
Reliability-Driven Deployment in
Energy-Harvesting Sensor Networks

Xiaofan Yu∗, Xueyang Song∗, Ludmila Cherkasova† and Tajana Šimunić Rosing∗
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Abstract—Recent years have witnessed a significant expansion
in Internet-of-Things (IoT) applications, especially in environ-
mental monitoring, which aims at providing full coverage over
potential targets. With energy harvesting ability, sensor devices
can be replenished by external energy sources, and thus their life-
time is prolonged. While existing literature focuses on minimiz-
ing deployment cost, the reliability management is overlooked.
Previous research has addressed that a higher temperature
exponentially accelerates hardware failure rates. The versatile
outdoor environments impose a non-negligible thermal stress on
the hardware and consequently reduce the reliability of devices.
In this paper, we are the first to propose a reliability-driven sensor
deployment approach to achieve minimum nodes, while satisfying
(i) full target coverage, (ii) complete connectivity, (iii) energy-neu-
tral operation, and (iv) reliability constraints. Given external
temperature distribution, we propose an algorithm to convert
reliability constraints to a single-value power threshold for each
location. A Mixed Integer Linear Programming (MILP) model is
formulated and solved with CPLEX. Due to the complex nature
of MILP, we propose a heuristic, named Reliability-driven Two-
Stage Heuristic (R-TSH), to approximate the optimal solution for
large-scale problems. Extensive simulations are performed on a
real-world dataset from the National Solar Radiation Database.
Our results indicate that R-TSH meets all reliability constraints
with only 20% more sensors than the optimal solution, while
executing more than 1500x faster. Compared to state-of-the-art
heuristics, R-TSH avoids 20 - 80% of reliability violations with
a comparable number of nodes and execution time.

Index Terms—IoT Networks, Sensor Deployment, Reliability.

I. INTRODUCTION

The rise of ubiquitous computing and Internet-of-Things
(IoT) network has encouraged numerous environmental moni-
toring applications, e.g., Smart City [1], Smart Agriculture [2].
According to Ericsson’s report, around 1.5 billion IoT devices
with cellular connections will be spread over the globe in
2022 [3]. A common goal of these applications is to fully
cover point-of-interests (PoIs) or areas with sensor networks,
while achieving less cost or longer lifetime under careful
management [4], [5]. Energy harvesting techniques can further
extend the lifetime of devices. With rechargeable batteries,
refilled by external sources such as solar radiation, sensor
devices ideally may obtain infinite lifetime if their energy
consumption is less than the harvested energy. This usage
mode is called energy-neutral operation [6].

Device placement, being the first step in establishing the IoT
network design, makes a significant impact on the IoT network
reliability and its lifespan. Common management techniques
such as resource allocation, load balancing, and flow manage-

ment can improve the Quality-of-Service and lifetime of an
established network [7], [8], but device placement decisions set
the upper bound on such improvements. Using optimization to
determine the node placement appears as a common method in
designing the traditional content delivery networks [9], where
the goal is to carefully place replica servers to minimize ser-
vice latency. In contrast, sensor placement for ubiquitous IoT
networks is different since versatile environmental conditions
such as temperature and solar radiation need to be considered.

Existing works in energy-harvesting sensor networks de-
ployment have studied minimizing deployment cost after en-
suring: (i) coverage (i.e., all PoIs are covered), (ii) connectivity
(i.e., all devices are directly or indirectly connected to the gate-
way), and (iii) energy-neutral operation [10], [11]. However,
the reliability factors are overlooked in the previous work.
Even with infinite energy income, both storage and computing
subsystems degrade over time and ultimately require repairing
or complete replacement. State-of-the-art electronics aging
models revealed that the failure rates of hardware systems
depend exponentially on temperature [12]. More concretely,
the mean-time-to-failure (MTTF, i.e., the expected time to
failure) of a device is exponentially shortened under high
temperatures. The capacity and power output of batteries also
degrade exponentially faster in hot environments, whose aging
status is described by the State of Health (SoH) [13]. Starting
from SoH = 1, a battery reaches its end of life when SoH
decreases to 0.8 regardless of the remaining charge [14]. If
not managed carefully, the expenditure on maintenance can
take up to 80% of the total deployment cost. As reported by
Cisco [15], $3.2M/year will be spent in administrative labor
and technical support due to system failures for every 100K
devices. Reliability will become the major bottleneck in the
future IoT deployment, especially for outdoor environmental
monitoring under extreme temperatures.

In this paper, we study the methods to manage the reliability
of an energy-harvesting sensor network from the very first step
of deployment. The contributions are four-fold:

• We are the first to attack the problem of reliability-driven
energy-harvesting sensor deployment for environmental
monitoring. We integrate the state-of-the-art reliability
models of electronics and battery state-of-health, both of
which exponentially rely on temperature.

