
FedHD: Federated Learning with Hyperdimensional
Computing

Quanling Zhao, Kai Lee, Jeffrey Liu, Muhammad Huzaifa, Xiaofan Yu, Tajana Rosing
Department of Computer Science and Engineering, University of California San Diego

La Jolla, CA 92093, USA
{quzhao,kal030,jsliu,mhuzaifa,x1yu,tajana}@ucsd.edu

ABSTRACT
Federated Learning (FL) is a widely adopted distributed learn-
ing paradigm for to its privacy-preserving and collaborative
nature. In FL, each client trains and sends a local model to
the central cloud for aggregation. However, FL systems us-
ing neural network (NN) models are expensive to deploy on
constrained edge devices regarding computation and com-
munication. In this demo, we present FedHD, a FL system
using Hyperdimensional Computing (HDC). In contrast to
NN, HDC is a brain-inspired and lightweight computing
paradigm using high-dimensional vectors and associative
memory. Our measurements indicate that FedHD is 3.2×,
3.2×, 5× better on performance, energy and communication
efficiency respectively compared to NN-based FL systems
whilst maintaining similar accuracy to the state of the art.
Our code is available on GitHub1.
ACM Reference Format:
Quanling Zhao, Kai Lee, Jeffrey Liu, Muhammad Huzaifa, Xiaofan
Yu, Tajana Rosing. 2022. FedHD: Federated Learning with Hyper-
dimensional Computing. In Proceedings of ACM Conference (Con-
ference’17). ACM, New York, NY, USA, 3 pages. https://doi.org/10.
1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Federated Learning (FL) is a distributed paradigm which
trains models collaboratively without sharing data. FL boasts
widespread popularity in many applications such as health-
care [5], smart cities [12], and self-driving vehicles [2]. Tradi-
tional FL systems adopt neural network (NN) based models,
which are expensive to compute and communicate. Table 1
shows that NNmodels take 350 seconds per round of training

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Figure 1: FedHDworkflow in 4 stages. (1) Server sends global
hypervectors to each client. (2) Clients train local class hyper-
vectors using encoded local data. (3) Models are sent back to
the server. (4) Server aggregates received class hypervectors.
on average with a model size of 8MB. Consequently, resource
limitations present a major challenge when deploying FL on
edge devices [18]. Unreliable wireless channels may also add
noise during transmission and degrade model accuracy [3].

Hyperdimensional computing (HDC) is a lightweight com-
puting paradigm that encodes data into hypervectors (high
dimensional vectors > 1000 bit) [13]. Learning is performed
through simple arithmetic operations (addition, multiplica-
tion, nearest neighbor search), reducing power and memory
usage [17] [9] [20]. HDC is also robust against noise due to
its high dimensionality. Previous works on HDC primarily fo-
cus on non-FL settings [19] [8] [17]. In this demo, we present
FedHD, an implementation of FL using HDC for low-power
devices. FedHD is lightweight in computation and commu-
nication, and robust against unreliable communication.

Dataset Time/Round Energy/Round Model Size
(Second) (Joule) (Megabyte)

MNIST [15] 73/276 350/1325 1.99/9.95
FMNIST [21] 71/395 341/1896 1.90/9.91
HAR [4] 68/121 326/581 1.99/1.67

CIFAR10 [14] 388/591 1862/2837 1.90/12.3
Table 1: Measurement results: HDC/Baseline NN

2 METHOD AND IMPLEMENTATION
Figure 1 shows the FedHD workflow. Each class is repre-
sented as a class hypervector that encodes generic class fea-
tures. The system consists of a server G and a set of edge
devices 𝐶 = {𝑐1, 𝑐2 ...}. The hypervector dimensionality and
the number of classes are 𝐷,𝑛, respectively. Each client 𝑐𝑖

1https://github.com/QuanlingZhao/FedHD

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA Zhao, et al.

Figure 2: Left: Measured accuracy over wall-clock time on various datasets. Right: Accuracy under various noise levels.

holds a 𝜃𝑖 , a HD classifier defined by a set of class hypervec-
tors {𝑣1...𝑣𝑛} and a similarity checker.𝑑𝑖 denotes local training
samples. Likewise, G = (𝜃𝑔, 𝑑𝑔) denotes the servers. Both the
server and the clients have access to an HDC encoder, 𝜃𝑒 .

