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Abstract

The current generation of sensor networks are designed to be application-specific, thus are exposed only to a limited
set of users. The emerging concept of IoT is expected to house multiple applications with diverse delay requirements. A
transmission manager provides an optimal transmission time for transmitting the buffered measurements. In the literature,
solutions have been proposed optimizing mainly for single sensing infrastructures. In this work, we first propose an optimal
transmission manager that supports multiple applications in a single-hop wireless sensor networks. Then, we extend our
solution into a distributed transmission manager to operate in multi-hop WSNs. Both transmission managers work in tandem,
and determine the transmission time for every buffered measurement. We implement both solutions in ns3 and compare
with other state of the art solutions. Our case studies show that our proposed solution reduces energy consumption by 75%
compared to the state of the art approaches while having on average 12% less expired measurements.
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Design of transmission manager in
heterogeneous WSNs

1 INTRODUCTION

THE new generation of Wireless Sensor Networks
(WSNs) envisions commodity sensing & actuation

infrastructure to provide services to the Internet of
Things (IoT). These WSNs form a critical and general inter-
face between the physical and cyber worlds. They convert
physical quantities into measurements which can be used
for a wide spectrum of applications. The trend of WSNs are
shifting from the traditional specialized network solutions
that run a single application and support a limited set of
users, into a multiple application network, deployed and
shared by possibly multiple organizations. This results in
the running applications to have diverse delay and accuracy
requirements.

Fig. 1 describes the operation of a sensing plat-
form which collects data from heterogeneous measurement
sources in WSNs. Each sensing platform runs multiple
applications that collect raw data from the corresponding
sensors. Applications process the raw data to generate
measurements, and send these measurements along with
application-specific delay requirements to the data buffer
in the transmission manager. In addition to generating its
own data, the sensing platform also receives packets to be
forwarded from its neighboring nodes as WSNs may use
multi-hop wireless routes to forward the data to the sink
node. Thus, the data buffer in the transmission manager
has both the measurements generated by the node itself
as well as the ones received from its neighbors. The job
of the transmission manager is to determine the optimal
single hop transmission instance of buffered measurements,
based on the end-to-end delay requirements and distance to
the sink along a routing path. Recent publications that look
at delay guarantees in multi-hop WSNs [1] [2] decompose
the end-to-end delay problem into a set of single-hop delay
subproblems. However, they don’t determine a specific so-
lution for how each node in WSNs will obtain a single-hop
delay requirement. They show that the end-to-end delay
guarantee problem requires information about the buffer,
the channel, and the system conditions of ancestor nodes in
the routing paths such that the problem is NP-hard.

The key challenge of the transmission manager is to min-
imize the number of messages that expire prior to reaching
their destination while minimizing the energy consumption.
In this work, we first propose an optimal transmission
manager using the optimal stopping theorem based on
Markov Decision Process model (MDP) in order to obtain
the optimal transmission instance between a pair of nodes.
Then, we propose a distributed transmission manager that
modifies the optimal transmission manager to operate in
multi-hop WSNs. The optimal and distributed transmission
managers work in tandem (ref. Fig. 5), and run on each node
as shown in Fig. 1. In this figure, our approaches for the
transmission managers are implemented in the green box.

Fig. 1. Applications generate measurements which have application-
specific delay requirements and send them to the data buffer in the
transmission manager. Transmission manager determines the transmis-
sion time for the buffered measurements.

They determine the transmission time for every buffered
measurement. Measurements expire if they cannot arrive to
a sink node before the application specific time constraint.

We implement our solutions in Network Simulator
3 (ns3) [3] and compare with the other state of the art
transmission managers [4] [5] [6]. We evaluate the energy
consumption and the number of expired measurements for
three different network topologies: i) single hop, ii) multi
hop linear topology and iii) multi hop grid topology. The
single hop case is typical for small scale wireless sensor net-
works such as Body Area Networks (BANs) [7]. The linear
topology is commonly used in buoy deployments in order to
monitor lake conditions such as temperature, dissolved oxy-
gen, conductivity and pH/ORP. The grid topology has been
shown to be effective for city-wide deployments such as
air quality monitoring in downtown San Diego for projects,
such as CitiSense [8]. In all three cases, our optimal and
distributed solutions work in tandem, and consume on
average 75% less energy than the state of the art approaches,
while having on average 12% less measurement that expire.

This work is structured as follows: first, we summarize
the related work on transmission managers in Section 2.
Section 3.1 formulates the optimal transmission instance
problem using Markov Decision Process (MDP) model and
proves the existence of an optimal transmission time. De-
tails of our proposed optimal transmission manager are
explained in Section 3.2. Section 3.3 describes how our
proposed transmission manager determines the optimal
transmission time for buffered measurements in a single
hop WSN case. In Section 3.4, we describe how our pro-
posed transmission manager operates in multi-hop WSNs.
Section 4 discusses the experimental setup. Finally, network
simulation results with single hop, linear and grid topolo-
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gies are summarized in Section 5.

2 RELATED WORK

There is a small body of publications focusing on designing
a transmission manager that minimizes the energy con-
sumption, while ensuring a low number of expired mea-
surements. These works are based on decreasing energy
consumption by decreasing the number of communication
instances using an embedded buffer. Then, the transmission
time is estimated based on different factors such as local
application delay constraints, distance to the sink node or
node’s available energy.

The periodic per hop approach [4] waits periodically for
a predefined time interval before forwarding the received
data to its parent node. The cascade time-out protocol,
presented in the same publication, buffers all generated
and received measurements in its buffer and transmits at
a calculated transmission time. The calculation is based on a
function of the hop distance to the sink node (h), average
single hop delay (Ds = 0.03 sec in [4]) and sampling
interval (SI) as Transmission Time = 2 (SI− (Ds × h)).