• We formulate an optimization problem minimizing the
number of nodes, while achieving (i) full coverage on



PoIs, (ii) complete connectivity, (iii) energy-neutral op-
eration, and (iv) reliability constraints. The formulated
problem is a Mixed Integer Linear Program (MILP),
which is solved by CPLEX. We proved that the proposed
problem is NP-complete.

• We offer a greedy heuristic named Reliability-driven
Two-Stage Heuristic (R-TSH) in search of suboptimal
solutions in large-scale problems.

• Extensive simulations are conducted based on a
real-world solar irradiance and ambient temperature
dataset from the National Solar Radiation Database
(NSRDB) [16]. Our results show that R-TSH meets all
reliability constraints with 20% more sensors than the
optimal solution while executing more than 1500x faster.
Compared with previous heuristics, R-TSH avoids 20 -
80% of reliability violations with a comparable number
of nodes and execution time.

The rest of the paper is organized as follows: Section II
summarizes related literature. Section III introduces the back-
ground of reliability models used in the paper. The optimiza-
tion problem is formulated and solved in Section IV. Section V
explicitly describes the design of R-TSH. Evaluation setup and
results are discussed in Section VI. Finally, the whole paper
concludes in Section VII.

II. RELATED WORK

A. Sensor Deployment in Wireless Sensor Networks
Existing literature on sensor deployment mainly optimizes

coverage [17], connectivity [18], and network lifetime [19]. In
terms of coverage, application requirements can be categorized
into area coverage, target coverage, and barrier coverage [5].
The optimization goal is designing a network with minimum
deployment cost or longest lifetime while satisfying the cov-
erage and connectivity requirements [4]. To find the optimal
solution, grid placement is transformed into integer program-
ming models and solved with conventional solvers. However,
NP-hardness of integer programming problems results in poor
scalability, and therefore encourages the development of ef-
ficient heuristics to approximate the optimum within finite
time [17], [18], [20]. All the above-mentioned works assume
single-use batteries, so the network lifetime is limited.

In recent years, renewable energy has opened up novel
possibilities in sensor deployment. With energy harvesting, a
sensor node can operate perpetually if placed at a location
with sufficient energy input. Yang et al. [10] is the first to
formulate a sensor placement problem for achieving energy-
neutral operation with the goal of covering fixed targets and
ensuring connectivity to the gateway. Along with bringing
out a Mixed Integer Linear Programming (MILP) problem,
the authors proposed two greedy heuristics that require 20%
and 10% more sensors than MILP in the simulation. The
later work by Zhu et al. [11] considers the placement of
directional energy-harvesting sensors for target coverage. They
also consider solar panel size at each site as variables which
determine the energy-harvesting rate. Three heuristics were
offered, along with the corresponding analyses on time com-
plexity and performance bound. Nevertheless, neither of [10]
or [11] considered reliability, which causes striking differences
in versatile outdoor environments.

B. Reliability-Driven Network Deployment

Reliability has become increasingly important for large-
scale networks that may introduce enormous maintenance
costs. For traditional data-center networks, the common strat-
egy to improve reliability is duplicating network service on
replica servers, so that latency requirements are met even
if some servers are down [9], [21]. While sensor networks
present more uncertainties on device- and communication-
level, previous works applied similar ideas of placing redun-
dant nodes to enhance the fault tolerance of the network. Extra
nodes can be placed to achieve k-coverage (i.e., any point
of interest (PoI) needs to be covered by at least k sensors),
which ensures reliable sensing since failures of less than k
nodes will not hinder a successful detection [19]. A similar
m-connectivity constraint (i.e., any sensor is required to have
m distinct paths to the gateway) can guarantee reliable data
transmission when unexpected link failures occur [22]. All the
above-mentioned contributions are able to temporarily mitigate
the negative influence on network functionality upon failures.

However, very few existing papers offer the models of fail-
ure mechanisms/conditions and address how to preventively
reduce the failure rates. On this track, the most recent work by
Yu et al. [23] studied temperature-based sensor deployment for
the minimal maintenance cost considering single-use battery
depletion and electronics failures. A non-convex nonlinear
optimization problem is formulated and approximated with
metaheuristics. Simulation results demonstrated that their strat-
egy can save up to 40% of maintenance cost compared to ex-
isting greedy heuristics. Although concrete failure mechanisms
are modeled, their methodology is not applicable to energy-
harvesting sensor networks where rechargeable batteries are
used. In this paper, we approach the problem differently
from [23] by assuming the following:

• We consider more commonly-applied grid deployment for
target coverage rather than continuous-space monitoring.

• We introduce electronics MTTF and battery SoH con-
straints, the latter of which focus on rechargeable batteries
instead of the single-use ones.

