot be

reused. By reducing the number of inputs per functional unit and enforcing

a single-output approach, our approach facilitates the use of ML.

3. Without effective reuse of data and functionality, the scalability of IoT appli-

cations is severely limited. Large application functional units (see Figure 4.2

(left)) preclude a general approach to distributed computation, modularity,

83

and reduction of complexity. Our approach focuses on modularity, which in

turn creates applications that can be readily distributed or parallelized.

4.2 Context Engine Design

We first design and implement an alternate view of IoT applications: a

hierarchy of multiple-input-single-output (MISO) functional units called context

engines to improve reasoning and scalability while reducing the data redundancy

across applications, and accomplishing the same functionality as the previous

monolithic multi-input multi-output (MIMO) units. In exposing intermediate

data, we reduce the complexity and improve the scalability of other applications

in the larger infrastructure. The improvement in scalability may come at the cost

of accuracy, but we both quantify the additional error and illustrate how it can be

minimized. We exploit the unique opportunity in IoT where reasoning and data

is often replicated between different applications. Modularization generates inter-

mediate context that can be shared among applications (see 4.2.(a). Furthermore,

as the smaller, hierarchical functional units represent a simpler data translation

compared to the overall computation of an application, we can implement a gen-

eral machine learning algorithm to perform data transformation - from the input

context to the output - and reduce application-specific code.

IoT applications consume data about both physical and virtual system en-

tities. This data, from heterogeneous sources including sensors, social media, and

even manually submitted by users is raw and noisy requires processing by appli-

cations to be filtered and distilled into usable information. Additionally, from the

input data, applications need to extract context: high-level abstracted data. In the

IoT, context tends to be human-centric classifications (e.g. location, activity) that

are important to many different applications [76]. Black-box implementations of

applications from raw data to output mask both types of processing output (pre-

processing and common intermediate context) from other applications, which leads

to redundancy in computation. Our proposal of a hierarchy of functional units in

place of monolithic implementations trades off compactness for versatility. A hier-

84

Figure 4.2: (a) The current state-of-the-art: monolithic end-to-end application
implementation. (b) Our implementation: Applications publish intermediate con-
text for reuse. Functional units (context engines) are multi-in-single-output, and
each context engine performs a general statistical learning. For the above figures:
red represents developer effort; green represents generalized data transformation
provided by the context engine system.

85

archical approach breaks down a single application into multiple functional units,

increasing organizational complexity. Although serializing the process can increase

latency if a highly compact algorithm was expanded, it can also expose interme-

diate output for reuse by other applications, thus reducing compute redundancy

in the system. We will prove that it also decreases overall compute complexity

and enables system scalability, in terms of reduced input processing and reduced

functional order when certain conditions are met . Additionally, splitting single-

step applications into small functional units (each with fewer inputs, simpler logic)

facilitates a generalized data transformation through machine learning.

4.2.1 Context Engine Architecture

We leverage ontologies to specify the interfaces to each of the context en-

gines and, uniquely, to also drive data transformation. We define a context vari-

able as the individual input or output data unit, and leverage the variable’s space

representation of ontologies to define the domain/range of the variable, and sub-

sequently, the context engine:

• Discrete context variables must have a countable set of possible states.

This is a requirement for the data processing algorithms to be able to map

to input or output states

• Continuous context variables require a range of possible values, to allow

the algorithms to perform clustering over the range of the variable. Different

ontologies make allowances for multi-interval and other continuous represen-

tations.

While current monolithic applications may have internal modularity and

parallelism, they are hidden from the rest of the system. The MIMO implementa-

tion of a current IoT application can be explicitly broken down into several context

engines, which decompose its internal functionality into smaller, MISO functional

units. The composition of the context engines delivers the same outputs as the

original application (see 4.2(b)). This reduces the complexity of each context en-

gine, as each performs less processing than the single-stage engine, and improves

86

the scalability, as each requires fewer inputs and produces fewer outputs. For

IoT applications, this increases the overall versatility, as the now-visible functional

units and the resulting dependency graph can be deterministically or automatically

distributed and parallelized among available compute nodes by the IoT manage-

ment system. Finally, the intermediate outputs of the distributed approach provide

additional context that can be reused by other applications, reducing their com-

putational complexity and consequently the compute redundancy of the system at

large.

4.2.2 Generalized Data Transformation

Our approach, a modular multi-stage context engine, results in more func-

tional units (FU) per application. An important consequence is that each FU that

composes the application is a simpler translation of input data to a single output.

This enables the use of a general data transformation in each context engine in

place of application-specific code. Thus, a context-aware application can be cre-

ated by specifying the inputs and output of each FU alone, and allowing the data

transformation algorithm to incur the processing overhead generating and training

a model based on input and output observations.

We leverage the ontologies that are already present in the current state

of the art of IoT middleware. From a data standpoint, they regulate inputs and

outputs of applications. Applications that participate in the system must enforce

the ontology’s specification: discrete variables must provide a set of possible states

to populate the probabilistic condition tables; continuous variables must specify

a valid range of values that can be clustered. We can exploit this ontological

information for machine learning algorithms that clusters results based on the

space of the input and output variables, as well as determines the training space

and list of prior observations.

Matrix-based stochastic learning models express potential data dependen-

cies as a system of equations. Some use predefined notions about the inputs to

establish linear or nonlinear equations, while others start with a linear combination

of the inputs whose coefficients are unknown. Over time, observed input and out-

87

put data is gathered until the coefficients can be trained and a model generated.

Since complex relationships can exist among the input data for an IoT application,

and a purely linear model may not be sufficient [30], several works [34] [50] [59] im-

plement learning by considering higher orders and time correlation. In our current

implementation, we leverage TESLA, a learning model originally designed for solar

forecasting, as the data translation algorithm in our context engine. It provides

efficient model generation: O(nα), where n represents the number of inputs and α

represents the function order of the Taylor expansion. The generic function of this

expansion is established as follows:

n∑
i=0

Cixi (1st order),
n∑
i=0

i∑
j=0

Cijxixj (2nd order) etc. (4.1)

where Cij represents individual coefficients learned once observations are deter-

mined, and x0 = 1 (the constant coefficient). The resulting equation is Ax = B,

where A is the row matrix of input observations; x is the column vector of coeffi-

cients, and B is the column vector of output observations, each entry correlating

with the corresponding row of A, and solved by least squares estimation.

One limitation to this model is that at least m independent observations

are required for training, where m = n for first-order, n2 for second-order, and so

on, which can become space-inefficient as the order increases. Finally, using the

model is as simple as solving the equation using the learned coefficients and the

input context, which produces the output context.

We demonstrate TESLA in this work because of its general formulation,

versatility across different function orders, and applicability to context processing,

but other statistical learning approaches exhibit similar properties: for example,

Bayesian Networks [34], Hidden Markov Models (HMM), and Artificial Neural Net-

works (ANN) can leverage input and output domain spaces to conditional proba-

bility models and parameters that define preferred paths gu2013.

4.2.3 Integration with Ontologies

The context engine architecture we propose incorporates both modularity

and general data transformation, significantly reducing application-specific and

88

implementation overhead. In addition to the overall application input and output

context variables, we must identify the data flow and intermediate context required

by the additional functional units. Existing context engine outputs that match the

input needed by the application, that engine will be reused rather than defining

and generating a new one. For example, Figure 4.3 identifies the context variable

for GPS location for a particular object (”User1”) using the context modeling

language (CML).

Figure 4.3: Ontology specification for GPS data, with coordinates, source, and
range.

If this variable specification is present, an application that require GPS

location for that object can simply refer to this variable as input. If this vari-

able is populated in the data store, either by a sensor or as the output of another

application, changes to this variable will be applied. In particular, if deriving

location is intermediate context from another application, it is now exposed for

reuse without additional processing overhead by the current application. Interme-

diate context variables that are not already defined must be outlined using the

ontology, specifying both the data source and the domain or range for input or

output, respectively. Currently, ontological definition of inputs and outputs al-

lows applications to retrieve and output data to the backend infrastructure. As

we mentioned in previous sections, we additionally use ontologies to generate the

constraints for the statistical learning algorithms. The application designer simply

specifies the input and output ontologies for each context engine. The common

data transformation records observations until there are enough to train the func-

tional model for the order of computation, at which point it begins generating the

output context for each successive input observation set.

89

4.3 Analysis

The sequential, hierarchical approach raises questions about the complexity

overhead, latency, and accuracy of breaking down a possibly compact application

into a composition of steps. We validate our approach by proving that the overall

computational complexity of the architecture is actually reduced with a marginal

impact on output accuracy.

4.3.1 Complexity

Theorem I: Dividing a context engine into multiple context engines decreases the

total computational complexity of a nonlinear system.

Proof: We show that dividing the processing of N inputs from a single context

engine to multiple context engines decreases the total computational complexity.