Transmission managers that consider application based
delay constraints are proposed by [5] [6] [9]. These solutions
determine the optimal transmission time of buffered mea-
surements based on the characteristics of a running applica-
tion. The selective-forwarding approaches [5] [9] maximize
the reward of all measurements that are generated in the
wireless network to achieve energy reduction while mini-
mizing the number of expired measurements. They calculate
the importance of a measurement as: αE[Eavail − Ereq],
where Eavail is the available energy of the node and Ereq
is the necessary energy for transmission and α is the delay-
sensitivity factor. Expectation is taken over the probability of
arrival to the sink node. The importance value is compared
with a threshold, upon which the measurement is discarded
or transmitted. Threshold is the total expected importance
at a time instant. Selective-forwarding approaches assume
that all nodes in the wireless network run a single delay
sensitive application. In contrast, the delayed forwarding
approach [6] uses α to represent the trade-off between
energy gain and the expiration rate of measurements. For
example, a large α value requires a node to schedule a trans-
mission within a short amount of time. While this decreases
the probability of measurements timing out, it also increases
energy consumption. The choice of α is arbitrarily specified
by the authors and can be inverse function of measurement
lifetime. In experimental section, we evaluate the effect of
different α to both energy consumption and measurement
expiration rate. At initial state, the delayed forwarding
approach [6] transmits all buffered measurement when the
buffer size is over a predefined threshold. Meanwhile, this
approach updates the threshold with the arrival rates (λ),
average sampling rate (µ) over a time interval and inverse
function of lifetime of currently buffered measurements (α)
as:
⌈

λ·µ
α(α+µ) + 1

⌉
.

Although single application based WSNs have been
studied extensively, prior works do not consider different
delay requirements of heterogeneous applications. This is
the limitation that our proposed solutions seek to resolve in
this work.

Fig. 2. At every decision epoch, transmission manager uses Markov
Decision Process model and find out optimal transmission instance of
buffered measurements. Black arrows represent the transitions between
the states

3 OPTIMAL TRANSMISSION MANAGER

The system model for our proposed solution is shown in
Fig. 1. The distributed and optimal transmission managers
operate between the running applications and the network
layer on each sensing platform. All generated or received
measurements are stored in the data buffer. They contain
four types of information: i) raw data obtained from em-
bedded sensors, ii) end-to-end time constraints determined
by the applications [1] [2], iii) destination address and
iv) application id. Once the optimal transmission manager
decides to transmit, it flushes its measurements in the data
buffer into the network stack which manages the end-to-end
communication. If the underlying communication protocol
is based on Internet Protocol (IP), all fields can be imple-
mented into IP headers and tunneled through. However,
practical considerations are outside the scope of this work.

Our optimal transmission manager (OptTM) determines
the optimal transmission time of the measurements based
on the time constraints of buffered measurements in order
to minimize the number of measurements that expire while
keeping the energy consumption low. OptTM makes the
transmission time decisions at regular time intervals called
decision epochs, as shown in Fig. 2.

We divide time into equal length discrete intervals that
we designate as steps. The time interval between each step
is defined as ∆t. Our solution checks each future step
as a possible transmission instance candidate and decides
whether to schedule a transmission at that step. This de-
cision is determined using a reward based MDP model. In
this section, we first prove that an optimal transmission time
exists and then describe how to find that optimal solution.
The following notations are used throughout this section:

• Steps are indexed using k, where k = 1 is the
first future step that is being investigated. The max-
imum MDP horizon is designated as N , such that
k ∈ [1, N ].

• The set of States, Sk = {s1, s2, . . .}, where each state
value represents the buffer characteristics at step
k. Since our solution makes a binary decision, the
only state values are Sk : {sbest, snot}, designating
whether the maximum reward was achieved at step
k or not.
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• The set of Actions, Ak = {a1, a2, . . .}, where each
action determines the next state of the buffer. For our
solution, the actions are Ak : {transmit,wait}.

• Transition probability matrix, Pk(Sk+1|Sk, Ak). It de-
fines the likelihood of the next state based on the
current state and the current action. For example, if
the chosen action at step k is to transmit all measure-
ments in the buffer (Ak = transmit), the state of next
step k + 1 is an empty buffer.

• Reward, Rk(Sk, Ak), is a functional mapping from a
state and action into a quantitative reward that we
wish to maximize as our optimization goal.

Based on these definitions, OptTM selects the action of
transmit at step k, (Ak = A∗ = transmit), only if that action
returns the maximum expected future reward, (Rk = R∗),
as described in Eq. (1) and Eq. (2).

A∗k = arg max
Am∈A

{Rk(Sk, Am)

+
∑

Sk+1∈S
Pk(Sk+1|Sk, Am)R∗k+1(Sk+1)} (1)

R∗k(Sk) = max
Am∈A

{Rk(Sk, Am)

+
∑

Sk+1∈S
Pk(Sk+1|Sk, Am)R∗k+1(Sk)} (2)

3.1 Criteria for optimality
Based on our system definitions, we derive the criteria for
optimality. We use the following definition of super-additive
functions and theorem for the existence of an optimal policy:

Definition 1. Let S and A be partially ordered sets and f(s, a)
a real-valued function on S × A. The function f(s, a) is super-
additive when f(s′, a′) − f(s, a′) ≥ f(s′, a) − f(s, a) with
s′ > s in S and a′ > a in A.

This definition requires an ordering of the states. Since
we have a binary decision, where the sbest has the max-
imum reward, we assign the following arbitrary values:
snot = 0, sbest = 1,wait = 0, transmit = 1. Note that any
value assignment would work here, as long as the ordering
agrees with the resulting reward value order to satisfy the
following theorem.