III. BACKGROUND ON RELIABILITY

Reliability of a system is a probability function R(t) defined
on [0,∞] that the system will not fail until time t [12]. It is
highly related to the failure rate of a system, which shows a
bathtub curve as a function of time [24]. While failure rates
in the initial burn-in and final wear-out periods of a system
change rapidly, we focus on the useful lifetime of systems
during which the failure rates are constant. Failures in sensor
networks can be categorized into link failures, software fail-
ures, and hardware failures [25]. We recognize that both link
and software failures can be recovered or avoided if designed
properly. For example, a software issue can be resolved by
updating firmware remotely. In this paper, we mainly consider
permanent hardware failures which require significant mainte-
nance effort including device repair or complete replacement.
Specifically, we use state-of-the-art reliability models for two
key components of sensor networks: electronics and battery,
stressing the impact of ambient temperature.



A. Electronics Reliability Model
Previous research has studied common electronics failure

mechanisms including time-dependent dielectric breakdown,
negative bias temperature instability, electromigration, and
thermal cycling, all of which are accelerated exponentially
by the core temperature [12], [26]. We use the term core
temperature to refer to the internal temperature of a chip.
The MTTF for each mechanism can be modeled as a function
of time, voltage, temperature, and technological parameters.
In [24], the authors showed that the MTTF of all above-
mentioned mechanisms share a similar form depending on
the core temperature Tc. We extract this general expression
to estimate MTTF as the ratio to the standard case under
Tref = 25°C:

MTTF (Tc) = exp(
Ea
kTc

)/ exp(
Ea
kTref

), (1)

where Ea is the activation energy, k is Boltzmann’s constant.
According to the thermal dissipation model in [27], Tc linearly
depends on average power consumption P of the device and
ambient temperature Tamb at the deployed location:

Tc = k1P + k2Tamb + k3. (2)

where k1, k2 and k3 are device-specific parameters obtained
by fitting into experimental traces.

B. Battery Reliability Model
In contrast to the state-of-charge model that predicts the

available charge in a battery, we utilize the state-of-health
model denoting a battery’s aging level in comparison to its
brand new state. Even though a battery can be recharged
by harvested energy, it suffers from capacity and power fade
which eventually makes the battery unusable. The operational
lifetime of a battery is defined as the time when SoH reduces
from 1 to 0.8 [14]. It is widely recognized that battery aging
consists of calendar aging and cycle aging [28]. While calendar
aging is exponentially accelerated by time, temperature, and
state-of-charge stresses, cycle aging additionally accounts for
the degradation due to the depth of discharge (DoD) in
each charge-discharge cycle. We use the state-of-the-art semi-
empirical SoH model in [14] for Lithium-Ion batteries. Since
our goal is to optimize long-term state-of-health, we mainly
focus on calendar aging with time and temperature stresses:

SoH(t, Tcell) = exp

{
−ktt exp

[
kTTref

(
1− Tref

Tcell

)]}
.

(3)
Here t is the elapsed time. Tcell is the internal battery cell
temperature and Tref is the reference temperature of 25 °C.
kt and kT are predetermined constants. Similar to estimating
core temperature, we employ the thermal model in [27] to
convert ambient temperature Tamb to battery cell temperature
Tcell with different linear coefficients.

IV. OPTIMAL PROBLEM FORMULATION

In this section, we explain the formulation of the optimal
sensor deployment problem and how to solve it. We consider
deploying sensor nodes into a grid candidate space N to
cover a set of PoIs denoted by O. For ease of reading,

TABLE I: List of important notations in problem formulation.

Symbol Meaning
N Set of grid locations
O Set of point-of-interests
Sr Feasible sensing radius
Cr Feasible communication radius
K Required coverage level
G Quantity of data in each sample
γ The maximum possible flow amount
η Uniform sampling frequency
BW Communication bandwidth
dij Euclidean distance between grid locations i and j
Γi,ΓB Set of neighbor nodes of node i and the gateway
xi Binary variable of whether a device is placed at i
si Binary variable of whether a sensor is placed at i
fij , fiB Average flow quantity from i to j and to the gateway
Ptx, Prx Average transmission and reception power
Pi Average power consumption rate at node i
PSoH,i Power upper bound to meet SoH lower bound at i
PMTTF,i Power upper bound to meet MTTF lower bound at i
Ri Energy harvesting rate at node i
Tamb,i Ambient temperature at node i
Tcell,i Battery cell temperature at i
Tc,i Internal core temperature at i
Tref Reference temperature of 25 °C
T ime Elapsed time for reliability evaluation

we list the important symbols used in our formulation in
Table I. Assuming at most one device can be placed at
a grid point and only one gateway exists, the optimization
problem minimizes the number of deployed nodes subject to
the following constraints:
• K-coverage. Each PoI is covered by at least K sensors.
• Complete connectivity. All generated data can be success-

fully routed to the gateway.
• Energy-neutral operation. At each deployed site, the

energy consumption is less than the harvested energy.
• Reliability constraints. Using the models in Section III,

the reliability of each deployed device after a predeter-
mined time duration Time is greater than a given bound.

