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ABSTRACT
Digital processing in-memory (DPIM) is a promising technology
that significantly reduces data movements while providing high
parallelism. In this work, we design and implement the first full-
stack DPIM simulation infrastructure, DP-Sim, which evaluates a
comprehensive range of DPIM-specific design space with respect
to both software and hardware. DP-Sim provides a C++ library
to enable DPIM acceleration in general programs while support-
ing several aspects of software-level exploration by a convenient
interface. The DP-Sim software front-end generates specialized
instructions that can be processed by a hardware simulator based
on a new DPIM-enabled architecture model which is 10.3% faster
than conventional memory simulation models. We use DP-Sim to
explore the DPIM-specific design space of acceleration for various
emerging applications. Our experiments show that bank-level con-
trol is 11.3× faster than conventional channel-level control because
of higher computing parallelism. Furthermore, cost-aware memory
allocation can provide at least 2.2× speedup vs. heuristic methods,
showing the importance of data layout in DPIM acceleration.

1 INTRODUCTION
The “memory wall” issue has become a major bottleneck in con-
ventional Von Neumann architectures. One promising solution is
Processing in-memory (PIM), which offloads computations to mem-
ory, significantly reducing data movement while providing high
parallelism. There have been many PIM designs based on different
memory technologies. Some of them exploit the analog computing
of Non-Volatile Memories (NVMs) to accelerate various applica-
tions, including machine learning [21], graph processing [22], and
high-performance computing [5]. However, these accelerators have
several critical limitations, including costly peripherals for data
conversion, no floating-point support, and scaling difficulty due
to unstable multi-bit cells [8, 21]. As reported in previous work,
analog-to-digital (ADCs) and digital-to-analog converters (DACs)
consume over 83.3% power in the analog PIM (APIM) DNN acceler-
ator [21].

In addition to analog PIM, we can also enable the PIM functional-
ity in the digital memory, called digital PIM (DPIM), using conven-
tional memory technologies including SRAM [1, 4], DRAM [6, 15]
and ReRAM [8]. Figure 1 shows an example of ReRAM-based DPIM
block. The basic DPIM operations are bit-wise operations (e.g. full
addition) between multiple memory rows which can implement
element-wise operations on binary vectors (Figure 1(b)). We can
use multiple serial steps of single-bit operations to enable element-
wise computation for multi-bit vectors by allocating multiple rows
to each vector. Using bit-serial row-parallel operations, a DPIM
memory block can act like a SIMD processing unit that processes
multiple computations simultaneously. DPIM supports arithmetic
operations (e.g. addition, multiplication, division, etc.) as well as
in-memory search operations (Figure 1(c)). Considering the large
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Figure 1: An example of a ReRAM-based digital PIM.

number of memory blocks in a memory system, DPIM provides
extremely high-degree parallelism. At the same time, unlike analog
PIM, DPIM operates on binary (digital) values, avoiding inefficient
conversion peripherals like ADCs and DACs. Because of these
advantages, researchers have been actively working on the chip
fabrication [9, 23] which shows promising results.

To efficiently and comprehensively evaluate different DPIM de-
signs, architectural simulation is important. However, we cannot
easily simulate DPIM-enabled systems using existing tools for two
reasons. First, the efficiency of DPIM acceleration strongly depends
on the layout of application data in the memory because of the
bit-serial row-parallel operations. DPIM system needs to manage
DPIM data in a different way from that used in conventional com-
puting systems (e.g.𝑚𝑎𝑙𝑙𝑜𝑐 () function). To the best of our knowl-
edge, there is no simulation tool providing the software interface
for implementing and exploring the DPIM-specific layout for gen-
eral applications. Second, traditional memory simulators such as
Ramulator, DRAMSim2, and NVMain [10, 19, 20] cannot support
exploration of DPIM architectures because the base architecture
model is designed to support only conventional memory. To explore
DPIM-specific designs in existing tools, we have to use several tools
and heavily modify both software-level interface and hardware
model, which are both time-consuming and challenging.