We start with a general representation of a context engine: N number of inputs

and a computational complexity order α for a maximum computational overhead

Nα. We divide the single engine into two stages, where there are multiple engines

with an arbitrary number of inputs of A. The number of engines of the first step

becomes N
A

. The second stage takes the outputs of the first stage and gives the

final output. The total complexity overhead of this system is N
A
Aα +

(
N
A

)α
. We

look for the conditions where the two-stage has a lower complexity than the single

engine:
N
A
Aα +

(
N
A

)α
< Nα → A2α−1N +Nα < AαNα

Aα−1Aα < Nα−1 (Aα − 1)→
(
N
A

)α−1 (
1− 1

Aα

)
> 1

(4.2)

Although the selection of A is arbitrary, there are two limiting conditions:

A must be an integer and the number of context engines must be an integer
(
N
A

)
.

Thus, the minimum for A is 2 and the maximum is N
2

, i.e. 2 engines. We do not

consider A = 1 or A = N , as neither contribute to division of the single-stage

context engine. The final inequality is the multiplication of two terms. The first

term is minimized when A = N
2

and results in 2−1. The second term is minimized

90

when A = 2 and results in 1 − 2−α. This provides a lower bound for the result:

2α−1 (1− 2−α) = 2α−1− 1
2
. If we prove that this lower bound satisfies the inequality,

the multiplication result must also satisfy the inequality:

(
N

A

)α−1 (
1− 1

Aα

)
> 2α−1 − 1

2
> 1→ a > log2 3 ≈ 1.6 (4.3)

This proves that if the complexity order of the system is greater than 1.6 (e.g. for

2nd and greater integer function orders), any arbitrary division of the single engine

results in a decrease in computational complexity. The corollary to this theorem

is:

Theorem II: The complexity of a system of context engines is minimized when

each individual engine contains 2 inputs.

Proof: Theorem I shows that dividing an engine decreases complexity if the system

has a complexity order greater than 1. The number of context engines is N
A

, which

gets its maximum value at A = 2.

Figure 4.4: Breakdown of a single-step into lower-complexity equivalent reduc-
tions, with the minimum complexity occurring with maximum division (two-input
engines on the right).

While context-aware applications do not necessarily fit perfectly into a sys-

tem of two-input engines, as we reduce inputs into each context engine and increase

the path from the initial input to output context, we reduce the overall system

complexity.

91

4.3.2 Accuracy

We now investigate the accuracy change between sequential and consol-

idated applications. We begin with a general functional representation of data

transformation from statistical learning: generating a model for data transfor-

mation as a polynomial of varying complexity and functional order, which can

be solved to best-fit through techniques such as regression [30]. By providing

the means to vary the inputs (ontology) and relationship (functional order), com-

plex relationships between the inputs and output can be represented and trained.

While a general formulation differs based on the function order and application,

this example illustrates the accuracy change between 2-input context engines and

a 4-input single-stage context engine, as in Figure 4.5.

Figure 4.5: Functional comparison of sequential (left) and single-stage (right).

We can compare the two implementations through their respective trans-

formation functions. We use a polynomial function as the general data transfor-

mation. The second-order Taylor expansion of f :

f(i1, i2) = f0 + f1 ∗ i1 + f2 ∗ i2 + f11 ∗ i21 + f22 ∗ i22 + f12 ∗ i1 ∗ i2 (4.4)

where fij are the corresponding coefficients. The other context engines (g,

h, and fgh) have corresponding expansions. However, because h is composed of the

outputs of f and g, it can be represented as a function of the fij and gij coefficients

and the initial input variables i1 to i4. This is directly comparable to fgh, which

is also a function of the initial inputs and a set of coefficients represented as λij

(e.g. λ0 + λ1 ∗ i1 + ...). h(f, g) evaluates to fgh exactly except for the ratio of g1

92

and g2, which matches two different pairs of coefficients of fgh:

g1
g2

=
λ13
λ14

,
g1
g2

=
λ23
λ24

(4.5)

This means that the sequential context engine will have the same accuracy

as the single-stage only when the ratio of λ13 to λ14 matches the ratio of λ23 to

λ24. If the ratios do not match, 1 out of the 4 coefficients in this ratio cannot be

represented, though the other 3 in the ratio as well as the remaining 7 coefficients

in the equation are all represented accurately. This can be modeled as some error

factor δ in the λ24 coefficient, which contributes δ ∗ i2 ∗ i4 truncation error between

the sequential and single-stage context engines.

We also quantify the impact of input signal noise on the sequential context

engine compared to the single-stage approach. We model each input with zero-

mean additive white Gaussian noise: xi + wi, a common expression of sensor

noise [97]. The resulting noise coefficients propagate through the application. In

the sequential case, f and g both propagate the original input noise to h. The

truncation error of the sequential context engine is now compounded by additional

noise:

δ ∗ i2 ∗ i4 + δ ∗ w2 ∗ i4 + δ ∗ w4 ∗ i2 + δ ∗ w2 ∗ w4 (4.6)

The first term is the truncation error we previously quantified; the second

and the third terms are the scaled Gaussian values due to noise; and the last term

is a chi-squared distribution also derived from noise. The significance of the error

terms is entirely dependent on the relationship between the cross-product input

terms i2 and i4. If the output context is highly dependent on the cross products,

the weight of the noise and truncation terms will pose significant error. From

a system design perspective, simply selecting highly correlated input terms for

context engines - an intuitive choice nonetheless - will mitigate truncation error,

as the impact of the missing cross-coefficient terms is minimized.

4.3.3 Scalability

As previously mentioned, we envision IoT applications operating in an en-

vironment with dynamic computational ability. Specifically, there are different dis-

93

tributed compute nodes for sensing, infrastructure, and actuation, including sensor

and actuation platforms, mobile devices, and backend storage and processing. The

complexity arguments from the previous subsection show potential improvements

even if we are confined to a single compute node. However, as the number of

compute nodes grows, there is inherent scalability in the sequential context engine

approach.

We leverage and extend the scalability definition from distributed systems

[57] and IoT systems [89]: identifying the change in speedup under the conditions

of 1) changing number of compute nodes for a given application (strong scaling)

and 2) changing amount of input data (load scaling).

We define speedup for the context engine approach using the following

piecewise function:

S(k,N) = kfor1 ≤ k ≤ N − 1

and

S(k,N) = 1fork > N − 1

(4.7)

where k is the number of cores (for strong scaling) and N is the number of inputs

(for load scaling). Since we generalize the processing in each functional unit to the

same algorithm, we deal with functional order as a general term representing the

polynomial model’s complexity and the number of inputs.

For strong scaling, the hierarchical application behaves like a distributed

system, taking advantage of compute nodes as they are made available. However,

even with maximum division (i.e. an application broken up into N − 1 2-input

context engines), the speedup is ultimately capped: when more than N−1 compute

nodes are made available, there are more free nodes than functional units. At best,

some FUs can be reallocated to more capable nodes, but at this point, the system

is already overprovisioned and will scale as the system is expanded.

Load scaling, or the increase in input data, is particularly important for IoT

applications, as the growing amount of data in applications should be appropriately

handled. An infusion of new input can be addressed by either:

94

1. Increasing the number of inputs to a single (or multiple different) context

engines

2. Expanding the hierarchy with more low-input context engines.

Figure 4.6: Comparison of scalability between the single-stage approach and the
context engine, comparing growth in functional complexity with additional inputs
(left) and communication overhead over the number of inputs (right).

In case 1, for every m additional inputs, the complexity of the updated

context engine increases from nα to (n+m)α. In contrast, for case 2, assuming a

maximum division of input (a binary tree of two-input context engines), for every

m inputs, we add at most m−1 new context engines, increasing the complexity to

(m+ n− 1) ∗ 2α. As m increases, the complexity of case 1 grows much faster than

case 2. Moreover, the second option falls in line with our goal of more modular

applications. Load scaling, with a system growth of mnα, represents linear growth

in the modular context engine approach. Figure 4.6(left) illustrates this growth

compared to the equivalent single-stage application’s growth as m increases, with

fixed n and α = 3.

The increase in input data also affects the communication overhead of the

application, another factor impacting scalability. Each functional unit must train

its machine learning algorithm in order to generate appropriate output context. In

the training phase of an n-input α-complexity single-stage application, the func-

tional unit must receive nα individual input samples and a corresponding nα output

samples from the source and sink devices to calculate the context engine’s coef-

ficients using TESLA. Similarly, a sequential application with maximum division

(2-input context engines) requires 2(n− 1) ∗ 2α, or 2α+1 ∗ (n− 1) input and output

95

samples. Figure 4.6(right) illustrates the communication overhead of the context

engine approach vs. the consolidated approach over the number of inputs.

4.4 Case Study I: User Activity

For our case study, we investigate applications that leverage user activity

prediction. User activity is important across several domains: connected/reactive

spaces, the smart grid, social behavior understanding, etc. all provide output

actuation (e.g. grid demand-response, home automation). We therefore investigate

both applications that output user activity predictions and applications that use

activity to provide output actuation for a particular space/domain. In particular,

the latter application is used to determine the potential for a location to be used

for activity or exercise.