The binary variables of the problem are xi (Equation 4) and
si (Equation 5). While xi suggests whether a device is placed
at location i, si further indicates whether the device performs
sensing actions. xi and si enable the problem to distinguish
relay nodes (i.e., nodes that only route data) and sensor nodes
(i.e., nodes that carry out both sensing and transmission). The
continuous variables are fij and fiB while representing the
flow quantity from node i to j and from node i to the gateway
respectively.

xi =

{
1 if a device is placed at i
0 otherwise. (4)

si =

{
1 if a sensor is placed at i
0 otherwise. (5)

To help the readers get familiar with the notations, we depict
an example deployment in Figure 1. Each grid point is viewed
as a candidate site. The red triangles represent deployed sensor
nodes (xi = 1, si = 1) whose sensing radius is shown by
the red circle. Both PoIs (green diamonds) are successfully
covered by the deployed sensors with level K = 1. Differently,
the blue dots denote for pure relay nodes (xi = 1, si = 0)
that only route data. All nodes are connected to the gateway
(orange star).



Fig. 1: An example deployment instance.

Now we rigorously formulate the problem as MILP with
the following mathematical form:

min
∑
i∈N

xi (6)

subject to∑
i∈N

si · cov(i, j) ≥ K, ∀j ∈ O (7a)

siηG+
∑
j∈Γi

fji =
∑
j∈Γi

fij + fiB , ∀i ∈ N (7b)∑
i∈ΓB

fiB =
∑
i∈N

siηG (7c)

si ≤ xi, ∀i ∈ N (7d)∑
j∈Γi

fij ≤ γxi, ∀i ∈ N (7e)

Pi = P0 + siEsη +
∑
j∈Γi

(
Ptx(dij)

fij
BW

+ Prx
fji
BW

)
, ∀i ∈ N

(7f)
Pi ≤ min {Ri, PSoH,i, PMTTF,i} , ∀i ∈ N (7g)
xi ∈ {0, 1} , si ∈ {0, 1} , ∀i ∈ N (7h)
0 ≤ fij ≤ γ, ∀i ∈ N, j ∈ N, i 6= j (7i)

Equation 7a is the K-coverage constraint. Equation 7b and 7c
impose the connectivity requirements. Specifically, Equation
7b requires the sum of generated data and incoming flows
to be equal to the total quantity of outgoing flows. Equation
7c guarantees all sensed data are converged at the gateway.
Equation 7d and 7e are feasibility constraints. The former
equation states a sensor can only be placed at the site where
a device exists, while the latter one claims no flow can pass
through node i if no device is located there. γ = ηG |N |
is defined as the maximum possible flow quantity in the
network. Equation 7f illustrates the linear power model, after
which Equation 7g ensures that energy-neutral operation and
reliability constraints are achieved at each site. Last but not
least, Equation 7h and 7i give the lower and upper limits for
all variables. We concretize and explain each constraint in the
following lines.

Coverage Constraint: We employ the fundamental binary
coverage model as follows [4]:

cov(i, j) =

{
1 if d(i, j) < Sr,
0 otherwise. (8)

Sr denotes for the feasible sensing radius. d(i, j) reports the
Euclidean distance between i ∈ N and j ∈ O. Adopting the
K-coverage concept [19], a full coverage in our formulation
means each target is supervised by as least K sensors:∑

i∈N
si · cov(i, j) ≥ K ∀j ∈ O (9)

Connectivity Constraint: We assume the feasible com-
munication range of each device to be Cr. Then the
neighbor set Γi of grid node i is defined as Γi =
{j ∈ N | dij < Cr, j 6= i}, where dij denotes the Euclidean
distance between grid locations i and j. Similarly, ΓB repre-
sents the set of neighbor nodes of the gateway. The connec-
tivity constraints require: (i) flow conservation, i.e., the sum
of the outgoing flow should equal to the sum of the incoming
flow and generated data (if any) at each node (Equation 7b),
(ii) complete connectivity, i.e., all data generated from end
devices converge into the gateway (Equation 7c).