In this work, we propose and implement a full-stack simulation
infrastructure, DP-Sim, for exploring design space of DPIM archi-
tectures from both software and hardware perspectives. DP-Sim
consists of two main components: the front-end for software imple-
mentation and the back-end for hardware simulation. The DP-Sim
front-end contains a DPIM library and a configurable compiler layer
to generate instruction trace of application based on user-defined
software-level design. We can use the DPIM library to declared
DPIM-specific data structures and functions in application source
codes, and design data layout strategies by using the interface of a
configurable data allocator. The DP-Sim front-end then compiles
DPIM application to generate instructions which can be simulated
by DP-Sim back-end. The back-end of DP-Sim is a cycle-accurate
memory simulator for DPIM-enabled architectures. The DP-Sim
back-end utilizes a newmemory architecture model which supports
exploration on several DPIM-specific designs like PIM instruction
scheduling and operation parallelism. We propose a fast-forward
synchronous model for DPIM instructions to improve the speed of
simulation. To the best of our knowledge, DP-Sim is the first simu-
lation infrastructure to support systematic evaluation for general
applications running on DPIM architectures.
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Figure 2: The overview of DP-Sim infrastructure.

DpData v1 = dp_data(32, [“int32”]),
v2 = dp_data(32, [“int32”]),
v3 = dp_data(32, [“int32”]); // Declare an int32 vector

DpData tab = dp_data(32, [“int32”,“int16”,“bool”]); // Declare a table with 3 fields
decl_comp(“add”, v1, v2, v3); // Declare a vector computation
dp_alloc([v1,v2,v3,tab]); // Allocate memory
dp_vec_add(v1, v2, v3); // DPIM vector operation
dp_exact_search(tab, “0=123”); // DPIM table search -> field0 = 123

ID Len Size
v1 32 32
v2 32 32
v3 32 32
tab 32 49

v1 v2

v3

+

Variable Info. Compute Graph Memory Mapping

ID Alloc. Mem
v1 [a1,a2,…]
v2 [b1,b2,…]
v3 [c1,c2,…]
tab [t1,t2,…]

PIM Inst.

add a1,b1,c1
add a2,b2,c2
add a3,b3,c3

…
srch t1,0,123
srch t2,0,123

Runtime Information

Figure 3: The high-level design of the DPIM library.

We evaluate the design of DP-Sim by running various emerging
data-intensive workloads from fields of graph processing, database,
machine learning, and data mining. We compare the simulation of
DP-Sim with a PIM-enabled version of Ramulator [10]. The experi-
ment shows that DP-Sim is 10.3× faster with only 6.3% difference in
the result. We use DP-Sim to explore several DPIM-specific design
choices including architecture hierarchy, control granularity, and
adaptive data layout. Our experiments find that a bank-level control
is 11.3× faster than conventional channel-level control because of
higher parallelism. Furthermore, a cost-aware memory allocation
provides a 2.2× speedup over heuristic methods, indicating the
importance of data layout in DPIM acceleration.

2 DP-SIM DESIGN
Figure 2 shows the high-level view of DP-Sim, consisting of the soft-
ware interface (front-end) and the architectural simulation (back-
end). The DP-Sim front-end provides the interface for implementing
DPIM-accelerated programs through a DPIM library and a config-
urable data allocator. Specifically, the library provides function calls
to implement DPIM data structures and operations while the data
allocator determines the memory layout for application data based
on the user-defined allocation strategy. The front-end generates
DPIM-accelerated instructions for hardware simulation, which is
processed by the DP-Sim back-end architectural simulators to evalu-
ate the design. The hardware simulator utilizes a newDPIM-enabled
hardware model to support efficient exploration on DPIM-specific
design. The rest of this section introduces details of software front-
end and hardware back-end.

2.1 DP-Sim Front-end
TheDP-Sim front-end provides the interface of implementingDPIM-
accelerated applications and generates the DPIM-enabled instruc-
tions through three key components: DPIM library, data allocator,
and instruction generator.
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Figure 4: The impact of different allocation mechanisms.

2.1.1 DPIM Library. The DPIM library contains three categories
of functions for declaring DPIM data, allocating memory, and exe-
cuting DPIM operations respectively. Figure 3 shows an example
of utilizing these functions in the application source code.