4.4.1 Input Data

We use sensor data collected from wearable sensors from the UCSD Personal

Activity and Location Measurement System (PALMS) [44], which provides high-

fidelity wearable data such as from fitness trackers: hertz GPS and heart rate

data, and 30Hz data from wrist and hip accelerometers for 40 individuals, with

the activity annotated through observation of the individuals. The annotations

fall into four categories: the activity; the posture of the participant; whether it

constitutes social interaction; indoor/outdoor. The activity is chosen from a set:

eating, TV, leisure, sports, exercise. Posture and indoor/outdoor are binary values

associated with each activity.

4.4.2 Applications

We consider two applications: one specific to the users wearing the devices,

and one specific to the spaces users are moving in. The user-centric application is

activity prediction: translating raw sensor data into high-level activity definitions.

The location-centric application is health potential the potential for a particular

96

Figure 4.7: Sequential context engine applications (left) and equivalent consoli-
dated applications (right) for user activity and location potential detection.

location to raise the user’s heart rate. While the former application’s output is

specific to the user, the latter can help guide users towards better behavior: identify

the possibility of taking stairs or improving their daily energy expenditure. This

forms a consolidated IoT environment users whose sensor data impacts the spaces

around them, and conversely, smart spaces that provide actuation to the users that

enter them.

4.4.3 Data Translation and Outputs

The state of the art data translation is straightforward: separate applica-

tions take in all the available data as input, and produce the activity potential and

activity prediction, respectively (see Figure 4.7(right)). Our approach modularizes

the problem into three sets of context engines: generating coarse GPS location,

detecting activities, and identifying each location’s activity potential. In keeping

with the MISO principle, we allocate a separate context engine for each activity.

We also have separate activity detection engines for each of the 40 users, leverag-

ing the fact that the users’ fitness trackers are embedded devices that can detect

personalized activity.

As GPS information is important, but the raw GPS data is too fine-grained

for either application, we introduce a GPS context engine, which outputs a coarser

latitude/longitude reading showing a larger physical space. This intermediate vari-

able is defined as a latitude/longitude pair, albeit with less fine-granularity. The

reference data to train this context engine is derived by spatially clustering the

raw GPS data and using the northwest point of each cluster.

97

The output prediction is a boolean for each potential activity. Similarly, a

location’s activity potential is a boolean. Both values are trained using available

annotated data, or ground truth, from PALMS. The location’s activity potential

is stored in the datastore (a key-value cloud database) with the location as the

lookup key, and is fed back into the context engine as another input context.

4.4.4 Context Engine Setup

Figure 4.7 illustrates the configurations for both the sequential context en-

gines (left) and the current state of the art single-stage application (right). The

single-stage applications, as monolithic black-boxes, require all the input data.

The sequential approach can be designed more judiciously. The GPS context en-

gine’s output supplants the raw GPS latitude/longitude data in both applications,

though each activity’s context engine requires the speed and satellite count from

the raw GPS data. The GPS context engine, with one input, has O(1) complexity.

The second stage of the sequential activity application transforms the avail-

able input from the original data sources and the GPS engine to a boolean rep-

resentation of the respective activity. Each of these second-stage context engines

have n inputs and a computational complexity of O(nα) for generating output,

where a corresponds to the algorithm’s function order. The third stage is the en-

tire location potential application, as it only uses intermediate data produced by

the other context engines (including feedback from itself). As activity detection

context engines can grow in number as more activities are added, the computa-

tional complexity is O(knα), where k is the number of detectable activities.

The single-stage applications (Figure 4.7 (right)) are used to compare com-

plexity and accuracy against our approach. They are also run using a general data

transform defined by a polynomial function order. Since both applications take in

all the available inputs, their complexity is similar to the second-stage context en-

gines: O(nα). As each context engine uses different inputs and generates different

outputs, we test each with TESLA up to 3rd-order functions, after which accu-

racy improvements are marginal. From the PALMS dataset, we extract contiguous

time-series data, interpolating each as necessary to provide correlated training and

98

test samples. To test the impact of the number of samples on functional order, we

vary the number of samples up to 8,000 (two days), and test against 4,000 (one

day) samples.

4.4.5 Results

Figure 4.8: MAE of GPS context engine over function order and sample size

Complexity

We first investigate the computational complexity of each context engine

group: The GPS context engine is the first stage for both sequential applications,

as its output is consumed by following stages. The single engine was tested across

different functional orders of the TESLA algorithm, where it performs well with

first-order, gaining only marginal improvements for second- and third-order func-

tions (Figure 4.8), for a complexity of O(1).

The activity context engines are used by both applications. Since some

activities are more readily predictable than others, their functional orders vary.

Table 4.1 lists the functional orders and accuracies for the different activities, and

Figure 4.9 illustrates the change in the mean absolute error with each change in

functional order. Some of the statistical learning results were inaccurate even when

taken up to 3rd order. For example, eating shows marked similarities to walking,

99

Table 4.1: Functional orders used for each activity context engine.

Activity Functional Order
Sedentary 2nd

Walking 3rd

Biking 2nd

Exercise 2nd

In Vehicle 2nd

TV 3rd

Eating 3rd

Indoor/Outdoor 1st

Figure 4.9: Mean absolute error (MAE) for each activity context engine across
different function orders.

with the exception of speed, and as such, reports false positives even at 3rd order.

Walking incurs accuracy issues when indoors, due to reduced GPS reliability. This

is compounded by the treatment of each set of correlated inputs as an individual

instance, whereas walking on its own is better represented by a contiguous-time

set of inputs represented together. TESLA is capable of treating the data as such

by increasing the number of inputs to include those from time t− 1 to t− k, and

identifying the k value that provides the highest likelihood of being the boundary

of an event. The algorithmic changes to determine the length of an event are

outside the scope of this work, but the methodology can be found in [30].

In contrast, other activities can be determined with lower function order:

most of the other activities are reasonably accurately predicted with 2nd order

polynomials, and determining that the user is indoors can be determined with

first order alone. The trained TESLA coefficients show a high correlation between

the number of satellites detected by the GPS signal and the error resulting from

100

poor coverage in outdoor areas. The worst-case complexity for the set of activity

detection context engines is O(kn3).

The final stage of the sequential context engine approach is the location

potential context engine, which consumes outputs generated by the GPS context

engine and the activity context engines, to generate the potential for each location

cluster. It incorporates the activity potential for the nearest known location found

in the datastore (see Figure 4.7). This last input dominates the results, and a

second order function, O(n2), is sufficient to generate accurate output (9.2% MAE).

Each application in the single-stage approach has exactly the same con-

figuration: Using several TESLA algorithms on the same inputs to produce dif-

ferent outputs simulates general-purpose MIMO learning, with a time complexity

of O(kn3). Even with the same worst-case complexity, sequential context engine

approach presents an advantage in execution overhead. All context engines re-

calculate for the output whenever a new input observation is recorded. However,

the second stage of the sequential context engine reacts only to changes in coarse

location (output from the GPS context engine), which is much less frequent than

the correspondingly subtle changes to the raw GPS data (Figure 4.7(left)). Ta-

ble 4.2 highlights the number of computations performed by the single-stage and

sequential context engines for the 4,000-input (one day) test set.

Table 4.2: Execution overhead based on iteration count for the context engines
associated with the In-Vehicle activity

In-Vehicle Functional Order Total Latency
Prediction 1st stage O(1) 2nd Stage O(n2)

Sequential 3670 1823 0.24 sec
Single-Stage — 3670 0.37 sec

The sequential application is comprised of more context engines, which

all perform their own data transformations, and naturally performs more total

computations than the single-stage approach. Still, it exhibits only 65% of the

latency of the single-stage context engine. This is in part because of distributed

computing: the first stage consists of data-independent context engines that can

be parallelized, such as in low-level compute nodes that are already embedded

in modern appliances. More importantly, because of the modularized functional

101

units, the sequential context engine offloads the processing of raw GPS to the low-

overhead, very fast (O(1)) GPS context engine. The single-stage context engine,

has no choice but to perform over 3000 O(n3) computations. Ultimately, the

sequential application requires fewer than 50% of the time- and compute-intensive

O(n3) computations as the single-stage implementation, and consequently, can

complete the work 35% faster. This difference in latency exists across carries

over to all other activity context engines, with a speedup of up to 2.6x for the

Indoor activity engine, which has only a 1st order function. Table 4.3 shows the

latency of the context-engine-based applications normalized against their single-

stage counterpart.

Table 4.3: Latency of the sequential applications grouped by the function order

Function Order (Context Engine Applications) Normalized Latency
1st (Indoor) 0.38
2nd (Sedentary, Bike, Exercise, InVehicle) 0.49
3rd (Walk, TV, Eating) 0.65

Accuracy

Figure 4.10: Accuracy comparison between the context engine and the single-
stage activity applications (bar graph) with the delta in accuracy (line graph).