Theorem 1. There exists an optimal structured transmission rule
if the formulated problem satisfies the following conditions [10]:

1) Rk(Sk, Ak) is nondecreasing in Sk,∀Ak ∈ A,∀k ∈
[1, N − 1].

2) Cumulative transition probability, qk(S′|Sk, Ak) =∑
Sk+1∈[S′,...]

Pk(Sk+1|Sk, Ak), is nondecreasing in

Sk,∀k ∈ [1, N − 1],∀Ak ∈ A,∀S′ ∈ S.
3) Rk(Sk, Ak) is super-additive function on S ×A.
4) qk(S′|Sk, Ak) is super-additive function on S ×A.
5) RN (SN , AN ) is nondecreasing in SN .

Then, the optimal value is nondecreasing in state S ≤ S′:
R∗k(S) ≤ R∗k(S′).

Theorem 1 states that, if the reward function selection is
super-additive and nondecreasing in all states for all actions

at all steps, then an optimal transmission instance exists
for that reward function. By definition, the reward function
becomes super additive when it satisfies the following rela-
tionship with S′ ≥ S and A′ ≥ A: Rk(S′, A′)−Rk(S,A′) ≥
Rk(S′, A) − Rk(S,A). We first derive a sufficient condition
to satisfy the above two relationships with an assumption
that the reward function is separable into the multiplication
of two nondecreasing functions: Rk(S,A) = f(S) · rk(A).
With this assumption, we can derive a sufficient condition
for super-additivity of Rk(S,A) as described in Eq. (3).

Rk(S′, A′)−Rk(S,A′) ≥ Rk(S′, A)−Rk(S,A)

= rk(A′){f(S′)− f(S)} ≥ rk(A){f(S′)− f(S)}
= rk(A′) ≥ rk(A)

(3)

The sufficient condition is satisfied as rk was assumed
to be nondecreasing. The cumulative transition probability
is also nondecreasing as proven in Eq. (4).

qk(S′|S′k, Ak)− qk(S′|Sk, Ak) (4)

=
∞∑

Sk+1=S′

Pk(Sk+1|S′k, Ak)− Pk(Sk+1|Sk, Ak) ≥ 0

We check the value for three possible cases: When
S′ ≥ S′k, the difference becomes

∑S′
k−Sk

S′ Pk(S′|Sk, Ak). For
Sk ≤ S′ < S′k, it becomes

∑S′
k

S′=Sk
Pk(S′|Sk, Ak). And for

S′ < Sk, the difference is 0. In all three cases, qk is always
nondecreasing.

With these properties, our model guarantees that an
optimal transmission time exists. In the next section we
discuss how we define all of the parameters of our model in
order to guarantee the optimality.

3.2 Optimal transmission manager implementation

At every decision epoch, OptTM checks the buffer state for
each time step and determines when to transmit the cur-
rently buffered measurements. We define the reward at step
k, Rk, as the sum of all buffered measurements’ remaining
lifetime and the expected lifetimes of the future arrivals.
Previous works [5] and [6] use an exponential function as
their reward to emphasize the effect of decreasing message
lifetime with delay. However, through case studies we have
observed that the exponential function decreases the delay
too fast under realistic applications resulting in high energy
consumption. Thus, we use a linear function of remaining
lifetime as shown in Eq. (5) and Eq. (6).

We use the index i to represent the ith application and
define the number of applications as Napp. We define T lifem,k

as the remaining lifetime of the mth measurement in the
buffer at the kth future step as shown in Eq. (6). It is
calculated by taking the difference between the deadline of
the measurement, Di, and the time at step k, k∆t. Future
measurements are generated by applications and may arrive
at different times. Thus, we calculate the expected future
reward in terms of the number of running applications,
delay and the number of arrivals. The expected delay at
the kth step is βk and γk represents the expected number
of measurement arrivals. Pi(γk) is the probability of γk
arrivals from application i. We model this probability using
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Fig. 3. Optimal transmission manager uses only two buffer states based
on optimal stopping theorem

a Poisson distribution as described in Eq. (7), where λi is
the arrival rate parameter. E{D} is the expected deadline of
future measurements.

Rk =
∑
m

T lifem,k +

Napp∑
i=1

∆t(k−1)∑
β=1

∞∑
γk=0

γk · {E{D} − βk}Pi(γk)

(5)

T lifem,k = max {Di − k ·∆t, 0} (6)

Pi(γ) = e−λi(λi)
γ/γ! (7)

The solution uses backwards iteration [10] and calculates
the reward at each step. When the reward at the current step
is the greatest so far, the system is in state sbest, otherwise,
it is in state snot.

Using the Poisson distribution, we can rewrite the re-
ward at step k, R(sk), as in Eq. (8). The arrival rate of any
application is determined by counting the measurements
between two consecutive decision epochs.

Rk(sbest, Ak) =
∑
m

T lifem,k +

Napp∑
i=1

∆t(k−1)∑
βk=1

{E{Di} − βk} · λi

(8)
Since transition probability only exists when OptTM

continues buffering (Ak = wait), the optimal reward at step
k, k < N , can be simplified as in Eq. (9). We define the
reward at the end point as R∗N (sbest) = 1 and R∗N (snot) = 0
due to the nondecreasing property of the reward function.

R∗k(Sk) = max
{
Rk(Sk, Ak = transmit), E[R∗k+1(Sk+1)]

}
(9)

The Rk(Sk, Ak = transmit), k ≤ N is the reward of
buffered measurements at step k when OptTM transmits all
buffered measurements. R∗k+1(Sk+1) is the optimal reward
at the next step, k + 1. The expected reward for the next
state, E[R∗k+1(sk+1)] is calculated as in Eq. (10).