Energy-Neutral Operation Constraint: To achieve
energy-neutral operation at each deployed spot, we require the
average power of the device is less than or equal to the har-
vesting rate. The power of an energy-harvesting sensor node
can be classified into ambient power (e.g. dissipated power
during the sleep state), sensing power, and communication
power [29]. We assume the system is woken up once in a
sampling interval Tcycle, performs the sensing task, transmits
the packet, and is set to sleep again before the next cycle. We
utilize the following equation to model the average power of
a device at grid location i:

Pi = P0 + siEsη +
∑
j∈Γi

(
Ptx(dij)

fij
BW

+ Prx
fji
BW

)
(10)

where P0 is a constant denoting the ambient power dissipation.
Es is the energy consumed per sensing task and η = 1/Tcycle
is the sampling frequency. Thus Esη stands for the average
power in sensing. With si, sensing power is only counted when
a sensor is placed at i. The last term in the bracket is the
average transmission and reception power models from [30].
We apply a simplified version here using typical parameters
for BPSK. The transmission power varies polynomially to the
distance: Ptx(d) = pto + k · dα, where pto, k, and α are
predefined constants. On the other hand, the average reception
power Prx is configured as a fixed value. The continuous
variables fij and fiB denote for the average amount of flow
from node i to node j and from node i to the gateway
respectively. BW is the bandwidth of the link.

The average energy harvesting rate Ri at grid location i can
be determined by the average solar irradiance level λi (W/m2)
[11]: Ri = ξAλi, where ξ is the end-to-end conversion
efficiency of the solar system, A is the surface area of the
solar panel. Both ξ and A are constants in our formulation. λi
is available from online databases such as NSRDB [16]. Now
we are able to write the energy-neutral operation constraint at
i as:

Pi ≤ Ri (11)

Reliability Constraints: With the models in Section III, we
are able to estimate the reliability given ambient temperature
and average power. Suppose the reliability status is evaluated



Fig. 2: The cumulative distribution of ambient tempera-
ture in one year at 10 equally-distributed locations in a
100 km × 100 km field in Southern California, US. The data is
downloaded from NSRDB [16]. Each colored curve represents
the temperature distribution over time at one of the locations.

after a predetermined time duration Time. Our goal is to de-
cide a sensor deployment strategy such that certain reliability
bounds can be met after Time at each deployed location i.
However, two issues are remaining unsolved.

Firstly, the ambient temperature Tamb changes over both
time and space (Figure 2). Depending on the location, tem-
perature can spread mostly in 10 - 40 °C (purple line) or in
0 - 30 °C region (red line). Consequently, at a fixed location,
the SoH and MTTF can vary largely on the time horizon due
to ambient temperature variations. We address this issue by
taking an integral over the temperature distribution on the
time axis. The expectation of SoH and MTTF at a specific
location i can be calculated as in Equation 12, where pTamb,i

is
the probability associated with the temperature distribution at
location i. Note, that the elapsed time for reliability evaluation
is fixed to Time and therefore is omitted from the variables.

E [SoH(Pi)] =

∫ ∞
−∞

SoH(Tcell,i(Tamb,i, Pi))pTamb,idTamb,i

(12a)

E [MTTF (Pi)] =

∫ ∞
−∞

MTTF (Tc,i(Tamb,i, Pi))pTamb,idTamb,i

(12b)

In practice, we can approximate Equation 12 by splitting
the temperature distribution into sufficiently many bins and
summing over all bins. Now the reliability constraints can be
written as guaranteeing the expectation of SoH and MTTF to
be greater than or equal to the predetermined bounds SoHref

and MTTFref :

E [SoH(Tcell,i(Tamb,i, Pi))] ≥ SoHref (13a)
E [MTTF (Tc,i(Tamb,i, Pi))] ≥MTTFref (13b)

The second issue is the nonlinearity of reliability models
(Equation 1 and 3) which puts us in the complexities of
solving a nonlinear optimization problem. Is there a method
to transform the nonlinear reliability constraints to linear
inequalities? To solve this issue, note that after the integral
in Equation 12, the expectations of SoH and MTTF only rely

on the average power of the device at location i. Specif-
ically, given ambient temperature distribution, E [SoH] and
E [MTTF ] are monotones decreasing in Pi. Therefore we are
able to reversely determine the corresponding upper bounds on
average power to meet the reliability lower bounds. In this way,
the nonlinear reliability constraints can be expressed as linear
inequalities with previous linear power models. We employ the
binary search algorithm to efficiently estimate the power upper
bound brought by SoH and MTTF constraints (i.e., PSoH,i
and PMTTF,i) within a precision of ε. Taking PSoH,i as an
example, the complete procedure to convert reliability bounds
to power bounds is written in Algorithm 1. Initiating the two
ends of search space to 0 and Pmax, Algorithm 1 takes at most
log2(dPmax

ε e) iterations to locate the desired power bound.
Since both the energy-neutral operation and reliability con-

straints are expressed as power upper bounds, they can be
combined into one single inequality as in Equation 7g:

Pi ≤ min {Ri, PSoH,i, PMTTF,i} (14)