We demonstrated earlier that modularizing an application incurs trunca-

tion error. We now compare the accuracy changes in both applications between

the sequential and single-stage counterparts. Figure 4.10 compares the accuracy

of each of the individual activity context engines against the consolidated activity

application. The application sets have very similar accuracy numbers, with the

102

highest error difference between them being 3.3% (for eating). This is explained

by the high similarity in their input sets, with the only difference being the use

of the intermediate output of the GPS context engine. Since only a small number

of the original cross-coefficients in the statistical learning algorithm are missing,

the resulting difference in error is low. In contrast, the consolidated location po-

tential application is significantly different from the equivalent sequential context

engine (see Figure 4.7(left) vs. (right)). This is an ideal example for comparison,

because instead of using the raw input data, the context engine relies on only

the intermediate data the outputs of the activity and GPS context engines, a

key motivation for the modular context engine approach. Table 4.4 quantifies the

accuracy comparison between the sequential and single-stage applications.

Table 4.4: Output accuracy comparison for Location Potential between the se-
quential context engine and the single-stage application

Application Location’s Activity Potential - Prediction Accuracy
Sequential 79.9%
Single Stage 74.2%

Despite using only intermediate data, which means that there are cross-

coefficients missing in the sequential approach vs. the consolidated application,

there is only a 5.7% reduction in output prediction accuracy. This reduction illus-

trates one of the conclusions earlier presented: organizing the inputs and outputs

of the modular application appropriately reduces truncation error. Intuitively, the

location’s activity potential is related to the activities that are performed in that

location, and as such, using the existing intermediate output provides reasonable

accuracy compared to reusing (and performing similar computation) on the origi-

nal data.

Application Extension

The location potential application shows how modularity can boost an IoT

system with new applications. In the single-stage approach, an entirely new O(n3)

application with n = 5 needed to be introduced to produce the same output, albeit

slightly more accurately, as a O(n2) application with n = 3 using already-generated

103

output in the sequential approach. Growing an ecosystem of applications that make

use of intermediate output from the existing applications reduces the computation

needed for new applications. Furthermore, the smaller, more numerous context

engines can be distributed more readily among distributed compute nodes in the

IoT environment.

4.5 Case Study II: Context-Aware Residential

Energy Management

Figure 4.11: A context engine approach to residential energy management, with
individual homes providing higher-level context in place of raw data, aggregated
and passed . The outputs per house can vary depending on the types of sensors
and actuators available to each unit.

For our second case study, we introduce the use of the context engine to

scalably automate residences by predicting the energy flexibility of end-use ele-

ments in the residential smart grid. We then use this flexibility information and

104

usage prediction to reschedule appliances to save energy costs. Currently, utilities

gather energy consumption from end-users through smart metering single-stage

data processing system. User behavior can be used to further improve the accu-

racy of energy prediction [26]. This additional context, obtained from wearable

and house sensors, vary in source, data, accuracy, format, etc. among the dif-

ferent users. In the current smart grid system, all this heterogeneous, additional

data would need to be passed in directly to the utility, which in turn would use a

redesigned application to provide energy prediction. This represents a significant

increase in both communication and processing overhead. However, the context

engine approach can be used to provide only the high-level context that the utility

requires: energy prediction and the flexibility of the next interval (potential energy

savings in kWh by shutting down loads). Furthermore, as the smart grid is nat-

urally distributed, we can further break down data aggregation along the existing

lines of power distribution: waystations, junction boxes, and substations, which

have limited computation ability already (see Figure 4.11). The result is a multi-

tier context-aware application that uses available residential data to determine the

flexibility of the loads of a house, and further uses this generated context to deter-

mine the energy flexibility of a group of houses, a neighborhood, and ultimately,

the residential sector. We demonstrate the feasibility of this approach by compar-

ing it to the current state-of-the-art: sending all the raw data back to the utility for

processing. We then investigate scalability by comparing 1) the speedup with the

increasing problem size representing a neighborhood that grows over time, both

in the number of sensors and houses and 2) the amount of data/communication

overhead with increasing problem size. Finally, we connect our predictions back

to HomeSim, using the Flexible Interval context engine to provide reschedulable

timeframes for different appliances and the Energy Prediction context engine to

generate individual appliance traces. We then simulate the houses to quantify the

cost savings of appliance flexibility, taking into account more realistic, personalized

deadlines and exploiting variable time-of-use pricing.

105

4.5.1 Context Engine Setup

In our approach, we first begin at the level of each individual end-use ap-

pliance within a house. Some appliances are less flexible (e.g. HVAC systems,

refrigerators, and always-on devices) than others whose energy is dominated by

direct user interaction (kitchen and laundry appliances, lighting, etc.). We exploit

the advent of smart appliances with onboard embedded systems as potential nodes

of computation. The goal in this first stage is to identify 1) user interaction with

the appliance, if applicable, and 2) whether the usage of this appliance is flexible

at a given time. These intermediate outputs are further used to predict the energy

usage of the appliance in the next interval, and consequently, the predicted energy

flexibility. The intermediate and final outputs are trained with ground truth as

following:

• User interaction and activities are boolean values derived from analyzing the

energy and/or water traces to find how appliances are used.

• Binary energy flexibility for appliances is derived from the distribution of use

over time (see Figure 4.12. This is unique to each house due to differences

in user behavior.

These first-stage context engines’ outputs are further used to predict the usage of

the appliance. While the energy usage alone has been previously used in time-series

to predict future intervals’ output, we can better learn the profiles of user-triggered

appliances by also leveraging user context. An individual house can aggregate its

flexibility prediction, passing it up to the next tier: junction boxes or substations,

which in turn feed aggregated flexibility prediction to the overarching utility (see

Figure 4(left)). While aggregated flexibility is useful for identifying the energy can

be saved, our approach takes the next step and determines the individual loads

that combine to provide this flexibility. This granularity is an innovation enabling

the smart grid perform automated residential demand-response: feedback control

signals to automate individual loads in a scalable manner.

106

4.5.2 Input/Intermediate Data

Our data is sourced from the Pecan Street database [5], a dataset that

aggregates individual energy and water loads. In addition, a subset of houses pro-

vides basic information about the number and type of occupants. We selected and

replicated houses that fall into one of the house types in Table 4.5 to represent a

neighborhood with disparate amounts and types of data. The first-stage context

Table 4.5: The four different house types retrieved for the case study, with their
constituent components.

House
Type

Flex.
Appl.

Inflex.
Appl.

Add’l room-
spec. appl.

Electric
Vehicle

Water
appl.

Water
flow

A X X X
B X X X X
C X X X X
D X X X X X X

engines need to be trained with ground truth for user interaction and binary flexi-

bility of each interval. As Pecan Street does not provide this information directly,

we define flexibility based on historical data about the appliances - each house

show different usage patterns for each appliance, with each cluster having a range

of start times. For each new appliance event, we assume its flexibility to meet that

of the historical operation of that appliance instance. For example, Figure 4.12

illustrates the usage pattern of washing machines for House B, highlighting the ag-

gregate number of instances at each time interval. The resulting clusters identify

the windows of flexibility. A future appliance interval occurring at noon will have a

flexibility range between 9:30 AM and 1:00 PM. Similarly, we record clusters for all

appliances in all tested houses, generating unique, heterogeneous flexibility ranges

that we use to represent different user preferences. Similarly, we associate flexibil-

ity to other appliances based on related research and the traces themselves. For

example, the electric vehicle demonstrates three states: not plugged in, plugged in

but not charging (nominal drain from charging circuit), and charging. The second

and third states represent a flexible timeframe for flexible use. Table 4.6 high-

lights the other flexible appliances. Finally, to calculate grid energy cost, we use

time-of-use pricing obtained from independent system operators across the United

107

Figure 4.12: The aggregated instances of washing machine usage on Mondays in
House B, illustrating 3 clusters of varying flexibility.

Table 4.6: Appliance flexibility parameters

Flexible Appliance Justification
Clothes Washer/Dryer Flexible usage patterns [33]
Dishwasher Flexible usage patterns [56]

Electric Vehicle
Observed flexible charging
in Pecan Street dataset

Lighting Variation in light intensity [92]

States: CAISO for California [3], NEISO for New England [13], and ERCOT for

Texas [6]. This allowed us to see the benefits of our prediction across different

pricing schemes: Boston (high mean price, high standard deviation), San Diego

(medium mean price, medium standard deviation), and Houston (low mean price,

low standard deviation). Figure 4.13 illustrates the ISO wholesale prices scaled up

to average retail levels, illustrating the differences among them.