E[R∗k+1(Sk+1)] =
∑

S′∈{sbest,snot}

R∗k+1(S′)P (S′) (10)

The expression can be further expanded into:

R∗k(sbest) = max
{
Rk(sbest), E

{
R∗k+1(sk+1)

}}
(11)

= max{Rk(sbest), P (sbest) ·R∗k+1(sbest)

+ P (snot) ·R∗k+1(snot)}
R∗k(snot) = max{0, P (sbest) ·R∗k+1(sbest) (12)

+ P (snot) ·R∗k+1(snot)}

Since the expected reward is nonnegative, we can sim-
plify further:

R∗k(sbest) = max
{
Rk(sbest), E

[
R∗k+1(sk+1)

]
= R∗k(snot)

}
(13)

This result defines the optimality criteria. In state sbest,
when Rk(sbest) ≥ E

{
R∗k+1(Sk+1)

}
the optimal action is

to transmit all the currently buffered measurements. When
Rk(sbest) < E

{
R∗k+1(Sk+1)

}
, the optimal action is to con-

tinue buffering without transmitting measurements. Simply
put, the optimal transmission instance is which maximizes
the reward while minimizing the number of measurements
that expire as shown in Eq. (14).

N∗ = arg min
k
{Rk(sbest) ≥ E

{
R∗k+1(sk+1)

}
} (14)

We can select any probability distribution that satisfies
Eq. (4). We select Pk(sbest) = 1

k+1 , which states that the
reward at next step k + 1 is the largest seen so far if no
information about the system is present. As sbest and snot
are mutually exclusive events, P (snot) = 1− P (sbest). This
results in the optimal transmission instance being:

N∗ = arg min
k
{Rk ≥ R∗k+1} (15)

ALGORITHM 1: Optimal single hop transmission man-
ager (OptTM)
1 Input 1: time constraints set T
2 A = zeros(1, N), this is action vector
3 R = zeros(1, N), this is reward vector
4 for k=1 to N do
5 Calculate R(k) with Eq. (8)
6 end
7 // Determine optimal action
8 for k=N-1 to 1 do
9 if maxR(1 : k) 6= R(k) then

10 //Current state is snot

11 A(k)← wait // Continue ;
12 else
13 //Current state is sbest
14 Calculate E[R∗

k+1] with Eq. (10) and
apply transmission probabilities

15 if R(k) ≥ R∗
k+1 then

16 A(k)← transmit // transmit all currently
buffered measurements;

17 else
18 A(k)← wait ;
19 end
20 end
21 end
22 if ∃k,A(k) = transmit then
23 Output: optimal transmission instance =

min{k ≥ 1 : A(k) = transmit}
24 end
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Fig. 4. Additional delays at relay nodes (A+B)

3.3 OptTM algorithm for a single hop WSNs
We use the theoretical result in the previous section to devise
our algorithm, as described in pseudo-code Algorithm 1
for a single hop WSN. Inputs to the algorithm are the
current buffer with time constraints of all measurements,
D, and maximum decision horizon, N . OptTM calculates
the reward (Eq. (8)) for each potential transmission step
in lines 4:6. When the current reward is not the greatest
one calculated at previous steps (line 9), OptTM contin-
ues buffering without transmitting measurements, Eq. (12).
Otherwise, OptTM compares the current reward with the
expected reward (line 15). It transmits all the measurements
if the current reward is greater than or equal to the expected
reward. Finally, OptTM selects the earliest step for which
Eq. (14) is satisfied. This is then defined as the optimal trans-
mit time (line 23). The computation and space complexity of
this algorithm is O(N).

3.4 Distributed transmission manager
We extend our optimal single hop solution into the multi
hop case. We assume that the applications assign end-to-end
time constraints based on their own delay requirements for
the generated measurements. Measurements coming from
different applications may have different time constraints.
Our solution, designated as Distributed transmission man-
ager (DistTM), calculates the maximum decision horizon,
N , and uses the single hop solution, OptTM, at each deci-
sion epoch. Instead of calculating the rewards using only
generated measurements, DisTM also uses the received
measurements to be forwarded to decide when to transmit.
This process is described in pseudo-code Algorithm 2.

In lines 6:7, distributed transmission manager calculates
N. Algorithm 1 uses N as an input and calculates optimal
transmission instance between 1 and N in line 9. After
distributed transmission manager gets the transmission in-
stance, it updated end-to-end time constraints of all orig-
inal measurements in Bin in lines 11:16. When updated
end-to-end time constraints have zero or negative values,
DistTM removes corresponding measurements from Bin.
Lastly, DistTM schedules transmission of all measurements
in Bin at the optimal transmission instance in line 17.

ALGORITHM 2: Distributed multi-hop transmission
manager (DistTM)
1 Input 1: buffer Bin

2 Input 2: hsink: distance in number of hops
from current node to sink

3 length(Bin): the number of measurements in
Bin

4 Di: end-to-end time constraint of ith

measurement in Bin

5 // Calculate upper bound of transmission
delay

6 Calculate N∗ with Eq. (17)
7 Calculate N with Eq. (16)
8 // Calculate optimal transmission instance
9 Optimal txinstance ← Algorithm 1 with input N

10 // Check measurements that expire
11 for m=1 to length(Bin) do
12 Bin(m) = Bin(m)− txinstance if Bin(m) ≤ 0 then
13 delete Bin(m) from Bin

14 end
15 end
16 Output: Schedule transmission of

measurements in Bin at txinstance

The computation and space complexity of this algorithm is
O(length(Bin) +N).