Algorithm 1 Converting State-of-Health Bound to Power
Bound

Input: SoHref , Tamb,i, ε
Output: PSoH,i

1: Plb ← 0, Pub ← Pmax
2: while Pub − Plb > ε do
3: Pmid ← (Pub + Plb)/2
4: Update E [SoH(Pmid)] as in Equation 12a
5: if E [SoH(Pmid)] = SoHref then
6: return Pmid
7: else if E [SoH(Pmid)] > SoHref then
8: Plb ← Pmid . continue searching in higher-power

zone
9: else

10: Pub ← Pmid . continue searching in lower-power
zone

11: end if
12: end while
13: return (Plb + Pub)/2

A. Problem Analysis

The number of decision variables in the formulated MILP
is 2|N | + |N |2, where 2|N | of them are binary and the rest
|N |2 variables are continuous. After the simplification, we
arrive at |N |+1 equality constraints and 3|N |+ |O| inequality
constraints. We implement and solve the proposed problem in
CPLEX 12.10 [31]. However, by demonstrating the following
theorem , we show that the proposed problem cannot be solved
in polynomial time.

Theorem 1. The proposed problem is NP-complete.

Proof. By setting G = 0, P0 = 0, Es = 0, Ptx = Prx =
0,K = 1, the original problem transforms to covering a given
set of targets with minimum number of grid points, which is
exactly the minimum set cover problem. Since the minimum
set cover problem has been proved to be NP-complete [32],
the proposed problem is also NP-complete.



V. PROPOSED HEURISTIC: R-TSH
Given our optimization problem is NP-complete, we de-

vise a greedy heuristic for large-scale problems. Based on
the Two-State Heuristic (TSH) proposed in [11], we further
include the reliability factors, leading to an algorithm named
Reliability-driven Two-Stage Heuristic (R-TSH). The original
TSH has two stages in sequence. The first stage greedily
selects sensor nodes to achieve full coverage with minimum
cost. Afterwards, the second stage concurrently finds the
shortest communication path from each selected sensor to the
gateway. While R-TSH also employs the two-stage mecha-
nism, its optimization mechanism is quite different. Contrary
to TSH that attempts to minimize the deployment cost, R-
TSH makes selections based on the equivalent power bound
Pbd,i = min {Ri, PSoH,i, PMTTF,i} at each site i. In this
way, R-TSH guarantees both the energy-neutral operation and
reliability targets with greedy choices.

Algorithm 2 shows the detailed implementation of R-TSH.
The first sensor selection stage spans from line 1 to line 20.
Here we greedily select the sensor locations with the maximum
benefit:

Benefiti = |Si ∩ U | · Pbd,i (15)

where Si denotes the set of PoIs covered by location i and
U represents the PoIs that have not been fully covered. The
benefit function favors the locations contributing more to
coverage while loose in power bounds. The selecting loop exits
once the full K-coverage is attained, or no new coverage can be
made. The latter case indicates that the problem is infeasible.

In the communication-path selection stage, we construct a
directed graph by including all connectable edges and assign
the following weight to edge (i, j) with tuned parameters
ω1, ω2:

W (i, j)← ω1 [i ∈ S] + ω2
(Ptx(dij) + Prx)ηG/BW

Pbd,i − (P0 + Esη [i ∈ S])
(16)

Here the notation [Cond] gives 1 when the inner condition
Cond is met. The first term appends additional cost to the edge
if i is not added in stage 1. The second term computes the ratio
of increased transmission power and remaining power budget.
Intuitively, the communication paths costing less transmission
power and less critical in energy bounds as well as reliability
constraints are given higher priorities. All selected sensor
nodes and relay nodes are returned in X .

VI. EVALUATION

A. Experimental Setup
We implement our problem and heuristic in MATLAB

R2020a1, while the MILP is solved by CPLEX 12.10 [31].
Simulation experiments are performed on a Linux desktop
with Intel Core i7-8700 CPU at 3.2 GHz and 16 GB RAM.
We use a dataset covering 100 km × 100 km region in
Southern California, US, downloaded from NSRDB [16].
The dataset contains half-hourly solar irradiance and ambient
temperature measurements of 836 locations from January 1,
2019, to January 1, 2020. To simulate deploying sensors onto
various sizes of fields, we project the spatial temperature

1The source code is available at https://github.com/Orienfish/EH-deploy.