4.5.3 Accuracy/Complexity

We first investigate the accuracy, comparing the sequential context engine

approach to the single-stage state-of-the-art: a single node representing an aggre-

108

Figure 4.13: Wholesale electricity prices scaled up to retail residential pricing for
different locations.

gator receiving all the raw traces from all houses and training over the aggregate

flexibility. Table 4.7 highlights the mean absolute error (MAE) for both the context

engines utilized by the two approaches. The ground truth that we used to calculate

accuracy was the true appliance energy consumption from the Pecan Street traces.

As the table shows, each of the sequential context engines within each house, pro-

Table 4.7: Average mean absolute error (MAE) for each context engine in single-
stage and sequential approaches

Node Type
(complexity)

Single-stage
MAE (%)

Avg. Context Engine
MAE (%)

A (3rd order) — 27.15
B (3rd order) — 14.23
C(3rd order) — 9.81
D (3rd order) — 6.16
Single-stage (3rd order) 26.94
Context Engine Aggregator
(1st order)

14.34

viding per-appliance energy flexibility, performed with less than 10% error for each

appliance, and improving error as more user data is provided (# inputs for A < B

< C < D). Conversely, the single-stage application, suffers worse error due to the

109

lack of training over each appliance’s flexibility and user interaction. The single-

stage engine requires the more complex 3rd-order computation to be performed by

the aggregator, which scales poorly with more inputs. The complex-third order

processing in our approach is handled closer to the edge by the embedded de-

vices on the appliance-specific context-engines with fewer inputs and lower overall

complexity. Thus, our approach at 1000 inputs performs 96x faster than the cur-

rent state of the art, significantly reducing the output generation of a single-stage

approach.

4.5.4 Scalability

Figure 4.14: Scalability of the single-stage and sequential applications against
the number of available compute nodes and the number of inputs.

We identify the latency of our application as both the number of available

compute nodes and the number of inputs grows. Figure 4.14 illustrates the scal-

ability on a log-log plot, varying the number of available compute nodes in the

application and the total number of inputs. In order to investigate the theoretical

upper bound, although we limit the total number of inputs, we maintain a ratio

of 10 inputs per context engine, selecting only the appliance and user data that

matches this ratio. Both applications initially exhibit similar latency when lim-

ited to the same number of nodes, but the context engine approach has the better

potential to distribute the processing to the more numerous nodes being made

110

available. The sequential approach demonstrates linear growth with increased to-

tal inputs while there are enough available nodes. Eventually, there are not enough

nodes, and a subset of computation must be serialized. The single-stage, without

this benefit, scales exponentially with the input.

We also investigate the scalability of communication by investigating the

amount of training data required for both the single-stage and the context-engine

approaches. Both approaches require O(nα) training samples per functional unit.

However, by limiting the n in the sequential set of context engines, and growing

the number of context engines and the hierarchy instead, we are able to scale

the amount of data needed for training linearly. The single-stage application, on

the other hand, has a single functional unit of O(n3), and as n increases, grows

exponentially with the number of inputs. Figure 4.15 illustrates the growth in

communication in both cases.

Figure 4.15: Communication overhead for training the single-stage and sequential
applications as the number of number of inputs grows.

4.5.5 Grid Energy Savings

Finally, we connect our user activity and flexibility prediction back to our

earlier work by integrating the context engine approach to residential grid energy

management with HomeSim. In the previous chapter, we quantified the ability for

111

smart appliances to be rescheduled through awareness of time-of-use retail energy

prices. While we previously used static flexibility information for each appliance

(i.e. a fixed threshold for each appliance instance), we now have the ability to

generate individual flexibility predictions using context engines (see Figure 4.11).

To restate, we use historical appliance start times to generate a flexibility range for

each appliance (see Table 4.6). We use HomeSim’s reschedulable appliance sched-

uler, described in Table 3.5, which allows us to use our predicted flexibility and

energy consumption to rescheduling flexible appliances. The goal is to move ap-

pliances to intervals where they can be more cheaply utilized. We use the outputs

of our context engines — the predictions of energy consumption and flexibility —

to generate new schedules for flexible appliances. We compare the results against

having full knowledge of the appliance’s consumption data and the assumed flexi-

bility that was determined by historical usage. This is the same data that served

as the ground truth in the previous set of results (Section 4.5.3).

Figure 4.16: Appliance flexibility ranges for each of the test cases: static, oracle,
and predicted.

Figure 4.16 illustrates the three cases we investigate:

• Static schedule: assumes a fixed schedule for each appliance. This is de-

rived from Table 3.7. This case does not take into account differences derived

from historical appliance traces.

• Oracle schedule: uses the ground truth derived from historical usage as the

flexibility interval for each appliance. This varies from appliance to appliance

112

and from house to house. Since we are using the actual energy and flexibility

traces, we also have the benefit of foresight: determining the full range of

the flexibility interval before and after the actual appliance instance’s start

time.

• Predicted schedule: This is the real-time schedule determined solely by

the output of context engine predictions. In addition to predicted flexibility,

since our context engine only predicts one interval in advance, we only have

the ability to use the remaining intervals of the flexibility range after the

predicted appliance start time.

To generate the energy and flexibility predictions for each appliance, we

obtain the output of the Flexible Interval and Energy Prediction context engines

(Figure 4.11), respectively, for all subsequent intervals of the current day and pass

this data into HomeSim. We assume knowledge of 24-hour time-of-use (TOU)

pricing in order to facilitate rescheduling. This is data that is typically available

on the wholesale sector from various ISOs [3] [13] [6]. As retail energy integrates

TOU pricing as well, we expect to see similar forecasts.

Table 4.8: Residential cost savings of static flexibility vs. oracle knowledge of
individual house flexibility vs. predicted flexibility

Case
Static
Schedule

Oracle
Schedule

Predicted
Schedule

Base Appliance
Annual Grid Cost

$594.98 $594.98 $532.31

Rescheduled Appliance
Annual Grid Cost

$514.23 $487.92 $469.64

Cost Savings ($) $107.06 $80.75 $62.67
Cost Savings (%) 18% 14% 12%
Appliance
Deadlines Met (%)

90% 100% 100%

As Table 4.8 illustrates, we are able to use the predicted energy and flexibil-

ity values to generate a new schedule for flexible appliances. We obtain 12% annual

cost savings for the rescheduled appliances using individually predicted flexibility

values for each appliance. We further compare this to having oracle knowledge

113

of all appliances and their flexibilities — the ground truth that we used earlier to

train the context engines — which generates 14% cost savings. The static schedule

presented in the previous chapter (Table 3.7) demonstrates a further 4% savings,

at 18% electricity cost saved.

Our predicted schedule’s energy consumption is within 81% of the ground

truth, and our savings prediction is only 2% less than that of the oracle. This error

is due in part to energy prediction error, but also due because upon predicting

an appliance’s start time, we only have until the rest of the flexibility interval

from the predicted start time to schedule the appliance (the red interval in Figure

4.16). The oracle, however, has a priori knowledge of the day’s schedule, and can

reschedule an appliance anytime within the flexible interval, including before the

original start time (the green interval in Figure 4.16). Finally, the original static

flexibility case study from Chapter 3 yields a further cost reduction primarily

because of the increased range of flexible intervals (the blue interval in Figure

4.16). The static flexibility interval for the clothes washer is 12 hours (Table 3.7),

but the flexibility interval generated by historical appliance use was shown to be

9.25 hours, with a median interval of 7.25 hours. This difference, observed over

all flexible appliances, provides heterogeneity in user preferences at the expense

of fewer opportunities to try to save on electricity cost. Comparing the static

flexibility interval to the oracle’s, we find that although it improves cost reduction

by 32%, 10% of the statically rescheduled appliances actually fall outside their

flexibility interval, missing users’ perceived flexibility deadlines.

4.6 Conclusion

In this chapter, we establish the motivation for and design a novel approach

to context-aware applications used in the Internet of Things. These applications

are also of the type that will provide user information for residential grid appli-

cations. The current state of the art uses ontologies to identify the interfaces for

ultimately monolithic and application-specific implementations [76]. This creates

computational redundancy between applications and increases compute complex-

114

ity of the system as a whole. In contrast, we design a modular framework that

exploits common computational processes between applications, exposing share-

able intermediate context. We increase reusability and scalability while reducing

computational complexity at a minor cost in accuracy. Decomposing a single-stage

functional unit into a sequence of smaller ones also facilitates general data transfor-

mation. As an example, we implement a statistical learning technique that exploits

ontological data to construct and train a model. We test our approach with two in-

dependent case studies, using the same approach to demonstrate the versatility of

the context engine, as well as up to 65% latency reduction with minimal accuracy

loss in both applications, all while exposing intermediate context for reuse. We

subsequently integrate our context engines with HomeSim to demonstrate up to

9.5% energy savings by rescheduling appliances based on the engines’ predictions.

The result is a versatile approach and implementation for IoT applications that

facilitate the use of machine learning while improving scalability and complexity

of context-aware designs. With human-driven input data, this can efficiently and

scalably learn and produce residential flexibility information for the smart grid.