In contrast to other state of the art approaches, DisTM
is a non-synchronized approach. This means that there
is no time synchronization assumed between the nodes.
Naturally, this yields additional delays at the relay nodes
as depicted in Figure 4. Node 3 transmits a measurement
to Node 2 at t1. Node 2 relays the measurement to Node
1 at t2. Node 1, then, relays the received measurements
to the sink at t3. A measurement generated from Node 3
can expire if the additional delays at relay nodes (A+B) is
greater than the generated measurement’s time constraint. A
measurement of Node 2 has additional delay at Node 1, but
a measurement of Node 1 does not suffer additional delay
because Node 1 can directly connect to the sink. This implies
that even though all nodes have same measurements with
the same time constraints, Node 3 must have the shortest
transmission interval in order to avoid measurement expira-
tions at relay nodes. This means that DisTM must consider
the distance to the sink when it calculates the maximum
decision horizon, N .

We first consider the worst case delay at relay nodes
in multi-hop WSNs. Suppose that all nodes have the same
measurements with the same characteristics in their buffer,
and they have the same transmission interval N∗ sec. Since
each node transmits after N∗ sec, the worst case delay
is a function of the number of hops to the sink and the
transmission interval, hsink × N∗. This means that when
transmission interval x satisfies the following condition,
hsink×N∗ ≤ D → N∗ ≤ D/hsink, all measurements arrive
at the sink without expiring. The best case delay is N∗ in
case of no additional delay at the relay nodes. The average
delay at the relay nodes in multi-hop WSNs is a function of
the worst and best case delays as described in Eq. 16. The
right hand side of the Eq. (16) is bounded average delay at
relay nodes with x sec transmission interval.
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Fig. 5. Three components of multi-hop TM

Fig. 6. Buffer threshold of CL for different xarb and maximum time
constraints (Tmax) with λ = 0.6

D/hsink +N∗

2
≥ (hsink + 1)×N∗

2hsink
(16)

The goal of DistTM is to find the maximum horizon,
N , by estimating the expected delay at relay nodes with
hop distance of hsink. Thus, DistTM uses expected time
constraints of measurements, E(D), and calculates N∗ as
described in Eq. (17). We use a similar method as in [4],
because they have the best performance when all nodes are
synchronized. Single hop delay is the sum of maximum
values of propagation delays in the wireless channel and
staggering delay in the network layer [4]. The propaga-
tion delay depends on deterministic factors (ex. distance
and packet size) and non-deterministic factors (ex. chan-
nel condition, weather and moving objects) [11]. Thus, it
is impossible to exactly obtain the maximum propagation
delay. In [4], authors set the maximum staggering delay
to 0.03 sec and estimate the maximum single hop delay,
TmaxDelay , as 0.3 sec for CSMA. We use the same value in
our experiments.

x = {E(D)− TmaxDelay × hsink} (17)

4 EXPERIMENTAL SETUP

We evaluate the performance of our proposed OptTM in
terms of percentage of expired measurements and energy
consumption (mJ) compared to the following state of the art
approaches:

• Fixed [4]: All nodes have a fixed buffering time limit
and periodically transmit all buffered measurements
at every instance.

• Cas [4]: The cascade time-out protocol considers the
distance to the sink node to evaluate the buffering
time limit. Farther nodes have shorter buffering time

Fig. 7. Buffer threshold of CL for different xarb and λ

Fig. 8. Percentage of expired measurements

Fig. 9. Energy consumption (mJ)

limit. For single-hop analysis, this method converges
to the shortest time interval between transmission
instances.

• CL [6]: The control-limit transmission manager
transmits all buffered measurements when the buffer
size is over calculated threshold. Simultaneously,
this approach updates the threshold with a function
of arrival rates (λ) and average sampling rate (µ)
over a time interval as:

⌈
λ·µ

α(α+µ) + 1
⌉

. The α is
a inverse function of average time constraints as:
α = xarb

E(time constraints) where xarb is arbitrary specified
by application users. Then, the CL keeps buffering
measurements until the buffer size is over the up-
dated threshold. In, Fig. 6, we vary xarb and evaluate
the performance of CL when 10 nodes construct
linear topology. All generated measurements have
uniformly distributed time constraints between 1 and
maximum time constraint (Tmax). We can observe
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that threshold is converging while we increasing xarb
for all Tmax. More specifically, larger Tmax makesCL
to have larger threshold when it has smaller xarb.
For example, when Tmax is 90 sec, the threshold
of CL is 26 when xarb = 1. when Tmax = 15 sec,
the threshold is 4 which means transmitting buffered
measurement more frequently. However, when we
evaluate energy consumption of CL with different
xarb in Fig. 9, when xarb is less thn 2, CL consumes
less energy while we increasing maximum time con-
straints. However, CL consumes the same amount of
energy whenb xarb is larger than 3. This is because
the threshod is affected by λ as described in Fig. 7.
We can observe that the threshold converges more
fastly with smaller arrival rate (λ). In our experiment,
λ is varying between 0.4 and 1.4, but average arrival
rate is 0.6. In this paper, we select xarb = 2 because it
decrease both energy consumption and the number
of expired measurements while we increaseing max-
imum time constraints as we can see in Fig. 8 and
Fig. 9.

• SF [5]: The selective forwarding transmission man-
ager calculates a threshold based on the consumed
energy and importance of measurements. Impor-
tance is an inverse function of time constraints. It
sends a measurement if the measurement’s impor-
tance is larger than the calculated threshold. Other-
wise, SF discards the measurements. As same as CL
[6], we use maximum time constraints as α.