2.1 HDC Learner
Learning in HDC consists of encoding raw data into hyper-
vectors, adding hypervectors that belong to the same class
together, and performing a few rounds of retraining if needed.
Classification is done by comparing a query hypervector to
the stored class hypervectors.
HDC Encoding: We use a random binary projection en-
coder which performs well on many datasets [6]. For any
(𝑥,𝑦) ∈ 𝑑𝑖 , a random projection encoder 𝜃𝑒 (𝑥) → {0, 1}𝐷
computes sample hypervector H by 𝜃𝑒 (𝑥) = 𝛽 (Ex), where
E ∈ 𝑀𝐷×|𝑥 | is a randomly generated binary matrix and 𝛽 is
an element-wise sign function.
HDC Training: Initial class hypervectors are generated
by summing the sample hypervectors from the same class:
𝑣 𝑗 =

∑
(𝑥,𝑦) ∈𝑑𝑖 |𝑦=𝑗 𝜃𝑒 (𝑥). For all subsequent rounds, local

class hypervectors are re-trainedwith local samples as shown
below. The process iterates over all 𝑛 classes and across mul-
tiple rounds, such that the class hypervectors gradually con-
verge to a global optimal.

∀(𝑥,𝑦) ∈ 𝑑𝑖 |𝜃𝑖 (𝜃𝑒 (𝑥)) ≠ 𝑦

𝑣 𝑗 − 𝜃𝑒 (𝑥) ∀𝑗 ≠ 𝑦

Negative reinforce incorrect v
𝑣 𝑗 + 𝜃𝑒 (𝑥) 𝑗 = 𝑦

Reinforce correct v

HDC Classification: Each class in the HDC model is repre-
sented as a class hypervector {𝑣1...𝑣𝑛}. Classification is done
by checking the cosine similarity between the encoded sam-
ple and each class hypervector, then choosing the class with
the greatest similarity: argmax𝑛𝑗=1 cos(𝐻, 𝑣 𝑗) =

𝐻 ·𝑣𝑗
∥𝐻 ∥∥𝑣𝑗 ∥ .

2.2 FedHD
HDC Aggregation: In FL, locally trained models are ex-
changed each round. After the server collects all locally
trained HDC models, a global HDC model 𝜃𝑔 can be ag-

gregated: 𝜃𝑔 =
𝜃
′
𝑔+

∑|𝐶 |
𝑖

𝜃𝑖

|𝐶 |+1 . The global model from the previous
round 𝜃 ′

𝑔 is also included in aggregation process as a stabiliz-
ing factor to prevent an abrupt change in class hypervectors,
which prevents catastrophic model failure.
FedHD Implementation:We implemented FedHD using

FedML [10], an open-source FL framework that allows us to
add and deploy HDC components on IoT devices.

3 DEMONSTRATION
Our demo uses Raspberry Pis [1] and Kubernetes cluster
as clients with D=10000 and 500 local samples per client. A
desktop is used as the server for model aggregation. A state
of the art NN with FedAvg FL algorithm [16] is used as a
baseline. The experimental setup is shown in Table 2.

Dataset Client # Method Baseline

MNIST [15] 30 HDC CNN w/ 2HL2

FMNIST [21] 30 HDC CNN w/ 2HL2

HAR [4] 30 HDC 2FCL3
CIFAR10 [14] 7 SimCLR [7]+HDC ResNet-18 [11]

Table 2: Experimental Setup. For complex image datasets,
HDC requires a feature extractor trained by SimCLR [7].

Accuracy & Efficiency: Experimental results are shown in
Fig. 2 and Table 1. FedHD achieves comparable or higher
accuracy across all datasets while being 3.2x faster than the
baseline.While the size of NNmodels grow dramatically with
task complexity, the HDC model maintains communication
efficiency by scaling linearly with the number of classes.
Robustness: We evaluate FedHD’s robustness by directly
applying additive Gaussian noise to both the HDC model
[6] and the NN baseline while increasing noise standard
deviation 𝜎 . Fig. 2b shows model performance of our method
compared with the baseline on MNIST with varying levels
of noise. When 𝜎 > 0.5, FedHD’s accuracy is unaffected
whereas the baseline suffers from catastrophic failure.

4 CONCLUSION
In this demo, we proposed FedHD, an efficient and robust
FL system using HDC. Our results address two bottlenecks
in current FL systems by greatly reducing computation and
communication overhead and bolstering the robustness to
remain nearly unaffected against unreliable communication.

5 ACKNOWLEDGEMENTS
This work was supported by National Science Foundation un-
der Grants #2003279, #1826967, #2100237, #2112167, #1911095,
and #2112665. The work was advised and completed as part
of the Early Research Scholars Program at UC San Diego.

2HL: Hidden Layer.
3FCL: Fully Connected Layer.