Chapter 4 contains material from Jagannathan Venkatesh, Christine Chan,

Alper Sinan Akyürek, and Tajana Šimunić Rosing, ”A Modular Approach to

Context-Aware IoT Applications”, which appeared in Proceedings of the 1st Con-

ference on Internet of Things Data and Implementation (IoTDI), 2016 [94]. The

dissertation author was the primary investigator and author of this paper.

Chapter 4 contains material from Jagannathan Venkatesh, Bariş Akşanli,

Christine Chan, Alper Sinan Akyürek, and Tajana Šimunić Rosing, ”Scalable IoT

Application Design for Automated Learning”, which was submitted for consider-

ation in IEEE Software, Special Issue on Software Engineering for the Internet of

Things, 2016. The dissertation author was the primary investigator and author of

this paper.

Chapter 5

Summary and Future Work

The smart grid is growing in complexity and versatility: new end-use ele-

ments, better analytics, and improved infrastructure. This enables the deployment

of new scenarios, including distributed energy and storage resources, more com-

plex and automated behavior of the end nodes, and automation of user-driven

loads. While the goal of the improved grid is better energy efficiency and stability,

different sectors have different approaches.

5.1 Thesis Summary

This thesis proposes the use of context—high-level, abstracted data—to im-

prove the behavior of end users in different smart grid scenarios. Large consumers

like data centers can integrate significant on-site renewable generation, but they

must avoid missing the tight timing constraints of their workloads despite the vari-

ability in green energy output. We propose short term green energy prediction to

efficiently use renewables without sacrificing quality of service. Meanwhile, small

consumers such as residences are largely ignored due to their relatively insignificant

individual contributions. However, the growth in complexity of residential nodes

enables several new scenarios, which use additional user and environment context.

These scenarios must be appropriately quantified to understand the financial and

stability benefits. We introduce a new residential energy simulator to quantify and

compare battery technologies, smart appliances, and trading battery capacity on

115

116

the energy market, and the cost savings of a more accurate closed-form battery

state prediction. Finally, the diversity of use in the residential sector is driven by

individual user preferences. However, the current smart grid infrastructure, which

centrally collects and processes available meter data, does not scale to the level and

diversity of users. We propose a new modular approach to context-aware applica-

tions, specifically those that use heterogeneous data, such as IoT applications. We

leverage this approach for reduced computational redundancy, improved latency

and scalability, and apply it to residential grid automation.

5.1.1 Renewable Energy and Context in Data Centers

Data centers are one of the important global energy consumers and carbon

producers. However, their tight service level requirements prevent easy integration

with highly variable renewable energy sources. Short-term green energy prediction

can mitigate this variability. We first explored the existing short-term solar and

wind energy prediction methods, and then leveraged prediction to allocate and

migrate workloads across geographically distributed data centers to reduce brown

energy consumption costs.

We demonstrated significantly higher (up to 3x) green energy efficiency

despite the variability of the incoming energy, and developed a migration algorithm

for performance maximization that delivered a 27% reduction in the completion

time of batch workloads.

5.1.2 Modeling Residential Energy Management in the Smart

Grid

Residential energy constitutes 38% of the total energy consumption in the

United States. While the industrial and commercial sector has seen growth in grid-

tied automation and control, the residential sector has largely been ignored because

of the relative insignificance of the individual end-use loads, even as they grow in

complexity and capability. Although a number of building simulators have been

proposed, there are no residential electrical energy simulators capable of modeling

117

complex scenarios and exploring the tradeoffs in home energy management. We

proposed HomeSim, a residential electrical energy simulation platform that enables

investigating the impact of technologies such as renewable energy and different

battery types. Additionally, HomeSim allows us to simulate and quantify different

residential automation scenarios, including centralized vs. distributed in-home

energy storage, intelligent appliance rescheduling, and outage management. We

also develop a new formulation for battery usage based on a more realistic battery

model, optimizing the benefit of discharging the battery. We design the scheme

for the actual use of batteries in an energy-trading environment, considering the

total cost of ownership and return on investment.

Using measured residential data, HomeSim quantifies different benefits for

different technologies and scenarios, including up to 50% reduction in grid energy

through a combination of distributed batteries and reschedulable appliances.

5.1.3 Improving Residential Energy Modeling with User

Context

The Internet of Things envisions an infrastructure of sensing and actuation

devices connected by a Web framework. This context-aware computing is especially

useful for the residential smart grid, whose output is driven by the behavior of

the constituent human users. However, the current state of the art in context-

aware computing presents a different reality: complete end-to-end applications

that are dependent on the sensors and actuators that they were designed for.

Growing such an application with new input and output devices, or extending the

existing infrastructure with new applications involves redesign and deployment.

We proposed a modular approach to these context-aware applications, breaking

down monolithic applications into an equivalent set of functional units, or context

engines. By exploiting the characteristics of context-aware applications, context

engines can reduce compute redundancy, computational complexity and scalability

with a nominal impact on accuracy.

We applied these principles toward residential smart grid control, demon-

strating more appropriate scalability than the current state of the art, in addition

118

to an accuracy improvement of 15% and a latency reduction of up to 35%.

5.2 Future Work

We have developed several tools and approaches to extend the field of grid

automation, and our results can be applied to different aspects of smart grid prob-

lems and context-aware computing.

Our initial context engine results already demonstrate a significant improve-

ment in predicting residential energy usage and flexibility (see Figure 5.1).

Figure 5.1: Correlation of energy prediction with time-of-day, appliance traces,
and supplemental user context.

However, while we learn on all available inputs, we don’t necessarily limit

ourselves to only the best inputs. Preliminary correlation analysis has already

shown the ability to mitigate accuracy losses by eliminating only the least signifi-

cant inputs. Furthermore, limiting the number of inputs can improve the latency

of each context engine.

Formalizing correlation analysis and automatically selecting the most ap-

propriate inputs from a pool of available sources is useful for context-aware ap-

plications operating in an environment of changing data, as they can improve

119

efficiency as well as replace/update the existing algorithm as more accurate or

reliable sources enter or leave the system.

Similarly, the context engine is currently employed with a number of ma-

chine learning algorithms, some of which are better suited for a particular appli-

cation than the others, and all incurring their own costs, both in computational

overhead and in accuracy and latency. This can be leveraged to define a multi-

optimization problem for context-aware computing, trading off compute complex-

ity, latency, and accuracy.

The ability to quantify these three characteristics, and more importantly,

optimize for each is crucial to the real-life context-aware applications that these are

used for: smart spaces, grid automation, and the Internet of Things. The result is

a functional unit that can optimize for the most correlated data, train using the

best available machine-learning technique, and generate the outputs required, as

well as adapt to environment- and user-imposed performance constraints.

The context engine case study demonstrates the scalability and improved

accuracy of predicting energy consumption and flexibility. Furthermore, it pro-

vides a currently unprecedented level of granularity in control of flexible appliances.

However, this is only part of actually automating the residential grid. Adding dis-

tributed energy sources and storage to the system provides additional means of

flexibility at different costs. Formalizing the overall cost model for each house to

drive actuation based on the prediction can bring decision-making intelligence to

each node. These local decision-makers and the now-available node-level flexibility

information can be used in conjunction with grid information to drive actuation

based on both the grid needs, user behavior, and locally-optimal node control. This

can be suitably adjusted throughout the grid’s hierarchy, scaling preferences and

control up from a single house to a street, neighborhood, etc. up to the aggregate

context of the residential sector.

Chapter 5 contains material from Jagannathan Venkatesh, Bariş Akşanli,

Christine Chan, Alper Sinan Akyürek, and Tajana Šimunić Rosing, ”Scalable IoT

Application Design for Automated Learning”, which was submitted for consider-

120

ation in IEEE Software, Special Issue on Software Engineering for the Internet of

Things, 2016. The dissertation author was the primary investigator and author of

this paper.