• DistTM: The distributed transmission manager em-
ploys OptTM which determines the optimal trans-
mission instance based on Eq. (8) and Eq. (15) at ev-
ery decision epoch. At each decision epoch, DistTM
calculates upper bound of transmission instance, and
OptTM uses it to get the optimal transmission in-
stance. Then, DistTM schedules transmission of all
buffered measurements at the optimal transmission
instance. The details of OptTM and DistTM are de-
scribed in Algorithm 1 and Algorithm 2.

We implement all algorithms using ns3 network sim-
ulator [3]. Our approach operates on top of the network
layer, so it is agnostic to the underlying protocols. We use
DSDV [12] as the routing protocol. The physical distance
between two nodes is at least 100m.

We consider three different network topologies: i) single
hop, ii) linear and iii) grid. The single hop case considers
a situation with a single source which is directly commu-
nicating with a sink. Such direct communication between a
sink and sensors is common in small scale WSNs such as
body area networks (BANs) as shown in Fig. 10 [7]. In this
case, we use CC2630 at 2.4 GHz [13] as the transmission
device. The radio module runs at 3V with transmit current
at 6.1mA, receive current at 5.9mA and sleep current of 100
nA. Linear topology establishes a routing path as depicted
in Fig. 11. A good example for this case is lake monitoring
application that deploys multiple buoys on a lake to moni-
tor temperature, dissolved oxygen, conductivity, pH/ORP,
fluorescence (Chlorophyll and Blue-green Algae) [14] to
understand important issues such as spatial distribution
of algal bloom and invasive species. Lastly, we imagine

Fig. 10. Wireless healthcare system architecture [7]

Fig. 11. Example of linearly deployed buoys in an single lake [14]

sensor nodes deployed in San Diego downtown forming
a grid topology as shown in Fig. 12. Such topology has
also been assumed for air quality monitoring in CitiSense
project [8]. Blue node is the sink node while red nodes
generate and relay measurements. Nodes in both linear and
grid topologies have a non-QoS 802.11b radio which uses
ad-hoc mode with 1 Mb/s maximum data rate. The WiFi
module runs at 3V with transmit current at 380mA, receive
current at 313mA, idle listening current at 273 mA and
sleep current at 33mA [3]. Constant speed propagation delay
model characterizes the channel conditions.

We use synchronized and unsynchronized sampling
methods. In synchronized scenario, all nodes periodically
generate measurements at a predefined time interval. This
is typical in monitoring systems which use WSNs to mea-
sure fine grained environmental factors [8]. For example,
environmental monitoring application such as CIMIS [15]
use temperature, humidity and pressure sensors to have a
10 sec sampling granularity. In case of multiplea systems
(applications) running on a single WSN, each application
has own fixed sampling interval. In our experiment, each
application randomly selected sampling time which is uni-
formly distributed between 1 to 10 sec at initial phase.
Then, each application periodically generates own measure-
ments at selected time interval. In unsynchronized scenario,
all nodes generate measurements with randomly selected
sampling time which is uniformly distributed between 1 to
10 sec. This is typical when different applications require
different sampling intervals at different situation. Time con-
straints of measurements are uniformly distributed between
a minimum of 1 sec and a varying value for the maximum
value ranging from 15 to 90 sec. The varying maximum
value enables us to study the effect of heterogeneous time
constraints and effect of randomness. Similar values have
been used in deployed WSNs. For example, in the air quality
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Fig. 12. Considered topology for the realistic network simulation. Node 0
(Blue node) is the sink node. Other nodes generate and relay measure-
ments to the sink node

monitoring system [8] deployed sensors provide data to the
patients every 30 sec. Vaisals weather stations [16] measure
weather conditions such as temperature and humidity every
1 to 120 sec. The initial time interval between decision
epochs is set to be 10 sec. The total simulation time is set
to 24 hours to represent a single day. We run 10 different
applications on each node. The energy consumption is as-
sumed to be heavily due to communication, rather than
processing. There are two major reasongs: 1) we have an
O(N) linear solution, 2) the processing power compared
to communication power is relatively low [13]. Aaron et al.
[17] analyse of power consumption in Smartphone, and they
showed that because network activities consumes at least 5
times more power than CPU and RAM .

5 EXPERIMENTAL RESULTS

5.1 Network simulation of BAN
In this section, we compare the percentage of expired mea-
surements and wireless energy consumption of transmis-
sion managers in a small scale, single hop WSN. We evaluate
the performance of the state of the art transmission man-
agers for both synchronized and unsynchronized sampling.
Fixed transmits all the buffered measurements at every
decision epoch (10sec). CL [6], SF [5] and DistTM check
data buffer at every decision epoch . The initial decision
epoch is 10sec, but next decision epoch is transmission
instance when to transmit buffered measurements. Cas [4]
calculates the time interval between transmissions based on
the node distance to a sink. Since there is only one hop, it
transmits measurements every 19.334sec.