Algorithm 2 Reliability-driven Two-Stage Heuristic (R-TSH)

Input: N,O,K,Pbd,i
Output: X,S, F

1: S ← ∅
2: U ← {1, 2, ..., |O|} . PoIs not fully covered
3: qi ← K, ∀i ∈ N . unsatisfied coverage requirements
4: while U 6= ∅ do
5: Si ←

∑
j∈U cov(i, j), ∀i ∈ N . PoIs covered by i

6: i∗ ← arg max {|Si ∩ U | · Pbd,i | i ∈ N − S}
7: if |Si∗ ∩ U | = ∅ then
8: break . no new coverage
9: end if

10: for all k ∈ |Si∗ ∩ U | do
11: qk ← qk − 1
12: if qk ≤ 0 then
13: U ← U − {k}
14: end if
15: end for
16: S ← S ∪ {i∗}
17: end while
18: if U 6= ∅ then
19: return Null . infeasible in full coverage
20: end if
21: V ← N
22: E ← {(i, j) | i, j ∈ N, i 6= j, j ∈ Γi}
23: W (i, j)← ω1 [i ∈ S]+ω2

(Ptx(dij)+Prx)ηG/BW
Pbd,i−(P0+Esη[i∈S]) , ∀(i, j) ∈

E
24: Construct directed graph GP (V,E,W )
25: Concurrently find the shortest paths F from S to the

gateway in GP using Dijkstra’s algorithm.
26: X ← {i | i ∈ F}
27: return X,S, F

distribution to the candidate grid space. The positions of
PoIs and the gateway are randomly initialized. We set the
reliability bounds SoHref = MTTFref = 0.9 and elapsed
time Time = 3 years. Table II reports the detailed parameter
settings.

The performance of the following methods are evaluated:
• OPT: The optimal solution to the proposed problem.
• OPTnoRel: The optimal solution to the proposed problem

without reliability constraints.
• R-TSH: Our proposed heuristic.
We select two baselines from [11], TSH, and SRIGH to

compare. Both TSH and SRIGH are devised to cover PoIs
with minimum deployment cost while ensuring energy-neutral
operation.
• TSH: The original two-stage heuristic in [11].
• SRIGH: Sensing- and routing- integrated greedy heuristic

in [11]. SRIGH greedily selects a sensing node and its
communication route within each iteration.

B. Results
1) Small-Scale Problem Simulation: First, we evaluate the

performance of all methods on a small-scale problem. We cre-
ate a grid space of 1000 m × 1000 m and set the desired cover-
age level to K = 1. The number of candidate grid sites is 100

https://github.com/Orienfish/EH-deploy


Fig. 3: Simulation results on a small field with various number of PoIs to cover. Left: the minimum deployed nodes. Middle:
the percentage of reliability violations. Right: the execution time.

(a) Various number of PoIs. (b) Various number of grid loca-
tions.

(c) Execution time when varying
the number of PoIs.

(d) Execution time when varying
the number of grid locations.

Fig. 4: Simulation results on a large field.

TABLE II: Parameter settings in evaluation.

Param. Value Param. Value Param. Value
Sr 120 m Cr 200 m η 0.1
G 100 B BW 2000 B/s P0 0.01 W
Es 0.04 J Pto 0.22 W β 10−7

α 3.5 Prx 0.1 W A 0.01 m2

ξ 0.05 ω1 500 ω2 800

and the number of PoIs is chosen from {5, 10, 15, 20, 15, 30}.
Since the positions of PoIs are initialized randomly, we run
all methods with 40 different initializations and calculate the
average result. Note, that a successful K-coverage is attained in
each instance. In Figure 3, we report the number of deployed
nodes, reliability violations (i.e., the portion of deployed nodes
that violate at least one of the reliability bounds) and execution
time of each method. The following observations can be made
from Figure 3:

• OPT vs. OPTnoRel. This comparison evaluates the in-
fluence of reliability constraints on the optimal solution.
Figure 3 shows that OPT deploys 14% more nodes than
OPTnoRel to satisfy the reliability constraints. However,
if optimizing without the reliability, OPTnoRel will have
more 33% - 53% of deployed nodes violating the relia-
bility bounds.

• R-TSH vs. OPT. As a heuristic approximating the op-
timal solution, R-TSH deploys around 20% more nodes
than OPT but it is more than 1500x faster. R-TSH always

ensures the reliability restrictions.
• R-TSH vs. TSH, SRIGH. R-TSH picks 6% and 25%

more nodes than TSH and SRIGH, respectively, but does
not violate any reliability restrictions. In contrast, TSH
and SRIGH have 4% - 8% of violations.

• Execution Time of OPT and OPTnoRel. The execution
time of optimal solvers blows up as we increase the
PoIs, which is a consequence of the NP-completeness.
Although averaging at around 150 seconds with 25 or 30
PoIs, the execution time can be as poor as 1000 seconds
in our experiments. Therefore, it is highly necessary to
use heuristics that cost polynomial time in large-scale
problems.

2) Large-Scale Problem Simulation: We further conduct
a set of simulations in a grid space of 10 km × 10 km
to compare the performances of R-TSH and two heuristic
baselines on a larger setting. We configure the coverage level
K = 2. We report the performances of R-TSH, TSH, and
SRIGH, when varying the number of PoIs and the number of
grid locations in the field. Similarly, the average result of 40
randomly-initialized cases is shown in Figure 4.