Bibliography

[1] Battery energy – what battery provides more? AllAboutBatteries. [Online].
Available: http://www.allaboutbatteries.com/Battery-Energy.html

[2] Borrego springs microgrid project. Green Energy Corp. [Online]. Available:
http://www.greenenergycorp.com/borrego-springs-microgrid-project/

[3] California iso. California Independent System Operators. [Online]. Available:
http://www.caiso.com/Pages/default.aspx

[4] California solar statistics. California Energy Commission. [Online]. Available:
https://www.californiasolarstatistics.ca.gov/

[5] Dataport: A universe of energy data. Pecan Street, Inc. [Online]. Available:
https://dataport.pecanstreet.org/

[6] Electricity reliability council of texas. ERCOT, Inc. [Online]. Available:
http://www.ercot.com/

[7] Energy 101: Energy efficient data centers. Department of Energy. [Online].
Available: http://www.energy.gov/videos/energy-101-energy-efficient-data-
centers

[8] Energy and technology. Center for Climate and Energy Solutions. [Online].
Available: http://www.c2es.org/category/topic/energy-technology

[9] Energy and technology. Center for Climate and Energy Solutions. [Online].
Available: http://www.c2es.org/category/topic/energy-technology

[10] Energy storage system - 36kwhr (3 week lead time). Balqon Corpo-
ration. [Online]. Available: http://www.balqon.com/store-2/#!/ /prod-
uct/category=2860254&id=12477202

[11] Google now. Google, Inc. [Online]. Available:
http://www.google.com/landing/now

121

122

[12] Heating and cooling no longer majority of energy use.
U.S. Energy Information Administration. [Online]. Available:
http://www.eia.gov/consumption/residential/

[13] Iso new england. ISO New England, Inc. [Online]. Available: http://www.iso-
ne.com/

[14] Lead acid batteries. Samlex America, Inc. [Online]. Available:
http://www.samlexsolar.com/learning-center/lead-acid-batteries.aspx

[15] Lfp batteries for customized power supply solutions. Jupiter Integrated Solu-
tions, Inc. [Online]. Available: http://www.jisinc.net/products-battery.htm

[16] Nest: Home. Nest. [Online]. Available: https://www.nest.com/

[17] Rubis: Rice university bidding system. OW2 Consortium. [Online]. Available:
http://rubis.ow2.org

[18] Savant home automation. Savant. [Online]. Available:
https://www.savant.com/

[19] Simulation tool — opendss. EPRI - Electric Power Research Institute.
[Online]. Available: http://smartgrid.epri.com/SimulationTool.aspx

[20] Wind power. Other World Computing. [Online]. Available:
http://eshop.macsales.com/green/wind.html

[21] Wind-powered data centers. Green House Data. [Online]. Available:
https://www.greenhousedata.com/green-data-centers

[22] Wind turbine power curves. Wind Power Program. [Online]. Available:
http://www.wind-power-program.com/turbine characteristics.htm

[23] M. M. Ahlers. (10) Style and comfort - it must be an energy saving
house. [Online]. Available: http://www.cnn.com/2012/09/16/living/house-
energy/index.html

[24] B. Akşanli, E. Pettis, and T. Šimunić Rosing, “Distributed battery control
for peak power shaving in datacenters,” in Proceedings of the ’13 Internation
Green Computing Conference (IGCC), 2013.

[25] B. Akşanli, J. Venkatesh, and T. Šimunić Rosing, “Using datacenter simula-
tion to evaluate green energy integration,” IEEE Computer 45, 2012.

[26] B. Akşanli, J. Venkatesh, T. Šimunić Rosing, and I. Monga, Computational
Sustainability. Springer, 2015, ch. Renewable Energy Prediction for Improved
Utilization and Efficiency in Datacenters and Backbone Networks.

123

[27] B. Akşanli, J. Venkatesh, L. Zhang, and T. Šimunić Rosing, “Utilizing green
energy prediction to schedule mixed batch and service jobs in data centers,”
in HotPower ’11, 2011.

[28] B. Akşanli and T. Šimunić Rosing, “Optimal battery configuration in a res-
idential home with time-of-use pricing,” in Proceedings of IEEE SmartGrid-
Comm ’13, 2013.

[29] B. Akşanli, T. Šimunić Rosing, and I. Monga, “Benefits of green energy and
proportionality in high speed wide area networks connecting data centers,” in
Design, Automation and Test in Europe Conference and Exhibition (DATE),
2012, pp. 175–180.

[30] B. O. Akyürek, A. S. Akyürek, J. Kleissl, and T. Šimunić Rosing, “Tesla:
Taylor expanded solar analog forecasting,” in Proceedings of IEEE Smart-
GridComm ’13, 2014.

[31] K. Anderson. gridspice: A virtual platform for modeling, anal-
ysis, and optimization of the smart grid. [Online]. Available:
http://code.google.com/p/gridspice/

[32] S. Bandyopadhyay, M. Sengupta, S. Maiti, and D. Subhajit, “A survey of
middleware for internet of things,” Recent Trends in Wireless and Mobile
Networks, 2011.

[33] N. Banerjee, S. Rollins, and K. Moran, “Automating energy management in
green homes,” in Proceedings of HomeNets ’11, 2011.

[34] A. Battaglini, J. Lilliestam, A. Haas, and A. Patt, “Development of supers-
mart grids for a more efficient utilisation of electricity from renewable sources,”
Journal of Cleaner Production, 2009.

[35] L. Benini, G. Castelli, A. Macii, E. Macii, M. Poncino, and R. Scarsi,
“Discrete-time battery models for system-level low-power design,” in IEEE
Transactions on VLSI Systems, 2001.

[36] G. Bredehoeft and E. Krall. (12) Increased solar and
wind electricity generation in california are changing net load
shapes. U.S. Energy Information Administration. [Online]. Available:
http://www.eia.gov/todayinenergy/detail.cfm?id=19111

[37] N. Buchbinder, N. Jain, and I. Menache, “Online job-migration for reducing
the electricity bill in the cloud,” Networking, vol. 1, pp. 172–185, 2011.

[38] T. Carlon. Gridlab-d. [Online]. Available: www.gridlabd.org

124

[39] J. Carrasco, L. Franquelo, J. Bialasiewicz, E. Galvan, R. Guisado, M. Prats,
J. Leon, and N. Moreno-Alfonso, “Power-electronic systems for the grid in-
tegration of renewable energy sources: A survey,” IEEE Transactions on In-
dustrial Electronics, 2006.

[40] H. Chen, T. Finin, and A. Joshi, “An ontology for context-aware pervasive
environments,” The Knowledge Engineering Review, vol. 18, no. 3, pp. 197–
207, 2004.

[41] D. Crawley, J. Hand, M. Kummert, and B. Griffith, “Contrasting the capa-
bilities of building energy performance simulation programs,” Building and
Environment, vol. 43, no. 4, pp. 661–673, 2008.

[42] A. de Almeida and P. Fonesca, “Residential monitoring to decrease energy
use and carbon emissions in europe,” REMODECE, Tech. Rep., 2015.

[43] D. Dondi, P. Zappi, and T. Šimunić Rosing, “A scheduling algorithm for
consistent monitoring results with solar powered high-performance wireless
embedded systems,” in Proceedings of International Symposium on Low Power
Electronics and Design (ISLPED), 2011, pp. 259–264.

[44] K. Ellis, S. Godbole, S. Marshall, G. Lanckriet, J. Staudenmayer, and J. Kerr,
“Identifying active travel behaviors in challenging environments using gps, ac-
celerometers, and machine learning algorithms,” in Frontiers in Public Health,
2014.

[45] K. Fehrenbacher. (July) Facebook is building a big wind-
powered data center in texas. Fortune. [Online]. Available:
http://fortune.com/2015/07/07/facebook-data-center-texas/

[46] M. Friedewald and O. Raabe, “Ubiquitous computing: an overview of tech-
nology impacts,” Telematics and Informatics, vol. 28, pp. 55–65, 2011.

[47] G. Giebel, “The state-of-the-art in short-term prediction of wind power: A
literature overview,” Project ANEMOS, Tech. Rep., 2003.

[48] D. Gmach, J. Rolia, and C. Bash, “Capacity planning and power manage-
ment to exploit sustainable energy,” in Conference on Network and Service
Management (CNSM), 2010.

[49] T. Gu, X. Wang, H. Pung, and D. Zhang, “An ontology-based context model
in intelligent environments,” in Proceedings of communication networks and
distributed systems modeling and simulation conference, 2004.

[50] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of things (iot):
A vision, architectural elements, and future directions,” Future Generation
Computer Systems, 2013.

125

[51] J. Hammer and T. Yan, “Poster: A virtual sensing framework for mobile
phones,” in Proceedings of the 12th annual international conference on Mobile
systems, applications, and services (MobiSys), 2014.

[52] L. Hawarah, S. Ploix, and M. Jacomino, “User behavior prediction in energy
consumption in housing using bayesian networks,” Artificial Intelligence and
Soft Computing, vol. 6113, pp. 372–379, 2010.

[53] C. Holt, “Forecasting seasonals and trends by exponentially weighted moving
averages,” International Journal of Forecasting, vol. 20, no. 1, pp. 5–10, 2004.

[54] J.-H. Hong, S.-I. Yang, and S.-B. Cho, “Conamsn: A context-aware messenger
using dynamic bayesian networks with wearable sensors,” Expert Systems with
Applications, vol. 37, no. 6, p. 46804686, 2010.

[55] E. Howland. What data centers’ growing energy use means for utilities.
[Online]. Available: http://www.utilitydive.com/news/what-data-centers-
growing-energy-use-means-for-utilities/225139/

[56] T. Jamasb and M. G. Pollitt, The Future of Electricity Demand: Customers,
Citizens and Loads. Cambridge University Press, 2011.