DPIM Data Structure. To utilize the DPIM functionality, pro-
grams need to declare application variables as specific DPIM data
structures. The DPIM library provides declaration functions for two
basic DPIM data structures, vector and table, which can be repre-
sented by a general data structure, 𝐷𝑝𝐷𝑎𝑡𝑎. To declare a 𝐷𝑝𝐷𝑎𝑡𝑎
variable, the programmer needs to declare the data dimension in-
cluding the number of elements and a vector representing the data
type of each element. For a DPIM vector, the vector has one specific
type (e.g. integer, fixed-point, floating-point, etc.); for a DPIM table,
each element may have multiple types for different fields in the
table.

Data and Dependency Declaration. When calling declaration
functions, the DPIM library only records the information of declared
variables without allocating memory for variables. Such a design
enables us to explore strategies that optimize the data layout of
multiple DPIM variables. In addition to declaration functions for
variables, the DPIM library provides functions for declaring DPIM
operations to record the dependency between variables, which is
helpful design an efficient memory layout (Section 2.1.2). As shown
in Figure 3, we can build a compute graph with one “add” node
based on three vector declarations and one computation declaration
by a 𝑑𝑒𝑐𝑙_𝑐𝑜𝑚𝑝 (”𝑎𝑑𝑑”) function.

Memory Allocation. Before issuing operations for declared
DPIM variables, the programmer needs to call a 𝑑𝑝_𝑎𝑙𝑙𝑜𝑐 () func-
tion to allocate memory space for these variables. The 𝑑𝑝_𝑎𝑙𝑙𝑜𝑐 ()
function takes in a list of variables and allocates memory for input
variables by a configurable data allocator. The library records the
mapping information of DPIM variables in a table as shown in
Figure 3. For each variable, the memory allocation is represented as
a list of addresses of memory segments. We introduce details of the
data allocator and allocation of memory segments in Section 2.1.2.

DPIM Operations. After allocating memory for DPIM variables,
the programmer can process these variables by calling functions
for DPIM operations. The DPIM library includes functions for all
supported operations taking in both vectors and tables. These DPIM
functions can generate DPIM instructions by extracting operand
addresses from the memory mapping table. Section 2.1.3 introduces
how DP-Sim generates PIM-enabled memory instructions by an
instruction generator.

2.1.2 Data Allocator. When the program calls a 𝑑𝑝_𝑎𝑙𝑙𝑜𝑐 () func-
tion, the DP-Sim front-end allocates memory for DPIM variables
through a configurable data allocator (DA) which provide flexible
interface for accessing software-hardware information and cus-
tomizing the allocation strategy, as shown in Figure 4.
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Table 1: DPIM Instruction Format.
Vector operations Search Operations

OpCode [add, mul, bit-wise...] [eq_s, min_s, max_s]
Operand1 seg_addr (source1) mem_addr (start address)
Operand2 seg_addr (source2) value (target value)
Operand3 seg_addr (destination) type ([int32/int16/float16...])
Operand4 type ([int32/int16/float16...]) null

Accessing Information. To design an efficient data allocation
strategy, we may need to consider various types of application in-
formation including size of each variable and compute dependency
graph (bottom part of Figure 4). DA automatically generates the
application information based on function calls in DPIM library.
Researchers can use the interface of accessing such information
when designing customized data layout. Furthermore, DA provides
the interface to access hardware configurations which also affects
the detailed data layout.

Designing Layout Strategy. DA provides a flexible interface
for designing allocation strategy based on two basic allocation
schemes. Figure 4 shows an example of the memory allocation
for processing three vector computations using these two basic
schemes. The sequential method aligns all vectors of these two
computations in the memory block sequentially and allocates more
blocks for vectors whose lengths exceed the limit of bit-lines. This
maximizes the memory utilization and avoids data movement if
two computations are dependent on each other. However, memory
blocks storing two computations need to process them sequentially.

The parallel aligned method places vectors of two computations
to different blocks where all computations can be processed in
parallel. Though the parallel aligned method improves the compute
performance, we need to move the data between different blocks
if two results involve in a following computation. Such costs of
computation and datamovement vary as a function of both software
and hardware. Therefore, an efficient allocation may adaptively
select schemes for different DPIM variables.