Results with synchronized sampling: In this scenario, 10
different applications in a source node has uniformly dis-
tributed sampling interval between 1 and 10 sec, and keep
the interval to generate measurement. Fig. 13 and Fig. 14
show the percentage of expired measurements and en-
ergy consumption with different maximum time constraints.
While we increase the maximum time constraints to 90 sec,
Fixed and Cas consume same amount of energy because
of fixed transmission intervals. Cas consumes less energy
than Fixed because Cas has longer time interval (19.3334
sec) between communications than Fixed (10sec). CL ad-
justs buffer limit from 2 to 26 for different maximum time
constraints, and transmits measurements if buffer length

Fig. 13. Percentage of expired measurements

Fig. 14. Energy consumption (mJ)
Body Area Network (BAN)

reaches the limit. When the maximum time constraint is
larger than or equal to 60 sec, CL consumes the least energy,
but expire at least 30% of measurements that expire because
the buffer length does not reach the transmission threshold.
This shows a tradeoff between expiration rate and energy,
and the CL algorithm chooses to favor the latter metric.
SF uses time constraints of a measurement, transmission
and reception power to calculate the threshold and the
importance of the measurement. When the importance is
larger than the threshold, SF transmits the measurements.
Otherwise, it discards them. However, given varying max-
imum time constraint ranging from 15 to 90sec, all of
measurements have higher importance than the thresholds.
Thus, SF expires between 0% and 18.13% of measurements
for different maximum time constraints. SF achieves energy
saving by discarding some portion of measurements, but re-
maining messages have to be transmitted at every decision
epoch, so it consumes the same amount of energy as Fixed.
DistTM dynamically adjusts the transmission instance based
on measurements’ time constraints. As the maximum time
constraint is increased to 90sec, DistTM consumes on av-
erage 1.6 times less energy than other algorithm, on top of
which DistTM has on average 5.4% more measurements that
expire (except for CL which does not deliver messages in
timely fashion).

Results with unsynchronized sampling: Unlike synchro-
nized sampling, each node generates measurements based
on a varying sampling interval which is randomly selected
between 1 to 10 sec. Fig. 15 and Fig. 16 describe the per-
centage of expired measurements and energy consumption.
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Fig. 15. Percentage of expired measurements

Fig. 16. Energy consumption (mJ)
BAN with random sampling interval

Fixed has at most 3.3% of expired measurements. Cas and
SF expire at most 34.8% and 16.68% of measurements,
but they consume on average 1.9 time more energy than
DistTM. While we increase the heterogeneity of time con-
straints, other algorithms consume on average 100% more
energy compared to DistTM, except for CL which does not
meet the QoS requirements. DisTM has on average 5.1%
more measurements that expire except for CL which does
not deliver messages in timely fashion.

5.2 Network simulation of a linear WSN
We compare the performance of transmission managers in
terms of energy consumption and the percentage of expired
measurements when a set of 10 linearly connected nodes
sample data and communicate findings to a single sink on
the shore. Each node constructs a routing path to the sink
with table driven routing protocol, DSDV. Cas determines
transmission instance based on a node distance from the
sink. More specifically, farther nodes have shorter time
intervals between communications than nodes closer to the
sink.

Results with synchronized sampling method: In this sce-
nario, applications in a source node has sampling interval
beween 1 and 10 sec, and keep the interval to generates mea-
surements. Fig. 17 and Fig. 18 show the percentage of mea-
surements that expire and the energy consumption. DistTM
adjusts transmission instance based on time constraints of
buffered measurements. Thus, the state of the art algorithms
consume on average 36% more energy than DistTM, while
we expire on average 18% less measurements than than

Fig. 17. Percentage of expired measurements

Fig. 18. Energy consumption (mJ)
Linear WSN

all the approaches. Fixed, Cas, SF periodically transmit
buffered measurements without considering maximum time
constraints. These strict approaches result in higher energy
consumption as compared to DistTM. While we increase
the heterogeneity of time constraints, Fixed, Cas and SF
decreases the number of measurements that expire because
they can deliver more measurements in timely fashion
when we extend the maximum time constraints to 90 sec.
However, they also consume more energy than DistTM in
order to transmit measurements. As we increase the the
maximum time constraint to 90sec, Cas expires on average
0.9% more measurements while consuming on average 10%
more energy than DistTM.

Results with unsynchronized sampling method: We further
investigate the performance of transmission managers in a
linearly constructed WSNs when all nodes use a uniformly
distributed sampling interval between 1 and 10 sec. Fig.
19 and Fig. 20 show the percentage of measurements that
expire and the normalized energy consumption for differ-
ent maximum time constraints. In linear WSN, approaches
using static transmission instance such as Fixed doesn’t
adjust the transmission instance based on maximum time
constraints, so it consumes more energy and have higher
percentage of expired measurements compared to DistTM.
Cas consumes on average 8% less energy than DistTM
while expiring 6% more measurements. When we increase
the maximum time constraints to 90 sec, DistTM dynam-
ically adjusts transmission time between communications,
so it decreases the energy consumption by decreasing the
number of transmission events. DistTM is surpassed in
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Fig. 19. Percentage of expired measurements

Fig. 20. Energy consumption (mJ)
Linear WSN with random sampling interval

terms of energy saving by an average of 71% while having
on average 23% less expired measurements compared to
other approaches.

5.3 Network simulation of a grid WSN

In this scenario, we evaluate the performance of transmis-
sion managers in a grid topology based WSN. We eval-
uate the performance of the state of the art transmission
managers for both synchronized and unsynchronized sam-
plings. As described in Fig. 12, WSN is constructed with 19
nodes and 1 sink. All nodes except for the sink construct
routing paths with table-driven routing protocol, DSDV,
and forward buffered measurements to the next hop nodes
following the established routing path. We study the effects
of network size in Sec. 5.4.

Results with synchronized sampling method: Applications
in each node determine sampling interval which is uni-
formly distributed between 1 and 10 sec, then they period-
ically generate measurements with the interval. Fig. 21 and
Fig. 22 show the percentage of expired measurements and
the energy consumption. Fixed, Cas and SF periodically
transmit measurements without considering maximum time
constraints at fixed time instances, so they have less mea-
surements that expire while we increase the maximum
time constraint to 90 sec. DistTM determines time inter-
val between transmissions based on measurements’ time
constraints, so the other approaches consume on average
34% more energy with an average of 22% more expired
measurements.