[57] P. Jogalekar and M. Woodside, “Evaluating the scalability of distributed sys-
tems,” IEEE Transactions on Parallel and Distributed Systems, vol. 11, no. 6,
pp. 589–603, 2000.

[58] M. R. Jongerden and B. R. Haverkort, “Which battery model to use?” IET
Software, vol. 3, no. 6, pp. 445–457, 2009.

[59] A. Katasonov, O. Kaykova, O. Khriyenko, S. Nikitin, and V. Y. Terziyan,
“Smart semantic middleware for the internet of things,” in Proceedings of
the 5th International Conference on Informatics in Control, Automation and
Robotics, 2008.

[60] Z. J. Kolter and M. J. Johnson, “Redd: A public data set for energy disag-
gregation research,” in SustKDD, 2011.

[61] A. Krioukov, C. Goebel, S. Alspaugh, Y. Chen, D. Culler, and R. Katz,
“Integrating renewable energy using data analytics systems: Challenges and
opportunities,” Bulletin of the IEEE Computer Society Technical Committee
on Data Engineering, 2011.

[62] P. Kurp, “Green computing,” Communications of the ACM, 2008.

[63] A. Kusiak, H. Zheng, and Z. Song, “Short-term prediction of wind farm power:
A data mining approach,” IEEE Transactions on Energy Conversion, vol. 24,
no. 1, pp. 125–136, 2009.

126

[64] ——, “Wind farm power prediction: A data mining approach,” Wind Energy,
vol. 12, no. 1, pp. 275–293, 2009.

[65] K. Le, R. Bianchini, T. D. Nguyen, O. Bilgir, and M. Martonosi, “Capping the
brown energy consumption of internet services at low cost,” in In Proceedings
of the 2010 International Green Computing Conference (IGCC), 2010.

[66] J. Leadbetter and L. Swan, “Battery storage system for residential electricity
peak demand shaving,” Energy and Buildings, vol. 55, pp. 685–692, 2012.

[67] S. Lee and K. C. Lee, “Context-prediction performance by a dynamic bayesian
network: Emphasis on location prediction in ubiquitous decision support en-
vironment,” Expert Systems with Applications, vol. 39, no. 5, p. 49084914,
2012.

[68] S. H. Low and K. A. Tang, “Recovery act - power minimization for networked
datacenters,” California Institute of Technology, Tech. Rep., 2011.

[69] S. K. Madhu, V. C. Raj, and R. M. Suresh, “An ontology-based framework for
context-aware adaptive e-learning system,” in Proceedings of the International
Conference on Computer Communication and Informatics (ICCI), 2013.

[70] C. Miller. Solar powered data centers. [Online]. Available:
http://www.datacenterknowledge.com/solar-powered-data-centers/

[71] R. Miller. Solar power at data center scale. [Online]. Avail-
able: http://www.datacenterknowledge.com/archives/2009/06/16/solar-
power-at-data-center-scale/

[72] ——. Sonoma project features large solar array. [Online]. Avail-
able: http://www.datacenterknowledge.com/archives/2009/07/27/sonoma-
project-features-large-solar-array/

[73] A. Mishra, D. Irwin, P. Shenoy, J. Kurose, and T. Zhu, “Smartcharge: cutting
the electricity bill in smart homes with energy storage,” in e-Energy, 2012.

[74] M. Nebeling, M. Grossniklaus, S. Leone, and M. Norrie, “Xcml: providing
context-aware language extensions for the specification of multi-device web
applications,” World Wide Web (WWW), vol. 15, no. 4, pp. 447–481, 2012.

[75] T. Nguyen. (February) Electric car batteries can now
power home appliances. SmartPlanet. [Online]. Avail-
able: http://www.smartplanet.com/blog/thinking-tech/electric-car-
batteries-can-now-power-home-appliances/6339

[76] C. Perera, A. Zaslavsky, P. Christen, and D. Georgakopoulos, “Context aware
computing for the internet of things: A survey,” IEEE Communications, Sur-
veys, and Tutorials, pp. 414–454, 2013.

127

[77] S. Peterson, J. Apt, and J. Whitacre, “Lithium-ion battery cell degradation re-
sulting from realistic vehicle and vehicle-to-grid utilization,” Journal of Power
Sources, vol. 195, pp. 2385–2392, 2010.

[78] J. Piorno, C. Bergonzini, D. Atienza, and T. Šimunić Rosing, “Prediction and
management in energy harvested wireless sensor nodes,” in Wireless VITAE,
2009.

[79] C. W. Potter, A. Archambault, and K. Westrick, “Building a smarter smart
grid through better renewable energy information,” in Proceedings of Power
Systems Conference and Exposition, 2009, pp. 1–5.

[80] D. Rakhmatov, S. Vrudhula, and D. A. Wallach, “Battery lifetime predic-
tion for energy-aware computing,” in Proceedings of the 2002 International
symposium on Low Power Electronics and Design (ISLPED), 2002.

[81] P. Rashidi, D. Cook, L. Holder, and M. Schmitter-Edgecombe, “Discovering
activities to recognize and track in a smart environment,” IEEE Transactions
on Knowledge and Data Engineering, vol. 23, no. 4, pp. 527–539, 2011.

[82] E. Ratnam, S. Weller, and C. Kellett, “An optimization-based approach for
assessing the benefits of residential battery storage in conjunction with solar
pv,” in IREP Symposium, 2013.

[83] M. Rudary, S. Singh, and M. E. Pollack, “Adaptive cognitive orthotics: com-
bining reinforcement learning and constraint-based temporal reasoning,” in
Proceedings of the 21st International conference on Machine Learning, 2004.

[84] I. Sanchez, “Short-term prediction of wind energy production,” International
Journal of Forecasting, vol. 22, no. 43-56, 2006.

[85] K. Soon Ng, C.-S. Moo, Y.-P. Chen, and Y.-C. Hsieh, “Enhanced coulomb
counting method for estimating state-of-charge and state-of-health of lithium-
ion batteries,” Applied Energy, vol. 86, no. 9, 2009.

[86] S. Staab and R. Studer, Handbook of Ontologies. Springer Science and Busi-
ness, 2010.

[87] L. Swan and V. I. Ugursal, “Modeling of end-use energy consumption in the
residential sector: A review of modeling techniques,” Renewable and Sustain-
able Energy Reviews, vol. 13, no. 8, pp. 1819–1835, 2009.

[88] J. Tant, F. Geth, D. Six, P. Tant, and J. Driesen, “Multiobjective battery stor-
age to improve pv integration in residential distribution grids,” IEEE Trans-
actions on Sustainable Energy, vol. 4, no. 1, pp. 182–191, 2013.

128

[89] D. Uckelmann, M. Harrison, and F. Michahelles, Architecting the Internet of
Things. Springer Berlin Heidelberg, 2011, ch. An Architectural Approach
Towards the Future Internet of Things, pp. 1–24.

[90] P. van de ven, N. Hedge, L. Massoulie, and T. Salonidis, “Optimal control of
residential energy storage under price fluctuations,” in ENERGY ’11, 2011.

[91] J. Venkatesh, “Short-term solar and wind energy prediction for application in
datacenters,” Master’s thesis, University of California, San Diego, 2012.

[92] J. Venkatesh, B. Akşanli, J.-C. Junqua, P. Morin, and T. Šimunić Rosing,
“Homesim: Comprehensive, smart, residential electrical energy simulation
and scheduling,” in Proceedings of 2013 IEEE International Green Computing
Conference, year = 2013,.

[93] J. Venkatesh, B. Akşanli, and T. Šimunić Rosing, “Residential energy simu-
lation and scheduling: A case study approach,” in Proceedings of 2013 IEEE
International Symposium on Computers and Communications, pages = 161-
166, year = 2013,.

[94] J. Venkatesh, C. Chan, A. S. Akyürek, and T. Šimunić Rosing, “A modular
approach to context-aware iot applications,” in Proceedings of the 1st Confer-
ence on Internet of Things Data and Implementation (IoTDI), 2016.

[95] J. Venkatesh, S. Chen, P. Tinnakornsrisuphap, and T. Šimunić Rosing,
“Lifetime-dependent battery usage optimization for grid-connected residen-
tial systems,” in Proceedings of 2015 Workshop on Modeling and Simula- tion
of Cyber-Physical Energy Systems (MSCPES), 2015.

[96] W. Wang, “A comprehensive ontology for knowledge representation in the
internet of things,” in 11th International Conference on Trust, Security and
Privacy in Computing and Communications, 2012.

[97] S. Zahedi and C. Bisdikian, “A framework for qoi-inspired analysis for sensor
network deployment planning,” in WICON ’07.

[98] T. Zhu, A. Mishra, D. Irwin, N. Sharma, P. Shenoy, and D. Towsley, “The
case for efficient renewable energy management in smart homes,” in BuildSys
’11, 2011.

[99] M. Zimesnick. Average cost of solar panels and installation. [Online].
Available: http://renewableenergyindex.com/solar/cost-of-solar-panels