Figure 4(a) shows the process of customizing the allocation strat-
egy in DP-Sim. Specifically, we can traverse the compute graph and
selects a set of vertices based on the user-define analysis of applica-
tion information. For each set of vertices, we can exploit either the
sequential scheme or the parallel scheme to allocate memory. In
Section 3.5, we implement a cost-aware allocation method which
provides significant speedup over fixed strategies.

Memory Segment Allocation. Tomanage thememorymapping
information, we adopt a segmentation method where each variable
is mapped to a set of memory segments. Each segment indicates a
set of continuous rows in a specific memory block. The number of
segments for a specific data structure depends on the number of el-
ements in the variable as well as the memory technology. As shown
in Figure 4, each vector needs two segments to store all values.
When calling a 𝑑𝑝_𝑎𝑙𝑙𝑜𝑐 function for a set of variables, DA auto-
matically generates numbers of blocks and segments required for
each allocation scheme based on software/hardware information.
We can use this information to select memory blocks for segment
allocation. With such segment allocation, DP-Sim is flexible to gen-
erate instructions on different DPIM technologies because memory
segment is the basic unit in most DPIM architectures.

2.1.3 Instruction Generator. The DP-Sim front-end generates in-
structions for DPIM program by an instruction generator (IG). IG
generates all memory-related instructions, including normal mem-
ory operations and PIM operations. We implement IG as a binary
instrumentation tool based on Intel Pin [16], which captures func-
tions from the DPIM library and other memory operations by actu-
ally running the application. The user-defined data allocator is a
part of IG that runs during the instrumentation. IG evaluates the
full memory performance of DPIM systems and can be integrated
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Figure 5: The overview of architecture used in DP-Sim.

in other Pin-based CPU architecture simulators (e.g. Sniper [3]) for
full-system simulation by replacing the memory model.

As mentioned before, each DPIM variable may occupy several
memory segments. Therefore, we adopt a “single-segment” design
for PIM instructions where each instruction indicates an operation
in a memory segment. This design enables fine-grained control
and scheduling mechanisms in the hardware side, which can pro-
vide more exploration flexibility. For example, to generate “single-
segment” instructions for a DPIM vector operation, IG generates
one DPIM instruction for each group of memory segments storing
elements from the operands and the result. As shown in Figure 4,
all vectors (𝑣1 − 𝑣7) have two memory segments and we generate
two single-segment instructions for each computation, where each
instruction processes aligned segments of operands.

Table 1 lists formats of two types of DPIM operation. For vector
operations, each instruction requires 3 operands including memory
segment addresses for source and destination, as well as the data
type. For each search instruction, we need to specify the the start
memory address, the target value, and the type of target value. IG
can then generate instructions with appropriate operands based on
information in data allocator.

2.2 DP-Sim Back-end
DP-Sim back-end takes in the instruction trace generated by the
front-end to evaluate the detailed system performance for a specific
architecture configuration.

2.2.1 Architecture Model. Figure 5(a) shows the architecture model
used in the DP-Sim back-end. Similar to widely-used memory sim-
ulators [10, 19, 20], we adopt a hierarchical model to provide the
flexibility for designing various memory architectures. Figure 5(a)
shows an example of three-level hierarchy: chip, channel, and bank.
The highest level in the hierarchy is the memory chip where each
chip connects to general data transfer interface to communicate
with the host or other chips. This design can simulate multi-chip
or multi-tile architecture which is widely used in emerging PIM
accelerators [8, 21].

Inside each chip, we can configure the hierarchy for a specific
memory organization. Each component at each level contains a
memory partition and a controller that can process operations in
the memory partition. Each component may have multiple sub-
components at the lower level where each sub-component handles
a subset of the memory. The basic unit in the architecture is the
memory block that has an array of memory cells and peripheral
circuits to support PIM operations.

Conventional memory designs usually place controllers at a high
level in the hierarchy (e.g. channel) because the memory perfor-
mance is bounded by the bandwidth of transferring data to the
host. In PIM-enabled memory, however, PIM operations in different
blocks do not share the global bus so that the fine-grained control
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scheme may increase the system performance. The DP-Sim back-
end enables us to configure controllers at all levels in the memory
hierarchy where controllers at each level can process a specific set
of operations. In the next section, we introduce the detailed design
of the PIM-enabled controller.