• Various number of PoIs. Figure 4a scatters the number
of deployed nodes and reliability violations of all heuris-
tics while altering the number of PoIs to be covered. It
can be seen that R-TSH places 10% - 20% more nodes
than SRIGH but both SRIGH and TSH result in 20%
or more reliability violations. Note, that one can explore
the trade-off between the number of nodes and reliability



by adjusting reliability bounds SoHref and MTTFref .
Loose reliability constraints will save deployment cost by
placing fewer nodes.

• Various number of candidate locations. Similar to
Figure 4a, Figure 4b depicts the outcomes under various
number of candidate locations from 7K to 12K. The
reliability violations of TSH and SRIGH fluctuate from
20% to 80% when the size of grid space changes. At the
same time, R-TSH consistently keeps the violation rates
below 3% while requires 15% - 25% more nodes than
SRIGH. Though both using the two-stage mechanism,
R-TSH returns much better solutions on the number of
deployed nodes and reliability than TSH.

• Execution Time. Figure 4c and Figure 4d display the
execution time of all heuristics in the above two ex-
periments. R-TSH and TSH consume similar time as
they depend on the same mechanism, which is different
from SRIGH. When varying the number of PoIs, SRIGH
scales linearly in the execution time while R-TSH and
TSH take polynomially longer durations. On the other
hand, in the experiment of various candidate locations,
R-TSH and TSH scale almost linearly while SRIGH lasts
polynomially longer. Such difference can be attributed to
the node selection procedures.

In summary, R-TSH shows a comparable number of deployed
nodes and execution time, while TSH and SRIGH are prone
to reliability violations between 20% and 80%.

C. Discussion
1) Impact of External Energy Supply: Unlike [23], the

key focus of this paper is on energy-harvesting sensors with
rechargeable batteries. Using single-use batteries or recharge-
able batteries with external energy supply can cause a huge
difference. More concretely, the lifetime of single-use batteries
is defined as the time that its state-of-charge (SoC) depletes.
SoC is a real number between 0 and 1 suggesting the available
charge in comparison to the maximum capacity [13]. While
for rechargeable batteries, the state-of-health model is used
to predict the operational lifetime, i.e., when SoH reduces to
0.8. We perform a simple experiment to compare the lifetime
of using single-use batteries vs. rechargeable ones (Figure 5).
Suppose the original capacity of the battery is 1000 mAh and
the average current draw is 10 mA. The ambient environment
is 30 °C. Using the SoC model in [33] and the SoH model
explained in Section III-B, the single-use battery will deplete
after approximately 100 days while the rechargeable battery
lasts much longer time.

2) Impact of Device Types: The influence of different de-
vice types is implicitly integrated into the problem formulation
through the conversion from ambient to core temperature
(Equation 2). Though not obvious, it largely affects the
reliability-driven deployment. We compare the impact of two
sets of fitted parameters k1, k2, k3 in Equation 2 obtaining
from experiments on low-power MCUs and Raspberry Pis [34]
respectively. Based on the temperature conversion model,
the equivalent power upper bounds PSoH and PMTTF are
derived in order to satisfy given SoH and MTTF constraints
at various ambient temperatures (Figure 6). It can be seen that
a more powerful platform like Raspberry Pi cannot survive in

Fig. 5: Compare the fade of state-of-charge for single-use
batteries and state-of-health for rechargeable batteries.

(a) On low-power MCUs. (b) On Raspberry Pis.

Fig. 6: PSoH and PMTTF regarding different devices.

environments hotter than 30 °C. However, PSoH and PMTTF

for low-power MCUs decrease more gently during temperature
increment. It is possible for low-power devices to survive in
harsh environments if managed properly.

VII. CONCLUSION

In this paper, we formulate an optimization problem for
reliability-driven sensor deployment in energy-harvesting sen-
sor networks. Our goal is minimizing the number of nodes,
while guaranteeing: (i) full target coverage, (ii) complete
connectivity, (iii) energy-neutral operation, and (iv) reliability
constraints. Based on state-of-the-art electronics and battery
reliability models, we require two reliability lower bounds
to be met after a predetermined time duration. The problem
is formulated as MILP and solved with CPLEX. We further
propose a greedy heuristic named R-TSH to efficiently find
suboptimal solutions in large-scale problems. The simulation
results based on a real-world solar irradiance and ambient
temperature dataset show that R-TSH meets all reliability
constraints with 20% more sensors than the optimal solution
while executing more than 1500x faster. R-TSH avoids 20 -
80% of reliability violations with a comparable number of
nodes and execution time.
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