Fig. 21. Percentage of expired measurements

Fig. 22. Energy consumption (mJ)
Grid WSN (20 nodes)

Results with unsynchronized sampling method: In this sec-
tion, we evaluate the performance of transmission managers
when all nodes have sampling interval that is uniformly
selected from 1 to 10 sec. Fig. 23 and Fig. 24 show the
percentage of expired measurements and the normalized en-
ergy consumption for different maximum time constraints.
Fixed and SF do not adjust their time intervals between
transmissions, based on time constraints of measurements.
Unlike their approaches, DistTM dynamically finds the
transmission time based on measurements’ time constraints
as described in Algorithm 1 and Algorithm 2 at each de-
cision epoch. DistTM decreases the energy consumption
when we increase the maximum time constraints to 90 sec.
Fixed, Cas and SF have higher percentage of expired mea-
surements under the same condition, but on average they
consume 71% more energy than DistTM. The percentage
of measurements that expire under these protocols is on
average 19% more than DistTM.

5.4 Results for different sizes of WSNs

In this section, the change the network size ranging from 2
to 20 nodes with synchronized sampling method: single-hop
WSN=2, linear WSN=10, and grid WSNs=20.

Fig. 25 and Fig. 26 show the log scaled energy con-
sumption for different network sizes when maximum time
constraints are 15 sec and 60 sec. The number of nodes
in WSN is shown on x-axis ranging from 2 to 20. Bigger
networks generate more measurements and traffic. Thus,
all approaches consume more energy with larger network
sizes. DistTM dynamically adjusts the transmission time
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Fig. 23. Percentage of expired measurements

Fig. 24. Energy consumption (mJ)
Grid WSN with random sampling interval (20 nodes)

instance based on the measurements’ time constraints, so it
decreases energy consumption with greater maximum time
constraints (ref. Fig. 26). When maximum time constraint
is 15 sec, The other approaches consume on average 4.5%
more energy compared to DistTM and expire on average
2.2% less measurements. (ref. Fig. 25). When maximum time
constraint is 60 sec, the average energy consumption of the
other solutions is 73% more than DistTM, with on average
2.6% less expired measurements for different network sizes
(ref. Fig. 26 and Fig. 28).

5.5 Comparison between Cas and OptTM

As we can observe from previous results, DistTM consumes
less energy than the state of the art approaches except for
Cas when maximum time constraint is less than 45sec for
both synchronized and unsynchronized sampling methods.
When maximum time constraint decrease to 15sec, Cas
consumes more energy than DistTM. Thus, in this section,
we study their relationships for different maximum time
constraints, network sizes and sampling methods. Fig. 29
and Fig. 30 describe the trade-off between the percentage
of expired measurements and energy consumption that has
been normalized to Cas. Numbers in parenthesis denote
network sizes: single-hop WSN=2, linear WSN=10, grid
WSNs=20. Numbers on data points denote maximum time
constraints. While we increase the maximum time con-
straints to 90 sec, Cas consumes the same amount of energy
because Cas does not adjust its transmission instance based
on the time constraints of buffered measurements. How-
ever, DistTM decreases the energy consumption for higher

Fig. 25. Maximum time constraint: 15 sec

Fig. 26. Maximum time constraint: 60 sec
Energy consumption (log(mJ))

maximum time constraints. In BAN, Cas expires on average
0.6% less measurements, and consumes on average 1.3 times
more energy than DistTM for different time constraints and
sampling methods. In linear WSN, DistTM consumes on
average 0.89 times less energy than Cas while having on
average1.7

5.6 Overhead

In this section, we evaluate the computational overhead of
transmission managers. We set 90 sec as the maximum time
constraint of measurements because it causes the worst case
computation and space complexity of DistTM. We measure
elapsed time of DistTM on a low-power and small-scale
embedded device, Raspberry PI2 [18] (1GHz CPU and 1 GB
main memory), and compare the elapsed time with the sim-
plest approach, Fixed. 100 measurements are placed into
the data buffer. DistTM determines the optimal transmission
instance based on time constraints. We repeat experiments
100 times. DistTM spends on average 0.4msec more time
than Fixed resulting in 8% computation overhead. This
shows that DistTM can operate on low-power embedded
devices with minimum overhead while it significantly de-
creases both energy consumption and the number of expired
measurements. This result is a natural reflection of theO(N)
complexity of our algorithm.

The computation time is also directly related to the
decision epoch selection, as a smaller epoch would result
in more executions of the algorithm. There is no need for
the decision epoch to be smaller than the smallest time
constraint of the applications, as it would result in waste
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Fig. 27. Maximum time constraint: 15 sec

Fig. 28. Maximum time constraint: 60 sec
Percentage of expired measurements

of computation. Thus, the computation is upper bounded
by max(E(D))×N .

6 CONCLUSION

In this paper, we propose an optimal transmission manager
solution (OptTM) in WSNs where multiple applications
operate with different time constraints. OptTM determines
the optimal transmission instance based on time constraints
of both generated and received measurements in a single
hop. We mathematically prove the existence of the optimal
transmission instance. Distributed transmission manager
(DistTM) evolves OptTM to operate in multi-hop WSNs.
DistTM explicitly considers the relationship between end-
to-end time constraints and the distance to sink unlike other
approaches. We implement both DistTM and OptTM in ns3
simulator, and compare their performances with other state
of the art approaches in terms of energy consumption and
the number of expired measurements. We consider three
different network topologies, single hop, linear and grid,
and vary maximum time constraints from 15 sec to 90
sec. For all configurations, the state of the art approaches
consume average 75% more energy than our solution, with
our algorithm expiring on average 12% less measurements
than the other solutions.
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