2.2.2 PIM-Enabled Controller. Figure 5(a) shows several key com-
ponents in each memory controller for processing memory instruc-
tions and Figure 5(b) shows the detailed logic of each controller.
Each memory controller maintains a clock to control the timing for
all operation in a cycle-accurate way. When receiving an instruc-
tion, a decoder captures the detailed information of the instruction
including the operation type and memory addresses. As mentioned
previously, DPIM-enabled memory, unlike conventional memory,
may have controllers for different levels in the memory hierarchy.
Therefore, the decoder checks at which level the instruction needs
to be processed. If the instruction needs to be processed in a lower
level, the controller sends it to a corresponding sub-component
based on the memory addresses.

If the controller needs to process an instruction, it adds the in-
struction to a queue which stores all instructions currently waiting
to be scheduled. A scheduler checks the pending queue at each
clock tick and schedules the next instruction if memory compo-
nents can process the corresponding operations. The controller
adds each issued instruction to the issued queue which stores all
instructions that has been issued while have not completed. The
controller checks the issued queue at every clock tick and updates
the memory status if an instruction completes.

Since each instruction follows the “single-segment” format, the
hierarchical PIM-enabled controller design enables us to implement
a fine-grained control scheme, where each block can independently
process instructions. For PIM operations involving a large number
of memory blocks, the conventional channel-level control scheme
may not be the best solution. In this case, the fine-grained con-
trol can significantly improve the system throughput because all
memory blocks can work simultaneously.

2.2.3 DPIM Simulation Acceleration. Conventional memory simu-
lators usually adopt a cycle-accurate model which is similar to the
logic shown in Figure 5(b). When processing each instruction, this
cycle-accurate model increases clocks of all memory controllers
to maintain a global clocks, as shown in Figure 6(a). This model
can simulate fine-grained behaviour accurately so we use it for
simulating normal memory operations. However, the original cycle-
accurate model may become extremely slow for DPIM simulation
because a DPIM operation may introduce a large amount of “single-
segment” instructions. To improve the simulation speed, we propose
a fast simulation model for efficiently simulating DPIM operations
without significantly losing the accuracy.

Figure 6(b) shows the proposed DPIM simulation acceleration as
compared to the original cycle-accurate model (Figure 6(a)). Unlike
the original model, the fast PIM model only advances local clock
where different “single-segment” instructions may come from a sin-
gle parallel operation (e.g. vector operation). Since normal memory
operations may change the global clock, we clear all pending queues

for normal memory operations if the simulator needs to schedule
PIM instructions. Considering each PIM instruction takes many
more cycles than normal memory operations (e.g. 100 cycles for a
8-bit addition v.s. 1 cycle for a normal read), we use a fast-forward
model to simulate PIM instructions. We directly add the latency
to local clock of the controller handling executing the instruction,
saving the time for cycle-by-cycle simulation. After scheduling all
DPIM instructions in the pending queue, we update the global clock
by synchronizing local clocks in all memory controllers.

This fast-forward method would not significantly effect the sim-
ulation accuracy because a DPIM operation (a function call from
the application) usually requires a large amount of “single-segment”
instructions which keeps the simulator in the DPIMmode for a long
enough time. Furthermore, each controller in the lowest level still
handles only one PIM instruction at the same time, not violating
any hardware constraint. Our experiment shows that the proposed
model can significantly speed up the detailed cycle-accurate model
while providing similar simulation results 3.

2.2.4 PIM Instruction Emulation. Considering there are various
DPIM memory technologies, including SRAM, DRAM, and non-
volatile memories, DP-Sim provides the interface for researchers to
design customized instructions with specific timing and energy pa-
rameters. Architecture researchers can input validated parameters
from low-level simulation tools like Cacti [18] or HSPICE. DP-Sim
back-end maintains the constraint that each memory block can only
process one operation each time and periodically updates block
information based on the latency of scheduled operations. Such
scheme is general to high-level simulation for operations based on
different technologies.