FedHD: Federated Learning with Hyperdimensional Computing Conference’17, July 2017, Washington, DC, USA

REFERENCES
[1] Raspberry Pi 4B. https://www.raspberrypi.com/products/raspberry-

pi-4-model-b/, 2020. [Online].
[2] Irfan Ahmad and Karunakar Pothuganti. Design & implementation

of real time autonomous car by using image processing & iot. In
2020 Third International Conference on Smart Systems and Inventive
Technology (ICSSIT), pages 107–113. IEEE, 2020.

[3] Fan Ang, Li Chen, Nan Zhao, Yunfei Chen, Weidong Wang, and
F Richard Yu. Robust federated learning with noisy communication.
IEEE Transactions on Communications, 68(6):3452–3464, 2020.

[4] Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra Perez, and
Jorge Luis Reyes Ortiz. A public domain dataset for human activity
recognition using smartphones. In Proceedings of the 21th interna-
tional European symposium on artificial neural networks, computational
intelligence and machine learning, pages 437–442, 2013.

[5] Sándor Beniczky, Philippa Karoly, Ewan Nurse, Philippe Ryvlin, and
Mark Cook. Machine learning and wearable devices of the future.
Epilepsia, 62:S116–S124, 2021.

[6] Rishikanth Chandrasekaran, Kazim Ergun, Jihyun Lee, Dhanush Nan-
junda, Jaeyoung Kang, and Tajana Rosing. Fhdnn: Communication
efficient and robust federated learning for aiot networks. In Proceedings
of the 59th Annual Design Automation Conference 2022, 2022.

[7] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hin-
ton. A simple framework for contrastive learning of visual representa-
tions. In International conference on machine learning, pages 1597–1607.
PMLR, 2020.

[8] Arpan Dutta, Saransh Gupta, Behnam Khaleghi, Rishikanth Chan-
drasekaran, Weihong Xu, and Tajana Rosing. Hdnn-pim: Efficient in
memory design of hyperdimensional computing with feature extrac-
tion. In Proceedings of the Great Lakes Symposium on VLSI 2022, pages
281–286, 2022.

[9] Eman Hassan, Yasmin Halawani, Baker Mohammad, and Hani Saleh.
Hyper-dimensional computing challenges and opportunities for ai
applications. IEEE Access, 2021.

[10] Chaoyang He, Songze Li, Jinhyun So, Xiao Zeng, Mi Zhang, Hongyi
Wang, Xiaoyang Wang, Praneeth Vepakomma, Abhishek Singh, Hang
Qiu, et al. Fedml: A research library and benchmark for federated
machine learning. arXiv preprint arXiv:2007.13518, 2020.

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 770–778,
2016.

[12] Nabaa Ali Jasim, Haider TH, and Salim AL Rikabi. Design and imple-
mentation of smart city applications based on the internet of things.
International Journal of Interactive Mobile Technologies, 15(13), 2021.

[13] Pentti Kanerva. Hyperdimensional computing: An introduction to
computing in distributed representation with high-dimensional ran-
dom vectors. Cognitive computation, 1(2):139–159, 2009.

[14] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of
features from tiny images. 2009.

[15] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner.
Gradient-based learning applied to document recognition. Proceedings
of the IEEE, 86(11):2278–2324, 1998.

[16] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Aguera y Arcas. Communication-efficient learning of deep
networks from decentralized data. InArtificial intelligence and statistics,
pages 1273–1282. PMLR, 2017.

[17] Justin Morris, Kazim Ergun, Behnam Khaleghi, Mohsen Imani, Baris
Aksanli, and Tajana Rosing. Hydrea: Towards more robust and efficient
machine learning systems with hyperdimensional computing. In 2021
Design, Automation & Test in Europe Conference & Exhibition (DATE),

pages 723–728. IEEE, 2021.
[18] Solmaz Niknam, Harpreet S Dhillon, and Jeffrey H Reed. Federated

learning for wireless communications: Motivation, opportunities, and
challenges. IEEE Communications Magazine, 58(6):46–51, 2020.

[19] Abbas Rahimi, Pentti Kanerva, and Jan M Rabaey. A robust and energy-
efficient classifier using brain-inspired hyperdimensional computing.
In Proceedings of the 2016 international symposium on low power elec-
tronics and design, pages 64–69, 2016.

[20] Anthony Thomas, Sanjoy Dasgupta, and Tajana Rosing. Theoretical
foundations of hyperdimensional computing. Journal of Artificial
Intelligence Research, 72:215–249, 2021.

[21] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel
image dataset for benchmarking machine learning algorithms. arXiv
preprint arXiv:1708.07747, 2017.

https://www.raspberrypi.com/products/raspberry-pi-4-model-b/
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/

	Abstract
	1 Introduction
	2 Method and Implementation
	2.1 HDC Learner
	2.2 FedHD

	3 Demonstration
	4 Conclusion
	5 Acknowledgements
	References