3 RESULTS

We implement all components of DP-Sim in C++. The DP-Sim
front-end contains a DPIM-specific library and an instrumentation
tool based on Intel Pin-tool [16] for data allocation and instruc-
tion generation. To customize the data layout, we provide a base
class for user to implement specific strategy by utilizing the inter-
face introduced in Section 2.1. The DP-Sim back-end is a modified
version of Ramulator [10], which is a validated and widely-used
cycle-accurate memory simulator. We provide the file configuration
interface for customizing the simulated architecture.

In this work, we focus on resistive memory based PIM technol-
ogy, which has been extensively used in a wide range of accel-
erators [5, 8, 21, 22]. We should note that DP-Sim also supports
other memory technologies and we show a case study of different
memory technologies in Section 3.5. The basic NVM technology
used in this work is the Voltage ThrEshold Adaptive Memristor
(VTEAM) model [13] with 𝐼𝑂𝑁 /𝐼𝑂𝐹𝐹 ratio of 103. We use HSPICE
design tool for circuit-level simulations, which provide timing and
energy results for various ReRAM operations. We also exploit sev-
eral existing tools, including Cacti [18], McPAT [14], and published
data [17], to simulate timing and energy consumption of two other
DPIM technologies: SRAM [1] and DRAM [6]. Our experiments do
not include hardware validation for specific memory technology
because we customize instructions based on parameters validated
from other tools.

Because of the page limitation, our evaluation uses a fixed mem-
ory hierarchy, which is a three-level chip-channel-bank hierarchical
architecture. Each bank is 8MB, consisting of 64 memory blocks,
each of which has 1K bit-lines and 1K word-lines. Each channel can
independently handle data transfers with a 128-bit link introducing
1 cycle for wire and the zero-load delay; for DPIM systems with
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Table 2: Comparison with Ramulator-based model [10].
Runtime (min.) Cycles (10^6)

Workload Ramulator DP-Sim Ramulator DP-Sim Diff.(%)
bfs 62.1 9.3 59.8 64.1 7.2
sssp 100.3 10.4 80.6 71.4 -11.4
pr 45.3 7.9 29.3 28.7 -1.9
hash 14.5 1.3 14.9 15.1 1.1
query 20.3 2.1 13.4 14.6 9.3
alexnet 353.5 20.2 299.7 305.6 2.0
kmeans 10.4 0.9 8.1 7.3 -10.9

multiple chips, the inter-chip network is modeled as SerDes link
used by HMC with an average 160GB/s bandwidth [7].

3.1 Applications and Workloads
To comprehensively test different designs, we implement several
emerging data-intensive applications in DP-Sim.

Graph Processing. We implement three popular graph kernels
including breadth-first search (BFS), single-source shortest path
(SSSP), and page rank (PR). Graph information, including edge and
vertex, is stored as tables that support in-memory searches. We
transform vertex-related operations to DPIM vector operations to
exploit the parallelism. We run these graph kernels with synthetic
graphs with 1M vertices generated by GAP benchmarks [2].

Database. We implement two widely-used database kernels,
hash table join (HASH) and query (QR), to process a large table
using PIM search operations. Each table has 10M entries and each
entry takes 1024 bits.

Machine Learning.We implement a popular deep neural net-
work model, AlexNet [12], by transforming convolution and fully-
connected layers to DPIM vector operations. We test inference
with 8-bit prevision which has been proved to provide reasonable
accuracy in recent works [11].

Data Mining. We implement K-Means (KM) clustering algo-
rithm using DPIM acceleration. KM clusters high-dimensional data
points by exploiting in-memory search and subtractions to update
centers at each iteration.

3.2 Validation of DP-Sim
Considering the lack of publicly available PIM hardware, we val-
idate our hardware simulation against a PIM-enabled Ramulator
model [10]. Even though the original Ramulator is validated against
Micron’s DDR3 Verilog model, its simulationmodel can be extended
to support various memory technologies with appropriate timing
parameters [10]. Therefore, we implement different PIM operations
as special memory write commands by customizing state machines
and timing constraints with parameters validated from other low-
level tools. The PIM-enabled Ramulator simulates fine-grained be-
haviors of PIM instructions in a cycle accurate way. We should
note that this work focuses on the efficiency of software-hardware
co-design for DPIM architectures while detailed circuit-level simu-
lation is separately done.

We configure both tools to simulate a 8Gb memory chip wit
8-channels for ReRAM-based PIM architectures. We generate the
same instruction trace using the DP-Sim front-end with a parallel
aligned allocator (Section 2.1.2). For both tools, all instructions are
processed by channel-level controllers. We compare the simulation
time and performance difference between DP-Sim and Ramulator
and show the results in Table 2. Our experiments show that DP-Sim
is 10.3 × faster than Ramulator while exhibiting only 6.3% difference
in the simulation results on average. Based on the results, DP-Sim
can significantly improve the simulation speed of PIM acceleration
using the proposed model with a sufficient accuracy. Furthermore,
DP-Sim enables computer architects to explore a large design space
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Figure 7: Performance of systems with different number of
channels in a 8Gb memory chip.
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Figure 8: Performance of different controller granularities.

for PIM architectures. We show the results of full-stack exploration
in the following sections.

3.3 DPIM Parallelism Exploration
We utilize DP-Sim to explore the impact of architectural parallelism
on the performance of DPIM system. In these experiments, we
adopt the parallel aligned allocation discussed in Section 2.1 to
schedule as many independent computations in parallel as possible.

Hierarchy Structure. We explore a DPIM system with per-
channel PIM controllers to investigate the impact of the number
of independent memory components. In such systems, the com-
puting parallelism is determined by the number of channels. We
scale the number of channels while keeping the memory capacity
of each chip constant at 8Gb by decreasing the number of banks in
each channel. Figure 7 shows the speedup of systems over the base-
line system with 8 channels per chip. Based on the results, more
channels, which provide a higher degree of parallelism, can im-
prove the performance of most applications except kmeans, which
is only 1.3× faster with 16× more channels. The reason behind
this is that kmeans has a large number of data movements. The
performance improvement provided by more channels depends on
the maximum parallelism existing in applications (e.g. bfs v.s. pr).
Such experiments show that more independent memory compo-
nents can significantly improve the performance of highly parallel
applications.

Controller Placement. In the above experiment, the parallelism
is limited by the number of channels in the system. To further in-
crease the parallelism, we utilize DP-Sim to explore different gran-
ularities of controller placement in DPIM architectures. In addition
to the channel-level scheme, which is used in conventional memory
systems, we test the bank-level and the chip-level schemes in a
8Gb per chip baseline system where each chip has 32 channels. Fig-
ure 8 shows normalized results to chip-level control design for each
workload. The results show that bank-level control can provide
52.1× and 11.3× performance improvements over chip-level and
channel-level schemes, because of the significantly increased paral-
lelism. This experiment show the importance of processing DPIM
instructions in a more fine-grained way than normal channel-level
memory operations.

3.4 Memory Technology Exploration

We can also utilize DP-Sim to investigate the impact of memory
technologies for DPIM acceleration. We simulate a state-of-the-art
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Table 3: Comparison of different DPIM DNN accelerators.
Tech. SRAM [4] DRAM [15] ReRAM [8]
Size (MB) Time(ms) Energy (J) Time(ms) Energy (J) Time(ms) Energy (J)
8 10.21 2.82 65.72 0.48 175.37 0.12
16 8.31 3.23 33.25 0.63 88.92 0.22
32 7.56 4.11 17.14 1.00 46.26 0.31
64 6.98 6.20 11.83 1.82 25.52 0.49
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Figure 9: Performance improvement of parallel v.s. sequen-
tial method.

DPIM DNN accelerator [4] by DP-Sim and test different memory
sizes and technologies. In addition to SRAM, which is used in the
original paper, we test DRAM and ReRAM because both of them
have been used in recent DPIM-based DNN accelerations [8, 15].
We simulate the inference task of AlexNet [12] with 8-bit precision.
Since the original SRAM-based accelerator needs to load data from
DRAM for each DNN layer, we model it as a two-chip system and
configure the inter-chip speed similar to memory-cache data trans-
fers. For the DRAM-based and ReRAM-based accelerators, we load
the data from the same chip to simulate the separate memory parti-
tion for storing weights. We scale the memory size and compare
the performance and energy consumption of different accelerators,
as shown in Table 3. The results show that larger memory can
significantly improve both DRAM (5.6×) and ReRAM (6.9×), but
not SRAM (1.5×) whose performance is bounded by data transfer
between heterogeneous memory components. Furthermore, the
performance difference between different technologies becomes
smaller when the memory size increases. We need to consider both
application and hardware information when designing efficient
DPIM acceleration.

3.5 Data Layout Exploration
With the help of DP-Sim, we can evaluate different data allocation
methods with various hardware configurations.

Sequential v.s. Parallel Allocation. We first compare perfor-
mance of sequential and parallel aligned allocation schemes, dis-
cussed in Section 2.1.2, for all tested applications in a single-chip
system with various number of channels. Similar to previous exper-
iments, each channel has 16 memory banks. As shown in Figure 9,
the parallel aligned allocation can significantly improve the per-
formance of several applications, especially bfs (1.9×), sssp(1.9×),
and query(3.1×), because these applications contains many inde-
pendent computations that can be processed in parallel by aligning
them in different blocks. Furthermore, the speedup provided by the
parallel allocation increases when we use more channels to provide
more parallelism.

Cost-aware Data Allocation.We then propose and implement
a new data allocation method which selects different schemes for
different DPIM data structures based on the software and hardware
information. The proposed algorithm considers the trade-offs be-
tween compute parallelism and data movement overhead of two
basic allocation schemes. The proposed algorithm first breaks the
compute graph into multiple sub-graphs of independent computa-
tions and then determines the allocation method for each sub-graph
based on the estimated costs of computation and data movements.
If the estimated cost of sequential aligned method for a sub-graph
is higher than that of parallel aligned method, we sequentially align
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Figure 10: Performance improvement provided by the pro-
posed optimization.

all computations in this sub-graph; otherwise, we adopt parallel
aligned method to allocate memory. Cost models for sequential and
parallel methods for a sub-graph are: 𝐶𝑜𝑠𝑡𝑠𝑒𝑞 = 𝐶𝑜𝑠𝑡𝑜𝑝 ∗ 𝑁𝑜𝑝 and
𝐶𝑜𝑠𝑡𝑝𝑎𝑟 = 𝐶𝑜𝑠𝑡𝑜𝑝 ∗ 𝑁𝑝𝑎𝑟_𝑠𝑡𝑒𝑝 + 𝐶𝑜𝑠𝑡𝑚𝑣 ∗ 𝑁𝑚𝑣 where 𝐶𝑜𝑠𝑡𝑜𝑝 and
𝐶𝑜𝑠𝑡𝑚𝑣 denotes the latency of one vector operation and movement,
𝑁𝑜𝑝 denotes the total number of operations, 𝑁𝑝𝑎𝑟_𝑠𝑡𝑒𝑝 denotes the
number of steps required for maximum parallelism, and 𝑁𝑚𝑣 de-
notes the number of data movements required for maximum paral-
lelism. All these values can be estimated by the runtime information
(e.g., data size and operation type) and hardware parameters.

We compare the proposed data allocation algorithm to the se-
quential aligned allocation and the parallel aligned allocation for
all tested applications in the single-chip system with 32 channels
and each channel has 16 memory banks, as shown in Figure 10.
Compared to the parallel aligned allocation, the proposed method
improves performance by 2.2×. Such results come from the fact that
some computations are bounded by data movements when using
parallel aligned allocation. In this case, the propose method selects
the sequential aligned method which reduces the data movement
overhead at the cost of less parallelism.

4 CONCLUSION
In this work, we propose a full-stack simulation infrastructure, DP-
Sim, to evaluate different design choices in DPIM architectures from
both software and hardware. We design the whole stack of simu-
lating DPIM systems, including a software library, a configurable
compiler layer, and a fast but accurate PIM-enabled architecture
model. Our experiments show that DP-Sim provides 10.3× faster
simulation with only 6.3% result difference as compared to a vali-
dated memory simulator. Furthermore, we utilize DP-Sim to explore
various DPIM-specific design choices and our experiments show
that such design space has a significant impact on the performance
of DPIM-based acceleration.
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